109
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Development of Small HN Linked Radionuclide Iodine-125 for Nanocarrier Image Tracing in Mouse Model

, , , , , , & show all
Pages 1909-1922 | Received 27 Oct 2023, Accepted 15 Feb 2024, Published online: 23 Feb 2024

References

  • Saito Y, Nose N, Iida T, et al. In vivo tracking transplanted cardiomyocytes derived from human induced pluripotent stem cells using nuclear medicine imaging. Front Cardiovasc Med. 2023;10:1261330. doi:10.3389/fcvm.2023.1261330
  • Kroeger EA, Rupp A, Gregor J. Misuse of a medical radioisotope: 125i labeled playing cards in Germany, a case study. Health Phys. 2020;119(1):128–132. doi:10.1097/HP.0000000000001245
  • Zhou X, Zhang W, Dou M, et al. 125I seeds inhibit proliferation and promote apoptosis in cholangiocarcinoma cells by regulating the AGR2-mediated p38 MAPK pathway. Cancer Lett. 2022;524:29–41. doi:10.1016/j.canlet.2021.10.014
  • E J-GI, Sabater S, Martinez-Gutierrez R, et al. LDR brachytherapy offers superior tumor control to single-fraction HDR prostate brachytherapy: a prospective study. Prostate. 2023;83(11):1068–1075. doi:10.1002/pros.24548
  • Yang M, You Y, Wang X, et al. I-125 seeds brachytherapy combined with immunotherapy for MET amplification in non-small cell lung cancer from clinical application to related lncRNA mechanism explore: a case report. Front Cell Dev Biol. 2023;11:1176083. doi:10.3389/fcell.2023.1176083
  • Huang S, Wu Y, Li C, et al. Tailoring morphologies of mesoporous polydopamine nanoparticles to deliver high-loading radioiodine for anaplastic thyroid carcinoma imaging and therapy. Nanoscale. 2021;13(35):15021–15030. doi:10.1039/D1NR02892H
  • K SS, Kumar Y, T PK, et al. Development of a 125I source for its application in bone densitometry. Appl Radiat Isot. 2012;70(3):470–477. doi:10.1016/j.apradiso.2011.11.010
  • Wu Y, Yao Y, Zhang J, et al. Tumor-targeted injectable double-network hydrogel for prevention of breast cancer recurrence and wound infection via synergistic photothermal and brachytherapy. Adv Sci. 2022;9(24):e2200681. doi:10.1002/advs.202200681
  • Nosrati Z, Pl E, Rodríguez-Rodr Í, et al. Simultaneous SPECT imaging with 123I and 125I-a practical approach to assessing a drug and its carrier at the same time with dual imaging. Int J Pharm. 2021;606:120884. doi:10.1016/j.ijpharm.2021.120884
  • Huang H, Zhu H, Xie Q, et al. Evaluation of 124I-JS001 for hPD1 immuno-PET imaging using sarcoma cell homografts in humanized mice. Acta Pharm Sin B. 2020;10(7):1321–1330. doi:10.1016/j.apsb.2020.02.004
  • Liu R, Shi J, Ge X, et al. Similar therapeutic effects of 125I seed radiotherapy and γ-ray radiotherapy on lacrimal gland adenoid cystic carcinoma. Int J Ophthalmol. 2021;14(4):547–553. doi:10.18240/ijo.2021.04.11
  • Chen L, Ge J, Huang B, et al. Anchoring group mediated radiolabeling for achieving robust nanoimaging probes. Small. 2021;17(51):e2104977. doi:10.1002/smll.202104977
  • Zhong J, Zhang Q, Zhang Z, et al. Albumin mediated reactive oxygen species scavenging and targeted delivery of methotrexate for rheumatoid arthritis therapy. Nano Res. 2022;15(1):153–161. doi:10.1007/s12274-021-3449-1
  • Wang D, Yue J, Cao Q, et al. ICG-loaded and 25 I-labeled theranostic nanosystem for multimodality imaging-navigated phototherapy of breast cancer. Biomater Sci. 2022;11(1):248–262. doi:10.1039/D2BM01551J
  • Kondo Y, Kimura H, Sasaki M, et al. Effect of water on direct radioiodination of small molecules/peptides using copper-mediated iododeboronation in water-alcohol solvent. Acs Omega. 2023;8(27):24418–24425. doi:10.1021/acsomega.3c01974
  • Sun J, Huangfu Z, Yang J, et al. Imaging-guided targeted radionuclide tumor therapy: from concept to clinical translation. Adv Drug Deliv Rev. 2022;190:114538. doi:10.1016/j.addr.2022.114538
  • Yi X, Xu M, Zhou H, et al. Ultrasmall hyperbranched semiconducting polymer nanoparticles with different radioisotopes labeling for cancer theranostics. Acs Nano. 2018;12(9):9142–9151. doi:10.1021/acsnano.8b03514
  • Gu X, Wei Y, Fan Q, et al. cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. J Control Release. 2019;301:110–118. doi:10.1016/j.jconrel.2019.03.005
  • Bouhlel Z, A AA, E WD, et al. Labelling strategy and membrane characterization of marine bacteria Vibrio splendidus by in vivo 2H NMR. Biochim Biophys Acta Bio. 2019;1861(4):871–878. doi:10.1016/j.bbamem.2019.01.018
  • Card M, Alejandro R, Roxbury D. Decoupling individual optical nanosensor responses using a spin- coated hydrogel platform. ACS Appl Mater Interfaces. 2022;15(1):1772–1783. doi:10.1021/acsami.2c16596
  • Liu R, Yao T, Liu Y, et al. Temperature-sensitive polymeric nanogels encapsulating with β-cyclodextrin and ICG complex for high- resolution deep-tissue ultrasound-switchable fluorescence imaging. Nano Res. 2020;13(4):1100–1110. doi:10.1007/s12274-020-2752-6
  • J GP, Man F, J BP, et al. Direct cell radiolabeling for in vivo cell tracking with PET and SPECT Imaging. Chem Rev. 2022;122(11):10266–10318. doi:10.1021/acs.chemrev.1c00767
  • Kostiv U, Lobaz V, Kucka J, et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable 125I-radiolabeled NaYF 4: Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale. 2017;9(43):16680–16688. doi:10.1039/C7NR05456D
  • L BKC, J AW, Sudlow G, et al. Dual-radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale. 2015;7(2):440–444. doi:10.1039/C4NR05269B
  • S FN, A E-SH, M A-MA, et al. Comparative study on radiolabeling and biodistribution of core-shell silver / polymeric nanoparticles-based theranostics for tumor targeting. Int J Pharm. 2017;529(1–2):123–133. doi:10.1016/j.ijpharm.2017.06.044
  • Enrique M, Mariana O, F MS, et al. Multifunctional radiolabeled nanoparticles: strategies and novel classification of radiopharmaceuticals for cancer treatment. J Drug Target. 2015;23(3):191–201. doi:10.3109/1061186X.2014.988216
  • Pant K, Sedlacek O, A NR, et al. Radiolabelled polymeric materials for imaging and treatment of cancer: quo vadis? Adv Healthc Mater. 2017;6(6):1601115. doi:10.1002/adhm.201601115
  • Yang L, Zhang C, Liu J, et al. ICG-Conjugated and 125I-labeled polymeric micelles with high biosafety for multimodality imaging-guided photothermal therapy of tumors. Adv Healthc Mater. 2020;9(5):e1901616. doi:10.1002/adhm.201901616
  • Prasad KN, Cole WC, Haase GM. Radiation protection in humans: extending the concept of as low as reasonably achievable (ALARA) from dose to biological damage. Br J Radiol. 2004;77(914):97–99. doi:10.1259/bjr/88081058
  • Ferro-Flores G, E O-GB, L S-C-C, et al. Multifunctional radiolabeled nanoparticles for targeted therapy. Curr Med Chem. 2014;21(1):124–138. doi:10.2174/09298673113209990218
  • Chen L, Zhong X, Yi X, et al. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials. 2015;66:21–28. doi:10.1016/j.biomaterials.2015.06.043
  • Ma R, Zheng H, Liu Q, et al. Exploring the interactions between engineered nanomaterials and immune cells at 3D nano-bio interfaces to discover potent nano-adjuvants. Nanomedicine. 2019;21:102037. doi:10.1016/j.nano.2019.102037
  • Sadeghzadeh M, J DF, Sheibani S, et al. Radioiodination of 4-benzyl-1-(3-iodobenzylsulfonyl)piperidine, 4-(3-iodobenzyl)-1-(benzylsulfonyl)piperazine and their derivatives via isotopic and non-isotopic exchange reactions. J Radioanal Nucl Chem. 2014;302(3):1119–1125. doi:10.1007/s10967-014-3347-z
  • Ge J, Zhang Q, Zeng J, et al. Radiolabeling nanomaterials for multimodality imaging: new insights into nuclear medicine and cancer diagnosis. Biomaterials. 2020;228:119953. doi:10.1016/j.biomaterials.2019.119553
  • Pei P, Liu T, Shen W, et al. Biomaterial-mediated internal radioisotope therapy. Mater Horiz. 2021;8(5):1348–1366. doi:10.1039/D0MH01761B
  • Su W, Wang H, Wang T, et al. Auger electrons constructed active sites on nanocatalysts for catalytic internal radiotherapy. Adv Sci. 2020;7(10):1903585. doi:10.1002/advs.201903585
  • Qin Y, Shen M, Liu X, et al. Correction to “photo-driven delivery of 125 i-labeled nanomicelles for nucleus-targeted internal conversion electron-based cancer therapy”. Acs Appl Mater Interfaces. 2022;14(42):48323–48325. doi:10.1021/acsami.1c13249
  • Michotte C. Radionuclide activities. Nat Phys. 2023;19(8):1220. doi:10.1038/s41567-023-02166-5