163
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Sequentially Released Liposomes Enhance Anti-Liver Cancer Efficacy of Tetrandrine and Celastrol-Loaded Coix Seed Oil

, , ORCID Icon, , &
Pages 727-742 | Received 03 Nov 2023, Accepted 16 Jan 2024, Published online: 22 Jan 2024

References

  • Hassan S, Kamel A, Hashem H, et al. Drug delivery systems between metal, liposome, and polymer-based nanomedicine: a review. Eur Chem Bull. 2020;9(3). doi:10.17628/ecb.2020.9.91-102
  • Bharadwaj A, Gupta M, Shakya A. A critical review on nanotechnology: a technique in cancer detection and prophylaxis. Nano Life. 2023;13(03). doi:10.1142/S1793984423300042
  • Mpekris F, Papageorgis P, Polydorou C, et al. Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo-and nanotherapy. J Control Release. 2017;261:105–112. doi:10.1016/j.jconrel.2017.06.022
  • Bree C, Krooshoop J, Rietbroek R, et al. Hyperthermia enhances tumor uptake and antitumor efficacy of thermostable liposomal daunorubicin in a rat solid tumor. Cancer Res. 1996;56(3):563. doi:10.1097/00002820-199602000-00010
  • Glantz M, Lafollette S, Jaeckle K, et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol. 1999;17(10):3110–3116. doi:10.1161/01.CIR.62.3.485
  • Silverman J, Deitcher S. Marqibo (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71(3):555–564. doi:10.1007/s00280-012-2042-4
  • Fei X. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010;15(1):166–179. doi:10.2741/3613
  • Francesco E, Lappano R, Santolla MF, et al. HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Res. 2013;15(4):R64. doi:10.1186/bcr3458
  • Jing J, Parekh H, Wei M, et al. Advances in analytical technologies to evaluate the quality of traditional Chinese medicines. Trends Anal Chem. 2013;44:39–45. doi:10.1016/j.trac.2012.11.006
  • Wong C, Seow W, O’Callaghan J, et al. Comparative effects of tetrandrine and berbamine on subcutaneous air pouch inflammation induced by interleukin-1, tumor necrosis factor and platelet activating factor. Agents Actions. 1992;36(1–2):112–118. doi:10.1007/BF01991238
  • Liu C, Gong K, Mao X, Li W. Tetrandrine induces apoptosis by activating reactive oxygen species and repressing Akt activity in human hepatocellular carcinoma. Int J Cancer. 2011;129(6):1519–1531. doi:10.1002/ijc.25817
  • Gao L, Feng Q, Zhang X, et al. Tetrandrine suppresses articular inflammatory response by inhibiting pro-inflammatory factors via NF-κB inactivation. J Orthop Res. 2016;34(9):1557–1568. doi:10.1002/jor.23155
  • Wang X, Yang Y, Yang D, et al. Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosine monophosphate-dependent protein kinase type 1. J Vascular Surg. 2016;64(5):1468–1477. doi:10.1016/j.jvs.2015.09.016
  • Liu B, Wang T, Qian X, et al. Anticancer effect of tetrandrine on primary cancer cells isolated from ascites and pleural fluids. Cancer Lett. 2008;268:166–175. doi:10.1016/j.canlet.2008.03.059
  • Bellik Y, Boukraâ L, Alzahrani H, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules. 2013;18:322–353. doi:10.3390/molecules18010322
  • Zhao H, Lou F, Li H, et al. Antinociceptive effect of tetrandrine on LPS-induced hyperalgesia via the inhibition of IKKb phosphorylation and the COX- 2/PGE2 pathway in mice. PLoS One. 2014;9:e94586. doi:10.1371/journal.pone.0094586
  • Lin Y, Chang C, Wu C, et al. Anti-nociceptive, anti-inflammatory and toxicological evaluation of Fang-Ji-Huang-Qi-Tang in rodents. BMC Complement Altern Med. 2015;15:10. doi:10.1186/s12906-015-0527-5
  • Li X, Jin Q, Wu Y, et al. Tetrandrine regulates hepatic stellate cell activation via TAK1 and NF-κB signaling. Int Immunopharmacol. 2016;36:263–270. doi:10.1016/j.intimp.2016.04.039
  • Gao S, Cui Y, Yu C, et al. Tetrandrine exerts antidepressant-like effects in animal models: role of brain-derived neurotrophic factor. Behav. Brain Res. 2013;238:79–85. doi:10.1016/j.bbr.2012.10.015
  • Yuan X, Tong B, Dou Y, et al. Tetrandrine ameliorates collagen-induced arthritis in mice by restoring the balance between Th17 and Treg cells via the aryl hydrocarbon. Biochem Pharmacol. 2016;101:87–99. doi:10.1016/j.bcp.2015.11.025
  • Li X, Wu Z, He B, et al. Tetrandrine alleviates symptoms of rheumatoid arthritis in rats by regulating the expression of cyclooxygenase-2 and inflammatory factors. Exp Ther Med. 2018;16:2670–2676. doi:10.3892/etm.2018.6498
  • Jang BC. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-a, PPAR-c, FAS, perilipin A, and STAT-3. Biochem Biophys Res Commun. 2017;494:422–423. doi:10.1016/j.bbrc.2016.05.150
  • Sakurai Y, Kolokoltsov A, Chen C, et al. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science. 2015;347:995–998. doi:10.1126/science.1258758
  • Capuzzi S, Sun W, Muratov E, et al. Computer-aided discovery and characterization of novel Ebola virus inhibitors. J Med Chem. 2018;61:3582–3594. doi:10.1021/acs.jmedchem.8b00035
  • Lv Y, Wu Z, Chen L, et al. Neuroprotective effects of tetrandrine against vascular dementia. Neural Regen Res. 2016;11:454–459. doi:10.4103/1673-5374.179058
  • Corson T, Crews C. Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell. 2007;130(5):769–774. doi:10.1016/j.cell.2007.08.021
  • Guo L, Luo S, Du Z, et al. Targeted delivery of celastrol to mesangial cells is effective against mesangioproliferative glomerulonephritis. Nat Commun. 2017;8(1):878. doi:10.1038/s41467-017-00834-8
  • Kang S, Park T, Chen X, et al. Tunable physiologic interactions of adhesion molecules for inflamed cell-selective drug delivery. Biomaterials. 2011;32(13):3487–3498. doi:10.1016/j.biomaterials.2011.01.046
  • Li X, Xie S, Pan Y, et al. Preparation, characterization and pharmacokinetics of doxycycline hydrochloride and florfenicol polyvinylpyrroliddone microparticle entrapped with hydroxypropyl-β-cyclodextrin inclusion complexes suspension. Colloids Surf B. 2016:634–642. doi:10.1016/j.colsurfb.2016.02.027
  • Gao L, Chen Y, Zhang N, et al. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med. 2015. doi:10.1186/s12916-015-0399-z
  • Chen J, Gong Y, Liu J, et al. Synthesis and biological evaluation of substituted phenylpyrazole oleanane derivatives as inhibitors of glycogen phosphorylase. Drug Discoveries Ther. 2008;2(2):115–121. doi:10.1002/cbdv.200890117
  • Qu D, He J, Liu C, et al. Triterpene-loaded microemulsion using Coix lacryma-jobi seed extract as oil phase for enhanced antitumor efficacy: preparation and in vivo evaluation. Int j Nanomed. 2014;9(1):109–119. doi:10.2147/IJN.S54796
  • Chen Y, Qu D, Fu R, et al. A Tf-modified tripterine-loaded coix seed oil microemulsion enhances anti-cervical cancer treatment. Int j Nanomed. 2018;13:7275–7287. doi:10.2147/IJN.S182475
  • Chen Y, Guo M, Qu D, et al. Furin-responsive triterpenine-based liposomal complex enhances anticervical cancer therapy through size modulation. Drug Delivery. 2020;27(1):1608–1624. doi:10.1080/10717544.2020.1827086
  • Chen Y, Yuan L, Congyan L, et al. Antitumor activity of tripterine via cell-penetrating peptide-coated nanostructured lipid carriers in a prostate cancer model. Int j Nanomed. 2013;8. doi:10.2147/IJN.S51621
  • Qu D, Wang L, Liu M, et al. Oral nanomedicine based on multicomponent microemulsions for drug-resistant breast cancer treatment. Biomacromolecules. 2017;18(4):1268–1280. doi:10.1021/acs.biomac.7b00011
  • Ding Q, Mingjian L, Mengmeng H, et al. Octanoyl galactose ester-modified microemulsion system self-assembled by coix seed components to enhance tumor targeting and hepatoma therapy. Int j Nanomed. 2017;12:2045–2059. doi:10.2147/IJN.S125293
  • Qu D, Wang L, Qin Y, et al. Non-triggered sequential-release liposomes enhance anti-breast cancer efficacy of STS and celastrol-based microemulsion. Biomater. Sci. 2018;6(12):3284–3299. doi:10.1039/c8bm00796a
  • Li P, Zhou X, Qu D, et al. Preliminary study on fabrication, characterization and synergistic anti-lung cancer effects of self-assembled micelles of covalently conjugated celastrol-polyethylene glycol-ginsenoside Rh2. Drug Deliv. 2017;24(1):834–845. doi:10.1080/10717544.2017.1326540
  • Wong S, Kellaway I, Murdan S. Enhancement of the dissolution rate and oral absorption of a poorly water soluble drug by formation of surfactant-containing microparticles. Int J Pharm. 2006;317(1):61–68. doi:10.1016/j.ijpharm.2006.03.001
  • Guang H, Zhao Q, Du B, et al. Platelet-rich plasma protects human keratinocytes from UVB-induced apoptosis by attenuating inflammatory responses and endoplasmic reticulum stress. J Cosmet Dermatol. 2023;22(4):1327–1333. doi:10.1111/jocd.15559
  • Ceylan S. An in vitro evaluation of Genipin-crosslinked and Hypericum perforatum incorporated novel membranes for skin tissue engineering applications. J Appl Polym Sci. 2021;138. doi:10.1002/app.51385
  • Poley M, Chen G, Sharf-Pauker N, et al. Sex-based differences in the biodistribution of nanoparticles and their effect on hormonal, immune, and metabolic function. Adv Nano Biomed Res. 2022;2(12). doi:10.1002/anbr.202200089
  • Haney M, Yuan H, Shipley S, et al. Biodistribution of biomimetic drug carriers, mononuclear cells, and extracellular vesicles, in nonhuman primates. Adv Biol. 2021;6(2):e2101293. doi:10.1002/adbi.202101293
  • Song G, Tarrant T, White T, et al. Roles of chemokines CCL2 and CCL5 in the pharmacokinetics of PEGylated liposomal doxorubicin in vivo and in patients with recurrent epithelial ovarian cancer. Nanomed Nanotechnol Biol Med. 2015;11(7):1797–1807. doi:10.1016/j.nano.2015.05.007
  • Gonzalezvillasana V, Rodriguezaguayo C, Arumugam T, et al. Bisphosphonates inhibit stellate cell activity and enhance antitumor effects of nanoparticle albumin-bound paclitaxel in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2014;13(11):2583. doi:10.1158/1535-7163.MCT-14-0028
  • Kim S, Noh Y, Kang T, et al. Synthetic vaccine nanoparticles target to lymph node triggering enhanced innate and adaptive antitumor immunity. Biomaterials. 2017;130:56–66. doi:10.1016/j.biomaterials.2017.03.034
  • Lau U, Saxer S, Lee J, et al. Direct write protein patterns for multiplexed cytokine detection from live cells using electron beam lithography. Acs Nano. 2016;10(1):723–729. doi:10.1021/acsnano.5b05781
  • Koonce N, Quick C, Hardee M, et al. Combination of gold nanoparticle-conjugated tumor necrosis factor-α and radiation therapy results in a synergistic antitumor response in murine carcinoma models. Int J Radiat Oncol Biol Phys. 2015;93(3):588–596. doi:10.1016/j.ijrobp.2015.07.2275
  • Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10(1):45–65. doi:10.1038/sj.cdd.4401189
  • Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin. 2010;29(11):1275–1288. doi:10.1111/j.1745-7254.2008.00889.x
  • Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002;13(2):135–141. doi:10.1016/s1359-6101(01)00020-x
  • Esther S, Tsipi M, Polina W, et al. Inflammatory mediators in breast cancer: coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer. 2011;11(1):130. doi:10.1186/1471-2407-11-130
  • Komohara Y, Fujiwara Y, Ohnishi K, et al. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv. Drug Delivery Rev. 2016;99(Pt B):180–185. doi:10.1016/j.addr.2015.11.009
  • Bunimovich-Mendrazitsky S, Halachmi S, Kronik N. ImprovingBacillus Calmette-Guérin (BCG) immunotherapy for bladder cancer by adding interleukin 2 (IL-2): a mathematical model. Math Med Biol. 2016;33(2):159–188. doi:10.1093/imammb/dqv007
  • Wu J, Cui T, Yin C. Co-delivery of doxorubicin and interleukin-2 via chitosan-based nanoparticles for enhanced antitumor efficacy. Acta Biomater. 2017;47:81–90. doi:10.1016/j.actbio.2016.10.012
  • Kong H, Zhuo C, Yi K, et al. Hepatocyte-confined CRISPR/Cas9-based nanocleaver precisely eliminates viral DNA for efficient and safe treatment of hepatitis B virus infection. Nano Today. 2023:53. doi:10.1016/j.nantod.2023.102040
  • Kong H, Ju E, Yi K, et al. Advanced nanotheranostics of CRISPR/Cas for viral hepatitis and hepatocellular carcinoma. Adv Sci. 2021;8. doi:10.1002/advs.202170163