587
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Nanosuspension-Based Drug Delivery Systems for Topical Applications

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 825-844 | Received 31 Oct 2023, Accepted 29 Dec 2023, Published online: 25 Jan 2024

References

  • Pınar SG, Oktay AN, Karaküçük AE, Çelebi N. Formulation Strategies of Nanosuspensions for Various Administration Routes. Pharmaceutics. 2023;15(5):1520. doi:10.3390/pharmaceutics15051520
  • Suhandi C, Alfathonah SS, Hasanah AN. Potency of Xanthone Derivatives from Garcinia mangostana L. for COVID-19 Treatment through Angiotensin-Converting Enzyme 2 and Main Protease Blockade: a Computational Study. Molecules. 2023;28(13):5187. doi:10.3390/molecules28135187
  • Suharyani I, Suhandi C, Rizkiyan Y, et al. Molecular docking in prediction of α-mangostin/cyclodextrin inclusion complex formation. In: AIP Conference Proceedings. Vol 2706; 2023. doi:10.1063/5.0120782.
  • Suhandi C, Wilar G, Lesmana R, et al. Propolis-Based Nanostructured Lipid Carriers for α-Mangostin Delivery: formulation, Characterization, and In Vitro Antioxidant Activity Evaluation. Molecules. 2023;28(16):6057. doi:10.3390/molecules28166057
  • Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24(1):1–16. doi:10.1186/s40824-020-0184-8
  • Ahmadi Tehrani A, Omranpoor MM, Vatanara A, Seyedabadi M, Ramezani V. Formation of nanosuspensions in bottom-up approach: theories and optimization. DARU J Pharm Sci. 2019;27(1):451–473. doi:10.1007/s40199-018-00235-2
  • Guan W, Ma Y, Ding S, et al. The technology for improving stability of nanosuspensions in drug delivery. J Nanopart Res. 2022;24(1):14. doi:10.1007/s11051-022-05403-9
  • Huang S, Wu H, Jiang Z, Huang H. Water-based nanosuspensions: formulation, tribological property, lubrication mechanism, and applications. J Manuf Process. 2021;71:625–644. doi:10.1016/j.jmapro.2021.10.002
  • Nabavi M, Nazarpour V, Alibak AH, Bagherzadeh A, Alizadeh SM. Smart tracking of the influence of alumina nanoparticles on the thermal coefficient of nanosuspensions: application of LS-SVM methodology. Appl Nanosci. 2021;11(7):2113–2128. doi:10.1007/s13204-021-01949-7
  • Ma Y, Cong Z, Gao P, Wang Y. Nanosuspensions technology as a master key for nature products drug delivery and in vivo fate. Eur J Pharm Sci. 2023;185:106425. doi:10.1016/j.ejps.2023.106425
  • Guner G, Seetharaman N, Elashri S, Mehaj M, Bilgili E. Analysis of heat generation during the production of drug nanosuspensions in a wet stirred media mill. Int J Pharm. 2022;624:122020. doi:10.1016/j.ijpharm.2022.122020
  • Karakucuk A, Celebi N. Investigation of formulation and process parameters of wet media milling to develop etodolac nanosuspensions. Pharm Res. 2020;37(6):1–18. doi:10.1007/s11095-020-02815-x
  • Bilgili E, Guner G. Mechanistic modeling of wet stirred media milling for production of drug nanosuspensions. AAPS Pharm Sci Tech. 2021;22(1):1–23. doi:10.1208/s12249-020-01876-w
  • Liu T, Müller RH, Möschwitzer JP. Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency. Drug Dev Ind Pharm. 2018;44(2):233–242. doi:10.1080/03639045.2017.1386207
  • Du Y, Yuan X. Coupled hybrid nanoparticles for improved dispersion stability of nanosuspensions: a review. J Nanopart Res. 2020;22(9):261. doi:10.1007/s11051-020-04991-8
  • Perrin L, Pajor-Swierzy A, Magdassi S, Kamyshny A, Ortega F, Rubio RG. Evaporation of nanosuspensions on substrates with different hydrophobicity. ACS Appl Mater Interfaces. 2018;10(3):3082–3093. doi:10.1021/acsami.7b15743
  • Azimullah S, Sudhakar CK, Kumar P, et al. Nanosuspensions as a promising approach to enhance bioavailability of poorly soluble drugs: an update. J Drug Delivery Ther. 2019;9(2):574–582. doi:10.22270/jddt.v9i2.2436
  • Wang N, Qi F, He X, et al. Preparation and Pharmacokinetic Characterization of an Anti-Virulence Compound Nanosuspensions. Pharmaceutics. 2021;13(10):1586. doi:10.3390/pharmaceutics13101586
  • Khandbahale SV. A review-Nanosuspension technology in drug delivery system. Asian J Pharm Res. 2019;9(2):130–138. doi:10.5958/2231-5691.2019.00021.2
  • Dewangan HK. The emerging role of nanosuspensions for drug delivery and stability. Curr Nanomedicine. 2021;11(4):213–223.
  • Goel S, Sachdeva M, Agarwal V. Nanosuspension technology: recent patents on drug delivery and their characterizations. Recent Pat Drug Deliv Formul. 2019;13(2):91–104. doi:10.2174/1872211313666190614151615
  • Lynnerup JT, Eriksen JB, Bauer-Brandl A, Holsæter AM, Brandl M. Insight into the mechanism behind oral bioavailability-enhancement by nanosuspensions through combined dissolution/permeation studies. Eur J Pharm Sci. 2023;184:106417. doi:10.1016/j.ejps.2023.106417
  • Aleandri S, Schönenberger M, Niederquell A, Kuentz M. Temperature-induced surface effects on drug nanosuspensions. Pharm Res. 2018;35(3):1–11. doi:10.1007/s11095-017-2300-6
  • Kovalchuk NM, Johnson D, Sobolev V, Hilal N, Starov V. Interactions between nanoparticles in nanosuspension. Adv Colloid Interface Sci. 2019;272:102020. doi:10.1016/j.cis.2019.102020
  • Kirichenko MN, Chaikov LL, V SA, et al. General features of size distributions and internal structure of particles in aqueous nanosuspensions. Phys Wave Phenom. 2020;28(2):140–144. doi:10.3103/S1541308X20020077
  • Minakov AV, Pryazhnikov MI, Zhigarev VA, Rudyak VY, Filimonov SA. Numerical study of the mechanisms of enhanced oil recovery using nanosuspensions. Theor Comput Fluid Dyn. 2021;35(4):477–493. doi:10.1007/s00162-021-00569-9
  • han WX, Liu Y, ying SC, na ZR, long YH, Yuan H-L. Effect of particle size on in vitro and in vivo behavior of astilbin nanosuspensions. J Drug Deliv Sci Technol. 2019;52:778–783. doi:10.1016/j.jddst.2019.05.005
  • Xiang Y, Liang G, Alvaro P, et al. Resonant optical nonlinearity and fluorescence enhancement in electrically tuned plasmonic nanosuspensions. Adv Photonics Res. 2021;2(5):2000060. doi:10.1002/adpr.202000060
  • Gaur PK. Nanosuspension of flavonoid-rich fraction from Psidium guajava Linn for improved type 2-diabetes potential. J Drug Deliv Sci Technol. 2021;62:102358. doi:10.1016/j.jddst.2021.102358
  • Galinovskiy AL, Htet KM, Provatorov AS. Ultra-Jet as a Tool for Dispersing Nanosuspensions. Polym Sci Ser D. 2020;13(2):209–213. doi:10.1134/S1995421220020070
  • Dos Santos AM, Meneguin AB, Fonseca-Santos B, et al. The role of stabilizers and mechanical processes on physico-chemical and anti-inflammatory properties of methotrexate nanosuspensions. J Drug Deliv Sci Technol. 2020;57:101638. doi:10.1016/j.jddst.2020.101638
  • Ali AMA, Warsi MH, Abourehab MAS, Ali AA. Preparation and transformation of solid glass solutions of clotrimazole to nanosuspensions with improved physicochemical and antifungal properties. J Pharm Innov. 2022;17(4):1420–1433. doi:10.1007/s12247-021-09595-w
  • Tian Y, Wang S, Yu Y, et al. Review of nanosuspension formulation and process analysis in wet media milling using microhydrodynamic model and emerging characterization methods. Int J Pharm. 2022;623:121862. doi:10.1016/j.ijpharm.2022.121862
  • Pandey NK, Singh SK, Gulati M, et al. Overcoming the dissolution rate, gastrointestinal permeability and oral bioavailability of glimepiride and simvastatin co-delivered in the form of nanosuspension and solid self-nanoemulsifying drug delivery system: a comparative study. J Drug Deliv Sci Technol. 2020;60:102083. doi:10.1016/j.jddst.2020.102083
  • Guner G, Yilmaz D, Bilgili E. Kinetic and microhydrodynamic modeling of fenofibrate nanosuspension production in a wet stirred media mill. Pharmaceutics. 2021;13(7):1055. doi:10.3390/pharmaceutics13071055
  • Kathpalia H, Juvekar S, Shidhaye S. Design and in vitro evaluation of atovaquone nanosuspension prepared by pH based and anti-solvent based precipitation method. Colloid Interface Sci Commun. 2019;29:26–32. doi:10.1016/j.colcom.2019.01.002
  • Flach F, Breitung-Faes S, Kwade A. Model based process optimization of nanosuspension preparation via wet stirred media milling. Powder Technol. 2018;331:146–154. doi:10.1016/j.powtec.2018.03.011
  • Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5). doi:10.1016/j.heliyon.2022.e09394
  • Chinthaginjala H, Abdul H, Reddy APG, Kodi K, Manchikanti SP, Pasam D. Nanosuspension as Promising and Potential Drug Delivery: a Review. Int J Life Sci Pharm Res. 2020;11(1):P59–66.
  • Jin SM, Lee SN, Kim JE, et al. Overcoming Chemoimmunotherapy‐Induced Immunosuppression by Assemblable and Depot Forming Immune Modulating Nanosuspension. Adv Sci. 2021;8(19):2102043. doi:10.1002/advs.202102043
  • Wan KY, Weng J, Wong SN, Kwok PCL, Chow SF, Chow AHL. Converting nanosuspension into inhalable and redispersible nanoparticles by combined in-situ thermal gelation and spray drying. Eur J Pharm Biopharm. 2020;149:238–247. doi:10.1016/j.ejpb.2020.02.010
  • Petersen R Nanocrystals for use in topical cosmetic formulations and method of production thereof; 2015.
  • Shen C, Shen B, Liu X, Yuan H. Nanosuspensions based gel as delivery system of nitrofurazone for enhanced dermal bioavailability. J Drug Deliv Sci Technol. 2018;43:1–11. doi:10.1016/j.jddst.2017.09.012
  • Oktay AN, Ilbasmis-Tamer S, Uludag O, Celebi N. Enhanced dermal delivery of flurbiprofen nanosuspension based gel: development and ex vivo permeation, pharmacokinetic evaluations. Pharm Res. 2021;38(6):991–1009. doi:10.1007/s11095-021-03060-6
  • Pireddu R, Schlich M, Marceddu S, et al. Nanosuspensions and microneedles roller as a combined approach to enhance diclofenac topical bioavailability. Pharmaceutics. 2020;12(12):1140. doi:10.3390/pharmaceutics12121140
  • Pireddu R, Sinico C, Ennas G, et al. The effect of diethylene glycol monoethyl ether on skin penetration ability of diclofenac acid nanosuspensions. Colloids Surf B Biointerfaces. 2018;162:8–15. doi:10.1016/j.colsurfb.2017.11.012
  • Zuo W, Qu W, Li N, et al. Fabrication of multicomponent amorphous bufadienolides nanosuspension with wet milling improves dissolution and stability. Cells Nanomed Biotechnol. 2018;46(7):1513–1522. doi:10.1080/21691401.2017.1375938
  • Stahr PL, Keck CM. Preservation of rutin nanosuspensions without the use of preservatives. Beilstein J Nanotechnol. 2019;10(1):1902–1913. doi:10.3762/bjnano.10.185
  • Arora D, Khurana B, Rath G, Nanda S, Goyal AK. Recent advances in nanosuspension technology for drug delivery. Curr Pharm Des. 2018;24(21):2403–2415. doi:10.2174/1381612824666180522100251
  • Zhang T, Li X, Xu J, Shao J, Ding M, Shi S. Preparation, characterization, and evaluation of breviscapine nanosuspension and its freeze-dried powder. Pharmaceutics. 2022;14(5):923. doi:10.3390/pharmaceutics14050923
  • Evstropiev SK, Vasilyev VN, Nikonorov NV, Kolobkova EV, Volkova NA, Boltenkov IA. Photoactive ZnO nanosuspension for intensification of organics contaminations decomposition. Chem Eng Process Intensif. 2018;134:45–50. doi:10.1016/j.cep.2018.10.020
  • Chakravorty R. Nanosuspension as an emerging Nanotechnology and Techniques for its Development. Res J Pharm Technol. 2022;15(1):489–493. doi:10.52711/0974-360X.2022.00079
  • Shaikh F, Patel M, Patel V, et al. Formulation and optimization of cilnidipine loaded nanosuspension for the enhancement of solubility, dissolution and bioavailability. J Drug Deliv Sci Technol. 2022;69:103066. doi:10.1016/j.jddst.2021.103066
  • Kurhe SA, Katkar K, Bakkam A, Mokal S, Mane A, Jain A. Ocular Nanosuspension a Novel Approach–Review. Res J Pharm Dos Forms Technol. 2023;15(1):45–50. doi:10.52711/0975-4377.2023.00008
  • Josyula A, Omiadze R, Parikh K, et al. An ion‐paired moxifloxacin nanosuspension eye drop provides improved prevention and treatment of ocular infection. Bioeng Transl Med. 2021;6(3):e10238. doi:10.1002/btm2.10238
  • Tuomela A, Liu P, Puranen J, et al. Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo. Int J Pharm. 2014;467(1–2):34–41. doi:10.1016/j.ijpharm.2014.03.048
  • Schopf L, Enlow E, Popov A, Bourassa J, Chen H. Ocular pharmacokinetics of a novel loteprednol etabonate 0.4% ophthalmic formulation. Ophthalmol Ther. 2014;3(1–2):63–72. doi:10.1007/s40123-014-0021-z
  • Kim JH, Jang SW, Han SD, Hwang HD, Choi HG. Development of a novel ophthalmic ciclosporin A-loaded nanosuspension using top-down media milling methods. Die Pharm Int J Pharm Sci. 2011;66(7):491–495.
  • Kassem MA, Rahman AAA, Ghorab MM, Ahmed MB, Khalil RM. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007;340(1–2):126–133. doi:10.1016/j.ijpharm.2007.03.011
  • Popov A. Mucus-penetrating particles and the role of ocular mucus as a barrier to micro-and nanosuspensions. J Ocul Pharmacol Ther. 2020;36(6):366–375. doi:10.1089/jop.2020.0022
  • Wang C, Pang Y. Nano-based eye drop: topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev. 2023;194:114721. doi:10.1016/j.addr.2023.114721
  • Güven UM, Yenilmez E. Olopatadine hydrochloride loaded Kollidon® SR nanoparticles for ocular delivery: nanosuspension formulation and in vitro–in vivo evaluation. J Drug Deliv Sci Technol. 2019;51:506–512. doi:10.1016/j.jddst.2019.03.016
  • Qin T, Dai Z, Xu X, et al. Nanosuspension as an efficient carrier for improved ocular permeation of voriconazole. Curr Pharm Biotechnol. 2021;22(2):245–253. doi:10.2174/1389201021999200820154918
  • MADHAN G, KUPPUSWAMY G. Safe Use of Ocular Nanosuspension. Int J Pharm Res. 2021;13(1):65.
  • Jaiswal P, Mishra A, Kesharwani D, Das Paul S. Overview on Ocular Drug Delivery through Colloidal Nano-Suspension. Res J Pharm Technol. 2023;16(3):1533–1539. doi:10.52711/0974-360X.2023.00251
  • Hanagandi V, Patil AS, Masareddy RS, Dandagi PM, Bolmal UB. Development and Evaluation of Nanosuspension Incorporated in situ gel of Brimonidine Tartarate for Ocular Drug Delivery. Indian J Pharm Educ Res. 2022;56(1):94–102. doi:10.5530/ijper.56.1.12
  • Mansuk AG, Pachpute TS. Comprehensive Assessment of Transcorneal Permeation, Antimicrobial, and Antifungal Activities of Andrographolide-Loaded Nanosuspension: in vitro and In vivo Studies. J Drug Delivery Ther. 2023;13(6):35–42. doi:10.22270/jddt.v13i6.5847
  • Peter S, Mathews MM, Saju F, Development PS. Optimization and In Vitro Characterization of Eudragit-Ganciclovir Nanosuspension or Treating Herpes Simplex Keratitis. J Pharm Innov. 2023;1–10.
  • Agrahari V, Singh ON. Ocular Suspension and Nanosuspension Products: formulation Development Considerations. In: Ophthalmic Product Development: From Bench to Bedside. Springer; 2022:317–347.
  • Alaimo A, Pérez OE. Chitosan-based nanosuspensions for ocular diagnosis and therapy. In: Advanced Nanoformulations. Elsevier; 2023:13–41.
  • Qamar Z, Qizilbash FF, Iqubal MK, et al. Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul. 2019;13(4):246–254. doi:10.2174/1872211314666191224115211
  • Pramanik S, Mohanto S, Manne R, et al. Nanoparticle-based drug delivery system: the magic bullet for the treatment of chronic pulmonary diseases. Mol Pharm. 2021;18(10):3671–3718. doi:10.1021/acs.molpharmaceut.1c00491
  • Casula L, Lai F, Pini E, et al. Pulmonary delivery of curcumin and beclomethasone dipropionate in a multicomponent nanosuspension for the treatment of bronchial asthma. Pharmaceutics. 2021;13(8):1300. doi:10.3390/pharmaceutics13081300
  • Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19(2):189–194. doi:10.1023/A:1014276917363
  • Fu TT, Cong ZQ, Zhao Y, et al. Fluticasone propionate nanosuspensions for sustained nebulization delivery: an in vitro and in vivo evaluation. Int J Pharm. 2019;572:118839. doi:10.1016/j.ijpharm.2019.118839
  • Ma X, Xia K, Xie J, et al. Treatment of Idiopathic Pulmonary Fibrosis by Inhaled Silybin Dry Powder Prepared via the Nanosuspension Spray Drying Technology. ACS Pharmacol Transl Sci. 2023;6(6):878–891. doi:10.1021/acsptsci.3c00033
  • Liu Y, Ma Y, Xue L, Guan W, Wang Y. Pulmonary multidrug codelivery of curcumin nanosuspensions and ciprofloxacin with N-acetylcysteine for lung infection therapy. J Drug Deliv Sci Technol. 2023;84:104474. doi:10.1016/j.jddst.2023.104474
  • da Silva LH A, Vieira JB, Cabral MR, et al. Development of nintedanib nanosuspension for inhaled treatment of experimental silicosis. Bioeng Transl Med. 2023;8(2):e10401. doi:10.1002/btm2.10401
  • Md S, Abdullah ST, Alhakamy NA, et al. Ambroxol hydrochloride loaded gastro-retentive nanosuspension gels potentiate anticancer activity in lung cancer (A549) cells. Gels. 2021;7(4):243. doi:10.3390/gels7040243
  • Haghighi DM, Faghihi H, Darabi M, Mirmoeini MS, Vatanara A. Spray freeze drying to solidify Nanosuspension of Cefixime into inhalable microparticles. DARU J Pharm Sci. 2022;1–11.
  • Hashem FM, Abd Allah FI, Abdel-Rashid RS, Hassan AAA. Glibenclamide nanosuspension inhaler: development, in vitro and in vivo assessment. Drug Dev Ind Pharm. 2020;46(5):762–774. doi:10.1080/03639045.2020.1753062
  • Simkova K Spray-dried nanosuspensions for pulmonary drug targeting and in vitro testing thereof; 2021.
  • Casula L, Sinico C, Valenti D, et al. Delivery of beclomethasone dipropionate nanosuspensions with an electronic cigarette. Int J Pharm. 2021;596:120293. doi:10.1016/j.ijpharm.2021.120293
  • Bhattacharjee A, Thomas S, Palit P. Nebulizer spray delivery of phytopharmaceutical nanosuspension via oral and nasal route: a challenging approach to fight against COVID-19. In: Applications of Multifunctional Nanomaterials. Elsevier; 2023:437–457.
  • Thiyagarajan D, Huck B, Nothdurft B, et al. Spray-dried lactose-leucine microparticles for pulmonary delivery of antimycobacterial nanopharmaceuticals. Drug Deliv Transl Res. 2021;11(4):1766–1778. doi:10.1007/s13346-021-01011-7
  • Aref ZF, Bazeed SEES, Hassan MH, et al. Clinical, biochemical and molecular evaluations of ivermectin mucoadhesive nanosuspension nasal spray in reducing upper respiratory symptoms of mild COVID-19. Int J Nanomed. 2021;Volume 16:4063–4072. doi:10.2147/IJN.S313093
  • Garkal A, Bangar P, Mathur K, Parikh D, Mehta T. Nanosuspensions in Treatment of Tuberculosis. In: Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases. Springer; 2023:189–205.
  • Mehanna MM, Mohyeldin SM, Elgindy NA. Rifampicin-carbohydrate spray-dried nanocomposite: a futuristic multiparticulate platform for pulmonary delivery. Int J Nanomed. 2019;Volume 14:9089–9112. doi:10.2147/IJN.S211182
  • Pelikh O, Stahr PL, Huang J, et al. Nanocrystals for improved dermal drug delivery. Eur J Pharm Biopharm. 2018;128:170–178. doi:10.1016/j.ejpb.2018.04.020
  • Oktay AN, Karakucuk A, Ilbasmis-Tamer S, Celebi N. Dermal flurbiprofen nanosuspensions: optimization with design of experiment approach and in vitro evaluation. Eur J Pharm Sci. 2018;122:254–263. doi:10.1016/j.ejps.2018.07.009
  • Oktay AN, Ilbasmis-Tamer S, Han S, Uludag O, Celebi N. Preparation and in vitro/in vivo evaluation of flurbiprofen nanosuspension-based gel for dermal application. Eur J Pharm Sci. 2020;155:105548. doi:10.1016/j.ejps.2020.105548
  • Karakucuk A, Tort S, Han S, Oktay AN, Celebi N. Etodolac nanosuspension based gel for enhanced dermal delivery: in vitro and in vivo evaluation. J Microencapsul. 2021;38(4):218–232. doi:10.1080/02652048.2021.1895344
  • Manca ML, Lai F, Pireddu R, et al. Impact of nanosizing on dermal delivery and antioxidant activity of quercetin nanocrystals. J Drug Deliv Sci Technol. 2020;55:101482. doi:10.1016/j.jddst.2019.101482
  • Romero GB, Arntjen A, Keck CM, Müller RH. Amorphous cyclosporin A nanoparticles for enhanced dermal bioavailability. Int J Pharm. 2016;498(1–2):217–224. doi:10.1016/j.ijpharm.2015.12.019
  • Pireddu R, Sinico C, Ennas G, et al. Novel nanosized formulations of two diclofenac acid polymorphs to improve topical bioavailability. Eur J Pharm Sci. 2015;77:208–215. doi:10.1016/j.ejps.2015.06.006
  • Shen C, Shen B, Liu X, Yuan H. Nanosuspensions based gel as delivery system of nitrofurazone for enhanced dermal bioavailability. J Drug Deliv Sci Technol. 2018;43:1–11. doi:10.1016/j.jddst.2017.09.012
  • Ghosh I, Michniak-Kohn B. Influence of critical parameters of nanosuspension formulation on the permeability of a poorly soluble drug through the skin - A case study. AAPS Pharm Sci Tech. 2013;14(3):1108–1117. doi:10.1208/s12249-013-9995-4
  • Oktay AN, Karakucuk A, Ilbasmis-Tamer S, Celebi N. Dermal flurbiprofen nanosuspensions: optimization with design of experiment approach and in vitro evaluation. Eur J Pharm Sci. 2018;122:254–263. doi:10.1016/j.ejps.2018.07.009
  • Vidlářová L, Romero GB, Hanuš J, Štěpánek F, Müller RH. Nanocrystals for dermal penetration enhancement - Effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm. 2016;104:216–225. doi:10.1016/j.ejpb.2016.05.004
  • Wang WP, Hu J, Sui H, Zhao YS, Feng J, Liu C. Glabridin nanosuspension for enhanced skin penetration: formulation optimization, in vitro and in vivo evaluation. Pharmazie. 2016;71(5):252–257. doi:10.1691/ph.2016.5152
  • Jassim ZE, Rajab NA. Review on preparation, characterization, and pharmaceutical application of nanosuspension as an approach of solubility and dissolution enhancement. J Pharm Res. 2018;12:771–774.
  • Shegokar R, Muller RH, Ismail M, Gohla S. Algal nanosuspensions for dermal and oral delivery. Curr Nanomedicine. 2018;8(1):45–57.
  • Abdelghany S, Tekko IA, Vora L, Larrañeta E, Permana AD, Donnelly RF. Nanosuspension-based dissolving microneedle arrays for intradermal delivery of curcumin. Pharmaceutics. 2019;11(7):308. doi:10.3390/pharmaceutics11070308
  • Permana AD, McCrudden MTC, Donnelly RF. Enhanced intradermal delivery of nanosuspensions of antifilariasis drugs using dissolving microneedles: a proof of concept study. Pharmaceutics. 2019;11(7):346. doi:10.3390/pharmaceutics11070346
  • Eckert RW, Wiemann S, Keck CM. Improved dermal and transdermal delivery of curcumin with smartfilms and nanocrystals. Molecules. 2021;26(6):1633. doi:10.3390/molecules26061633
  • Assem M, Khowessah OM, Ghorab D. Nano-crystallization as a tool for the enhancement of beclomethasone dipropionate dermal deposition: formulation, in vitro characterization and ex vivo study. J Drug Deliv Sci Technol. 2019;54:101318. doi:10.1016/j.jddst.2019.101318
  • Jin N, Pyo SM, Keck CM, Müller RH. Azithromycin nanocrystals for dermal prevention of tick bite infections. Die Pharm Int J Pharm Sci. 2019;74(5):277–285.
  • Pathan IB, Sakhare M, Ambekar W, Setty CM. Dermal Delivery of Meloxicam Nanosuspensions based Gel: optimization with Box Behnken Design Experiment Approach: ex Vivo and In Vivo Study. Nanosci Nanotechnology-Asia. 2020;10(6):766–777. doi:10.2174/2210681209666190809103155
  • Shi T, Lv Y, Huang W, et al. Enhanced transdermal delivery of curcumin nanosuspensions: a mechanistic study based on co-localization of particle and drug signals. Int J Pharm. 2020;588:119737. doi:10.1016/j.ijpharm.2020.119737
  • Shaikh MS, Kale MA. Formulation and molecular docking simulation study of luliconazole nanosuspension–based nanogel for transdermal drug delivery using modified polymer. Mater Today Chem. 2020;18:100364. doi:10.1016/j.mtchem.2020.100364
  • Ahmed IS, Elnahas OS, Assar NH, Gad AM, El Hosary R. Nanocrystals of fusidic acid for dual enhancement of dermal delivery and antibacterial activity: in vitro, ex vivo and in vivo evaluation. Pharmaceutics. 2020;12(3):199. doi:10.3390/pharmaceutics12030199
  • Pelikh O, Hartmann SF, Abraham AM, Keck CM. Nanocrystals for dermal application. Nanocosmetics from Ideas to Prod. 2019;161–177.
  • Nagpal S, Kumari P, Saini K, Kakkar V. Pain Management with Topical Aceclofenac Nanosuspension In-Vitro/In-Vivo and Proof of Concept Studies. Curr Drug Ther. 2022;17(4):289–304. doi:10.2174/1574885517666220518094723
  • Pornpitchanarong C, Rojanarata T, Opanasopit P, Ngawhirunpat T, Patrojanasophon P. Clotrimazole nanosuspensions-loaded hyaluronic acid-catechol/polyvinyl alcohol mucoadhesive films for oral candidiasis treatment. J Drug Deliv Sci Technol. 2020;60:101927. doi:10.1016/j.jddst.2020.101927
  • Li J, Ni W, Aisha M, Zhang J, Sun M. A rutin nanocrystal gel as an effective dermal delivery system for enhanced anti-photoaging application. Drug Dev Ind Pharm. 2021;47(3):429–439. doi:10.1080/03639045.2021.1890113