59
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Chasing Graphene-Based Anticancer Drugs: Where are We Now on the Biomedical Graphene Roadmap?

ORCID Icon, ORCID Icon, , , , , , & show all
Pages 3973-3989 | Received 31 Oct 2023, Accepted 28 Mar 2024, Published online: 03 May 2024

References

  • Amjad MT, Chidharla A, Kasi A. Cancer Chemotherapy. Treasure Island (FL): StatPearls Publishing; 2022.
  • DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643–8653. doi:10.1158/0008-5472.CAN-07-6611
  • Carrow JK, Singh KA, Jaiswal MK, et al. Photothermal modulation of human stem cells using light-responsive 2D nanomaterials. Proc Natl Acad Sci USA. 2020;117(24):13329–13338. doi:10.1073/pnas.1914345117
  • Chng E, Chua C, Pumera M. Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale. 2014;6(18):10792–10797. doi:10.1039/C4NR03608E
  • Gao P, Xiao Y, Li L, et al. Biomedical applications of 2D monoelemental materials formed by group va and via: a concise review. J Nanobiotechnol. 2021;19(1):1–23. doi:10.1186/s12951-021-00825-4
  • Goenka S, Vinayak S, Shilpa S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88. doi:10.1016/j.jconrel.2013.10.017
  • Frank I, Tanenbaum DM, van der Zande AM, et al. Mechanical properties of suspended graphene sheets. J Vacuum Sci Technol B. 2007;25(6):2558–2561. doi:10.1116/1.2789446
  • Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906–3924.
  • Navya PN, Kaphle A, Srinivas SP, et al. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence. 2019;6(1):23. doi:10.1186/s40580-019-0193-2
  • Prabakaran S, Jeyaraj M, Nagaraj A, et al. Polymethyl methacrylate–ovalbumin@ graphene oxide drug carrier system for high anti-proliferative cancer drug delivery. Appl Nanosci. 2019;9(7):1487–1500. doi:10.1007/s13204-019-00950-5
  • Gong P, Ji S, Wang J, et al. Fluorescence-switchable ultrasmall fluorinated graphene oxide with high near-infrared absorption for controlled and targeted drug delivery. Chem Eng J. 2018;348:438–446. doi:10.1016/j.cej.2018.04.193
  • Wei G, Dong R, Wang D, et al. Functional materials from the covalent modification of reduced graphene oxide and [small beta]-cyclodextrin as a drug delivery carrier. New J Chem. 2014;38(1):140–145. doi:10.1039/C3NJ00690E
  • Lei HZ, Mi LJ, Zhou XJ, et al. Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion. Nanoscale. 2011;3(9):3888–3892. doi:10.1039/c1nr10617a
  • Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, et al. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials. 2011;32(4):1121–1129. doi:10.1016/j.biomaterials.2010.10.030
  • Nurunnabi M, Khatun Z, Huh KM, et al. In Vivo Biodistribution and Toxicology of Carboxylated Graphene Quantum Dots. ACS Nano. 2013;7(8):6858–6867. doi:10.1021/nn402043c
  • Ou L, Song B, Liang H, et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Particle Fibre Toxicol. 2016;13(1):57. doi:10.1186/s12989-016-0168-y
  • Yang K, Wan J, Zhang S, et al. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials. 2012;33(7):2206–2214. doi:10.1016/j.biomaterials.2011.11.064
  • Liu Z, Robinson JT, Sun ZM, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. JAm Chem Soc. 2008;130(33):10876–10877. doi:10.1021/ja803688x
  • Qu G, Liu S, Zhang S, et al. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano. 2013;7(7):5732–5745. doi:10.1021/nn402330b
  • Yue H, Wei W, Yue Z, et al. The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials. 2012;33(16):4013–4021. doi:10.1016/j.biomaterials.2012.02.021
  • Sydlik SA, Jhunjhunwala S, Webber MJ, et al. In Vivo Compatibility of Graphene Oxide with Differing Oxidation States. ACS Nano. 2015;9(4):3866–3874. doi:10.1021/acsnano.5b01290
  • Nasiłowska B, Bogdanowicz Z, Hińcza K, et al. Graphene Oxide Aerosol Deposition and its Influence on Cancer Cells. Materials (Basel, Switzerland). 2020;13(19):4464. doi:10.3390/ma13194464
  • Kostarelos K, Novoselov KS. Materials science. Exploring the interface of graphene and biology. Science. 2014;344(6181):261–263. doi:10.1126/science.1246736
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669. doi:10.1126/science.1102896
  • Strupiński W, Grodecki K, Wysmolek A, et al. Graphene epitaxy by Chemical Vapor Deposition on SiC. Nano Lett. 2011;11(4):1786–1791. doi:10.1021/nl200390e
  • Loh KP, Bao QL, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications. Nature Chem. 2010;2(12):1015–1024. doi:10.1038/nchem.907
  • Wang L, Wang Y, Xu T, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun. 2014;5(1):5357. doi:10.1038/ncomms6357
  • Hsu WC, Chung NN, Chen YC, et al. Comparison of surgery or radiotherapy on complications and quality of life in patients with the stage IB and IIA uterine cervical cancer. Gynecologic Oncol. 2009;115(1):41–45. doi:10.1016/j.ygyno.2009.06.028
  • Tsao Y, Creedy DK. Auricular acupressure: reducing side effects of chemotherapy in women with ovarian cancer. Support Care Cancer. 2019;27(11):4155–4163. doi:10.1007/s00520-019-04682-8
  • Narins RG, Carley M, Bloom EJ, et al. The nephrotoxicity of chemotherapeutic agents. Semin Nephrol. 1990;10(6):556–564.
  • Sherlock SP, Tabakman SM, Xie L, et al. Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano. 2011;5(2):1505–1512. doi:10.1021/nn103415x
  • Javanbakht S, Shaabani A. Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. Int Biol Macromolecules. 2019;123:389–397. doi:10.1016/j.ijbiomac.2018.11.118
  • Demirel E, Karaca E, Durmaz YY. Effective PEGylation method to improve biocompatibility of graphene derivatives. Eur Polym J. 2020;124:109504. doi:10.1016/j.eurpolymj.2020.109504
  • Dąbrowska E, Teodorczyk M, Lipińska L, et al. Application of graphene oxide and graphene in laser diodes technology. Przeglad Elektrotechniczny. 2015;9:1–4.
  • Oz Y, Barras A, Sanyal R, et al. Functionalization of reduced graphene oxide via thiol–maleimide “click” chemistry: facile fabrication of targeted drug delivery vehicles. ACS Appl Mater Interfaces. 2017;9(39):34194–34203. doi:10.1021/acsami.7b08433
  • Xu M, Zhu J, Wang F, et al. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: poly(Acrylic Acid)-Functionalization is Superior to PEGylation. ACS Nano. 2016;10(3):3267–3281. doi:10.1021/acsnano.6b00539
  • Rana VK, Choi MC, Kong JY, et al. Synthesis and drug-delivery behavior of chitosan – functionalized graphene oxide hybrid nanosheets. Macromol Mater Eng. 2011;296(2):131–140. doi:10.1002/mame.201000307
  • Pramanik N, Ranganathan S, Rao S, et al. Composite of Hyaluronic Acid-Modified Graphene Oxide and Iron Oxide Nanoparticles for Targeted Drug Delivery and Magnetothermal Therapy. ACS Omega. 2019;28(5):9284–9293. doi:10.1021/acsomega.9b00870
  • Elham M, Soheila K, Nasim M. A Targeted Drug Delivery System Based on Dopamine Functionalized Nano Graphene Oxide. Chem Phys Lett. 2017;668:56–63. doi:10.1016/j.cplett.2016.12.019
  • Dybowski K, Kaczmarek Ł, Kula P, et al. Manufacturing method of composite electrodes for water electrodeionization based on cross-linked graphene oxide structures: PL 428718. Int J Med. 2019.
  • Yang K, Wan J, Zhangz S, et al. In Vivo Pharmacokinetics, Long-Term Biodistribution, and Toxicology of PEGylated Graphene in Mice. ACS Nano. 2011;5(1):516–522. doi:10.1021/nn1024303
  • Liu P, Xie X, Liu M, et al. A smart MnO2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm Sin. 2021;11(3):823–834. doi:10.1016/j.apsb.2020.07.021
  • Khan AQ, Rashid K, AlAmodi AA, et al. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: an update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed Pharmacother. 2021;143:112142. doi:10.1016/j.biopha.2021.112142
  • Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharmaceut Technol Res. 2012;3(4):200–201. doi:10.4103/2231-4040.104709
  • Vallejo BMJ, Salazar L, Grijalva M. Oxidative stress modulation and ROS-mediated toxicity in cancer: a review on in vitro models for plant-derived compounds. Oxid Med Cell Longev. 2017;1:1–9. doi:10.1155/2017/4586068
  • Gurunathan S, Han JW, Park JH, et al. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene. Int J Nanomed. 2014;9:363–377. doi:10.2147/IJN.S53538
  • Gurunathan S, Jeyaraj M, Kang MH, et al. Melatonin enhances palladium-nanoparticle-induced cytotoxicity and apoptosis in human lung epithelial adenocarcinoma cells A549 and H1229. Antioxidants. 2020;9(4):357. doi:10.3390/antiox9040357
  • Gurunathan S, Kim JH. Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells. Int J Nanomed. 2022;17:5697–5731. doi:10.2147/IJN.S385113
  • Coman SM, Podolean I, Tudorache M, et al. Graphene oxide as a catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives. Chem Commun. 2017;14:10271–10274. doi:10.1039/C7CC05105K
  • Taheriazam A, Abad GGY, Hajimazdarany S, et al. Graphene oxide nanoarchitectures in cancer biology: nano-modulators of autophagy and apoptosis. J Control Release. 2023;354:503–522. doi:10.1016/j.jconrel.2023.01.028
  • Shen J, Dong J, Shao F, et al. Graphene oxide induces autophagy and apoptosis via the ROS-dependent AMPK/mTOR/ULK-1 pathway in colorectal cancer cells. Nanomedicine. 2022;17(9):591–605. doi:10.2217/nnm-2022-0030
  • Tian X, Yang Z, Duan G, et al. Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small. 2017;13(3):1762517633. doi:10.1002/smll.201602133
  • Krętowski R, Cechowska-Pasko M. The Reduced Graphene Oxide (rGO) Induces Apoptosis, Autophagy and Cell Cycle Arrest in Breast Cancer Cells. Int J Mol Sci. 2022;18(16):9285. doi:10.3390/ijms23169285
  • Guo SJ, Dong SJ. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011;40(5):2644–2672. doi:10.1039/c0cs00079e
  • Ristic B, Trajkovic LH, Bosnjak M, et al. Modulation of Cancer Cell Autophagic Responses by Graphene-Based Nanomaterials: molecular Mechanisms and Therapeutic Implications. Cancers. 2021;13(16):4145. doi:10.3390/cancers13164145
  • Mizushima N. A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol. 2018;20(5):521–527. doi:10.1038/s41556-018-0092-5
  • Feng Y, Yao Z, Klionsky DJ. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 2015;25(6):354–363. doi:10.1016/j.tcb.2015.02.002
  • Ou L, Lin S, Song B, et al. The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis. Int J Nanomed. 2017;12:6633–6646. doi:10.2147/IJN.S140526
  • Liang Q, Yu F, Cai H, et al. Photo-activated autophagy-associated tumour cell death by lysosome impairment based on manganese-doped graphene quantum dots. J Mater Chem B. 2023;11(11):2466–2477. doi:10.1039/D2TB02761E
  • Hu Z, Li J, Li C, et al. Folic acid-conjugated graphene-ZnO nanohybrid for targeting photodynamic therapy under visible light irradiation. J Mater Chem. 2013;1(38):5003–5013. doi:10.1039/c3tb20849d
  • Kim CH, Kim TH. Graphene Hybrid Materials for Controlling Cellular Microenvironments. Materials. 2020;18(18):4008. doi:10.3390/ma13184008
  • Lin Q, Huang X, Tang J, et al. Environmentally friendly, one-pot synthesis of folic acid-decorated graphene oxide-based drug delivery system. J Nanopart Res. 2013;15(12):1–7. doi:10.1007/s11051-013-2144-x
  • Zhang M, Wu F, Wang W, et al. Multifunctional Nanocomposites for Targeted, Photothermal, and Chemotherapy. Chem. Mater. 2019;31(6):1847–1859. doi:10.1021/acs.chemmater.8b00934
  • Vinothini K, Rajendran NK, Ramu A, et al. Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomed. Pharmacother. 2019;10:906–917. doi:10.1016/j.biopha.2018.12.008
  • Zhanga J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug Delivery Rev. 2013;65(9):1215–1233. doi:10.1016/j.addr.2013.05.001
  • Dong J, Wang K, Sun L, et al. Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sens Actuators B. 2018;256:616–623. doi:10.1016/j.snb.2017.09.200
  • Sahni V, Choudhury D, Ahmed Z. Chemotherapy-associated renal dysfunction. Nat Rev Nephrol. 2009;5(8):450–462. doi:10.1038/nrneph.2009.97
  • Abdelsayed V, Moussa S, Hassan HM, et al. Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem Lett. 2010;1(19):2804–2809. doi:10.1021/jz1011143
  • Sahu A, Choi WI, Lee JH, et al. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials. 2013;34(26):6239–6248. doi:10.1016/j.biomaterials.2013.04.066
  • Salaheldin TA, Loutfy SA, Ramadan MA, et al. IR-enhanced photothermal therapeutic effect of graphene magnetite nanocomposite on human liver cancer HepG2 cell model. Int j Nanomed. 2019;14:4397–4412. doi:10.2147/IJN.S196256
  • Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010;10(9):3318–3323. doi:10.1021/nl100996u
  • Chourasia AH, Macleod KF. Tumor suppressor functions of BNIP3 and mitophagy. Autophagy. 2015;11(10):1937–1938. doi:10.1080/15548627.2015.1085136
  • Li Y, Wang Y, Shang H, et al. Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy. Int J Mol Sci. 2022;20(20):12558. doi:10.3390/ijms232012558
  • Lv C, Kang W, Liu S, et al. Growth of ZIF-8 Nanoparticles In Situ on Graphene Oxide Nanosheets: a Multifunctional Nanoplatform for Combined Ion-Interference and Photothermal Therapy. ACS Nano. 2022;16(7):11428–11443. doi:10.1021/acsnano.2c05532
  • Báez DF. Graphene-Based Nanomaterials for Photothermal Therapy in Cancer Treatment. Pharmaceutics. 2023;5(9):2286. doi:10.3390/pharmaceutics15092286
  • Liu P, Ye M, Wu Y, et al. Hyperthermia combined with immune checkpoint inhibitor therapy: synergistic sensitization and clinical outcomes. Cancer Med. 2023;12(3):3201–3221. doi:10.1002/cam4.5085
  • Yu Z, Chan WK, Zhang Y, Tan TTY. Near-infrared-II activated inorganic photothermal nanomedicines. Biomaterials. 2021;269:120459. doi:10.1016/j.biomaterials.2020.120459
  • Kang W, Liu Y, Wang W. Light-responsive nanomedicine for cancer immunotherapy. Acta Pharm Sin B. 2023;13(6):2346–2368. doi:10.1016/j.apsb.2023.05.016
  • Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res. 2022;26(1):61. doi:10.1186/s40824-022-00308-z
  • Liu X, Yan B, Li Y, et al. Graphene oxide-grafted magnetic nanorings mediated magnetothermodynamic therapy favoring reactive oxygen species-related immune response for enhanced antitumor efficacy. ACS Nano. 2020;14(2):1936–1950. doi:10.1021/acsnano.9b08320
  • Kang J, Ko Y, Kim J, et al. Microwave-assisted design of nanoporous graphene membrane for ultrafast and switchable organic solvent nanofiltration. Nat Commun. 2023;14(1):901–913. doi:10.1038/s41467-023-36524-x
  • Huang K, Liu X, Lv Z, et al. MMP9-responsive graphene oxide quantum dot-based nano-in-micro drug delivery system for combinatorial therapy of choroidal neovascularization. Small. 2023;19(39):e2207335. doi:10.1002/smll.202207335
  • Guo Z, Zhang P, Xie C, et al. Defining the surface oxygen threshold that switches the interaction mode of graphene oxide with bacteria. ACS Nano. 2023.
  • Xiaoli F, Qiyue C, Weihong G, et al. Toxicology data of graphene-family nanomaterials: an update. Arch Toxicol. 2020;94(6):1915–1939. doi:10.1007/s00204-020-02717-2
  • Ban G, Hou Y, Shen Z, Jia J, Chai L, Ma C. Potential Biomedical Limitations of Graphene Nanomaterials. Int J Nanomed. 2023;18:1695–1708. doi:10.2147/IJN.S402954
  • Saleem J, Wang L, Chen C. Immunological effects of graphene family nanomaterials. NanoImpact. 2017;5:109–118. doi:10.1016/j.impact.2017.01.005
  • Karthikeyan L, Sobhana S, Yasothamani V, Gowsalya K, Vivek R. Multifunctional theranostic nanomedicines for cancer treatment: recent progress and challenges. Biomed Eng Adv. 2023;5:100082. doi:10.1016/j.bea.2023.100082
  • Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials. 2022;291:121906. doi:10.1016/j.biomaterials.2022.121906
  • Drabińska A, Grodecki K, Strupiński W, et al. Growth kinetics of epitaxial graphene on SiC substrates. Physical Review. 2010;24:245–410.
  • Jiang HJ. Chemical preparation of graphene-based nano- materials and their applications in chemical and biological sensors. Small. 2011;7(17):2413–2427. doi:10.1002/smll.201002352
  • Itatahine A, Mehdi YA, Fizir M, et al. Multifunctional carbon nanomaterials for camptothecine low-water soluble anticancer drug delivery. New J Chem. 2018;42(2):1326–1336. doi:10.1039/C7NJ04609J
  • Ramachandran R, Krishnaraj C, Sivakumar A, et al. Anticancer activity of biologically synthesized silver and gold nanoparticles on mouse myoblast cancer cells and their toxicity against embryonic zebrafish. Mater Sci Eng. 2017;73:674–683. doi:10.1016/j.msec.2016.12.110
  • Xu Y, Wu Q, Sun Y, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano. 2010;4(12):7358–7362. doi:10.1021/nn1027104
  • Javanbakht S, Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng C. 2018;87:50–59. doi:10.1016/j.msec.2018.02.010
  • Zhang X, Yin J, Peng C, et al. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon. 2011;49(3):986–995. doi:10.1016/j.carbon.2010.11.005
  • Gnanasekar S, Balakrishnan D, Seetharaman P, et al. Chrysin-Anchored silver and gold nanoparticle-reduced graphene oxide composites for breast cancer therapy. ACS Appl Nano Mater. 2020;3(5):4574–4585. doi:10.1021/acsanm.0c00630
  • Liu Z, Qiu K, Liao X, et al. Nucleus-targeting ultrasmall ruthenium(iv) oxide nanoparticles for photoacoustic imaging and low-temperature photothermal therapy in the NIR-II window. Chem Commun. 2020;56(20):3019–3022. doi:10.1039/C9CC09728G
  • Vinothini K, Rajendran NK, Rajan M, et al. Magnetic Nanoparticles Functionalized Reduced Graphene Oxide-Based Drug Carrier System for Chemo-Photodynamic Cancer Therapy. New J Chem. 2020;44(14):9469–9496. doi:10.1039/D0NJ00049C
  • Mbeh DA, Akhavan O, Javanbakht T, et al. Cytotoxicity of protein Corona-graphene oxide nanoribbons on human epithelial cells. Appl Surf Sci. 2014;320:596–601. doi:10.1016/j.apsusc.2014.09.155
  • Kayl AE, Meyers CA. Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Curr Opin Obstet Gynecol. 2006;18(1):24–28. doi:10.1097/01.gco.0000192996.20040.24
  • Patel TN, P R, Vashi Y, et al. Toxic impacts and industrial potential of graphene. J Environ Sci Health C Toxicol Carcinog. 2020;38(3):269–297. doi:10.1080/26896583.2020.1812335