691
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Characterization, Synthesis, and Biological Activities of Silver Nanoparticles Produced via Green Synthesis Method Using Thymus Vulgaris Aqueous Extract

, , , , ORCID Icon, ORCID Icon, , , ORCID Icon & show all
Pages 453-469 | Received 10 Nov 2023, Accepted 09 Jan 2024, Published online: 16 Jan 2024

References

  • Batool S, Hussain Z, Niazi MBK, Liaqat U, Afzal M. Biogenic synthesis of silver nanoparticles and evaluation of physical and antimicrobial properties of Ag/PVA/starch nanocomposites hydrogel membranes for wound dressing application. J Drug Delivery Sci Technol. 2019;52:403–414. doi:10.1016/j.jddst.2019.05.016
  • Sharifi-Rad M, Pohl P, Epifano F, Álvarez-Suarez JM. Green synthesis of silver nanoparticles using Astragalus tribuloides delile root extract: characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials. 2020;10(12):2383. doi:10.3390/nano10122383
  • Laguta I, Stavinskaya O, Kazakova O, Fesenko T, Brychka S. Green synthesis of silver nanoparticles using Stevia leaves extracts. Appl Nanosci. 2019;9(5):755–765. doi:10.1007/s13204-018-0680-5
  • Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery. Biomed Rep. 2021;14(5):1–9. doi:10.3892/br.2021.1418
  • Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem. 2019;9(1):1–9. doi:10.1007/s40097-018-0291-4
  • Balciunaitiene A, Viskelis P, Viskelis J, et al. Green synthesis of silver nanoparticles using extract of Artemisia absinthium L, Humulus lupulus L. and Thymus vulgaris L, Physico-Chemical Characterization, Antimicrobial and Antioxidant Activity. Processes. 2021;9(8):1304. doi:10.3390/pr9081304
  • Suman TY, Rajasree SR, Jayaseelan C, et al. GC-MS analysis of bioactive components and biosynthesis of silver nanoparticles using Hybanthus enneaspermus at room temperature evaluation of their stability and its larvicidal activity. Environ Sci Pollut Res Int. 2016;23(3):2705–2714. doi:10.1007/s11356-015-5468-5
  • Hembram KC, Kumar R, Kandha L, Parhi PK, Kundu CN, Bindhani BK. Therapeutic prospective of plant-induced silver nanoparticles: application as antimicrobial and anticancer agent. Artif Cells Nanomed Biotechnol. 2018;46(sup3):38–51. doi:10.1080/21691401.2018.1489262
  • Abdellatif AAH, Alhathloul SS, Aljohani ASM, et al. Green synthesis of silver nanoparticles incorporated aromatherapies utilized for their antioxidant and antimicrobial activities against some clinical bacterial isolates. Bioinorg Chem Appl. 2022;2022:2432758. doi:10.1155/2022/2432758
  • Jadou A, Al-Shahwany AW. Biogenic synthesis and characterization of silver nanoparticles using some medical plants and evaluation of their antibacterial and toxicity potential. J AOAC Int. 2018;101(6):1905–1912. doi:10.5740/jaoacint.17-0500
  • Khanal LN, Sharma KR, Paudyal H, et al. Green synthesis of silver nanoparticles from root extracts of Rubus ellipticus Sm and comparison of antioxidant and antibacterial activity. J Nanomater. 2022;2022:1–11. doi:10.1155/2022/1832587
  • Kedi PBE, Meva FE, Kotsedi L, et al. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int J Nanomed. 2018;13:8537–8548. doi:10.2147/IJN.S174530
  • Pandiyan I, Sri SD, Indiran MA, Rathinavelu PK, Prabakar J, Rajeshkumar S. Antioxidant, anti-inflammatory activity of Thymus vulgaris-mediated selenium nanoparticles: an in vitro study. J conservat Dent. 2022;25(3):241–245. doi:10.4103/JCD.JCD_369_21
  • Aldosary S, El-Rahman S, Al-Jameel S, Alromihi N. Antioxidant and antimicrobial activities of Thymus vulgaris essential oil contained and synthesis thymus (Vulgaris) silver nanoparticles. Braz J Biol. 2021;3:83.
  • Khalilnezhad F, Torabi S, Larijany K, Khosrowshahli M. Nano silver particle synthesis using leaf extract of pharmaceutical plant Thymus vulgaris. Int J Biosci. 2015;6(4):192–196.
  • Mohammadi M, Shahisaraee SA, Tavajjohi A, et al. Green synthesis of silver nanoparticles using Zingiber officinale and Thymus vulgaris extracts: characterisation, cell cytotoxicity, and its antifungal activity against Candida albicans in comparison to fluconazole. IET Nanobiotechnol. 2019;13(2):114–119. doi:10.1049/iet-nbt.2018.5146
  • Odemis O, Ozdemir S, Gonca S, Arslantas A, Agirtas MS. The study on biological activities of silver nanoparticles produced via green synthesis method using Salvia officinalis and Thymus vulgaris. Turk J Chem. 2022;46(5):1417–1428. doi:10.55730/1300-0527.3448
  • De Melo APZ, De Oliveira Brisola Maciel MV, Sganzerla WG, et al. Antibacterial activity, morphology, and physicochemical stability of biosynthesized silver nanoparticles using thyme (Thymus vulgaris) essential oil. Mater Res Express. 2020;7(1):015087. doi:10.1088/2053-1591/ab6c63
  • Heidari Z, Salehzadeh A, Sadat Shandiz SA, Tajdoost S. Anti-cancer and anti-oxidant properties of ethanolic leaf extract of Thymus vulgaris and its bio-functionalized silver nanoparticles. 3 Biotech. 2018;8(3):1–14. doi:10.1007/s13205-018-1199-x
  • Deshmukh MM, Ambad CS, Kendre N, Kashid NG. Biochemical Screening, Antibacterial and GC-MS Analysis of Ethanolic Extract of Hemidesmus indicus (L) R. Br. root. Res J Pharma Phytochem. 2019;11(2):73–80. doi:10.5958/0975-4385.2019.00014.1
  • Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresou Biopro. 2014;1(1):1–10. doi:10.1186/s40643-014-0003-y
  • Vignesh A, Selvakumar S, Vasanth K. Comparative LC-MS analysis of bioactive compounds, antioxidants and antibacterial activity from leaf and callus extracts of Saraca asoca. Phytomedicine Plus. 2022;2(1):1–12. doi:10.1016/j.phyplu.2021.100167
  • Afzal M, Khan AS, Zeshan B, et al. Characterization of bioactive compounds and novel proteins derived from promising source Citrullus colocynthis along with in-vitro and in-vivo activities. Molecules. 2023;28(4):1743. doi:10.3390/molecules28041743
  • Kostikova VA, Veklich TN HPLC analysis of phenolic compounds in leaves and inflorescences of Sorbaria pallasii. Paper presented at: BIO Web of Conferences; 2020.
  • Filip GA, Moldovan B, Baldea I, et al. UV-light mediated green synthesis of silver and gold nanoparticles using Cornelian cherry fruit extract and their comparative effects in experimental inflammation. J Photochem Photobiol B Biol. 2019;191:26–37. doi:10.1016/j.jphotobiol.2018.12.006
  • Khyade MS, Varpe SN, Padwal AD. Evaluation of chemical profile and antioxidant potential of Trichodesma indicum (L.) R. Br. Int J Phytomed. 2017;9(3):416–425. doi:10.5138/09750185.2012
  • Chand K, Cao D, Eldin Fouad D, et al. Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arabian J Chem. 2020;13(11):8248–8261. doi:10.1016/j.arabjc.2020.01.009
  • Perumalsamy R, Krishnadhas L. Anti-Diabetic Activity of Silver Nanoparticles Synthesized from the Hydroethanolic Extract of Myristica fragrans Seeds. Appl Biochem Biotechnol. 2022;194(3):1136–1148. doi:10.1007/s12010-022-03825-8
  • Erdogan O, Abbak M, Demirbolat GM, Birtekocak F. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: the characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One. 2019;14(6):e0216496. doi:10.1371/journal.pone.0216496
  • Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med. 2020;11(1):37–44. doi:10.1016/j.jaim.2017.11.003
  • Chahardoli A, Qalekhani F, Shokoohinia Y, Fattahi A. Biological and catalytic activities of green synthesized silver nanoparticles from the leaf infusion of Dracocephalum kotschyi boiss. Global Challenges. 2021;5(2):2000018. doi:10.1002/gch2.202000018
  • Saleem A, Afzal M, Naveed M, et al. HPLC, FTIR and GC-MS analyses of thymus vulgaris phytochemicals executing in vitro and in vivo biological activities and effects on COX-1, COX-2 and gastric cancer genes computationally. Molecules. 2022;27(23):8512. doi:10.3390/molecules27238512
  • Das M, Mondal A, Patowary K, Malipeddi H. Biosynthesis of AgNPs using aqueous leaf extract of Ipomoea eriocarpa and their anti‐inflammatory effect on carrageenan‐induced paw edema in male Wistar rats. IET Nanobiotechnol. 2017;11(3):225–229. doi:10.1049/iet-nbt.2016.0034
  • Vanaja M, Gnanajobitha D, Paulkumar K, Shanmugam R, Chelladurai M, Gurusamy A. Phytosynthesis of silver nanoparticles by ‘Cissus quadrangularis’, influence of physicochemical factors. J Nanostruct Chem. 2013;3:3.
  • Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 2016;6(3):399–408. doi:10.1007/s13204-015-0449-z
  • Litwinienko G, Ingold K. Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc Chem Res. 2007;40(3):222–230. doi:10.1021/ar0682029
  • Fabara A, Cuesta S, Pilaquinga F, Meneses L. Computational modeling of the interaction of silver nanoparticles with the lipid layer of the skin. J Nanotechnol. 2018;2018:4927017. doi:10.1155/2018/4927017
  • Habashy NH, Serie MMA, Attia WE, Abdelgaleil SA. Chemical characterization, antioxidant and anti-inflammatory properties of Greek Thymus vulgaris extracts and their possible synergism with Egyptian Chlorella vulgaris. Journal of Functional Foods. 2018;40:317–328. doi:10.1016/j.jff.2017.11.022
  • Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–956. doi:10.1016/0891-5849(95)02227-9
  • Tseng K-H, Chou C-J, Liu T-C, Tien D-C, Chang CY, Stobinski L. Relationship between Ag nanoparticles and Ag ions prepared by arc discharge method. Nanotechnol Rev. 2018;7(1):1–9. doi:10.1515/ntrev-2017-0167
  • Raja A, Salique SM, Gajalakshmi P, James A. Antibacterial and hemolytic activity of green silver nanoparticles from Catharanthus roseus. Int J Pharm Sci Nanotechnol. 2016;9(1):7.