181
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Revolutionizing Antiviral Therapeutics: Unveiling Innovative Approaches for Enhanced Drug Efficacy

ORCID Icon, , , , & ORCID Icon
Pages 2889-2915 | Received 14 Nov 2023, Accepted 29 Feb 2024, Published online: 20 Mar 2024

References

  • Handayani D. Corona Virus Disease 2019. J Respirologi Indones. 2020;40(2). doi:10.36497/jri.v40i2.101
  • Sawinski D, Goral S. BK virus infection: an update on diagnosis and treatment. Nephrol Dial Transplant. 2015;30(2):209–217. doi:10.1093/ndt/gfu023
  • Napoli PE, Mangoni L, Gentile P, Braghiroli M, Fossarello M. A panel of broad-spectrum antivirals in topical ophthalmic medications from the drug repurposing approach during and after the coronavirus disease 2019 era. J Clin Med. 2020;9(8):2441. doi:10.3390/jcm9082441
  • Budiman A, Nurfadilah N, Muchtaridi M, Sriwidodo S, Aulifa D Lia, Rusdin A. The Impact of Water-Soluble Chitosan on the Inhibition of Crystal Nucleation of Alpha-Mangostin from Supersaturated Solutions. Polymers. 2022;14(20): 4370. doi:10.3390/polym14204370
  • Mahajan K, Rojekar S, Desai D, et al. Layer-by-layer assembled nanostructured lipid carriers for CD-44 receptor–based targeting in HIV-infected macrophages for efficient HIV-1 inhibition. AAPS Pharm Sci Tech. 2021;22(5):171. doi:10.1208/s12249-021-01981-4
  • Fotooh Abadi L, Damiri F, Zehravi M, et al. Novel nanotechnology-based approaches for targeting HIV reservoirs. Polymers. 2022;14(15):3090. doi:10.3390/polym14153090
  • Rojekar S, Abadi LF, Pai R, Mahajan K, Kulkarni S, Vavia PR. Multi-organ targeting of HIV-1 viral reservoirs with etravirine loaded nanostructured lipid carrier: an in-vivo proof of concept. Eur J Pharm Sci. 2021;164:105916. doi:10.1016/j.ejps.2021.105916
  • Rojekar S, Pai R, Abadi LF, et al. Dual loaded nanostructured lipid carrier of nano-selenium and Etravirine as a potential anti-HIV therapy. Int J Pharm. 2021;607:120986. doi:10.1016/j.ijpharm.2021.120986
  • Rojekar S, Abadi LF, Pai R, Prajapati MK, Kulkarni S, Vavia PR. Mannose-anchored nano-selenium loaded nanostructured lipid carriers of etravirine for delivery to HIV reservoirs. AAPS Pharm Sci Tech. 2022;23(7):230. doi:10.1208/s12249-022-02377-8
  • Abate C, Carnamucio F, Giuffrè O, Foti C. Metal-based compounds in antiviral therapy. Biomolecules. 2022;12(7):933. doi:10.3390/biom12070933
  • Žigrayová D, Mikušová V, Mikuš P. Advances in antiviral delivery systems and chitosan-based polymeric and nanoparticulate antivirals and antiviral carriers. Viruses. 2023;15(3):647. doi:10.3390/v15030647
  • Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: a review. J Control Release. 2021;331:30–44. doi:10.1016/j.jconrel.2021.01.017
  • Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian J Pharm Sci. 2017;12(6):532–541. doi:10.1016/j.ajps.2017.07.002
  • Wang LY, Yu Y-M, Yu M-C, Li Y-T, Wu Z-Y, Yan C-W. A crystalline solid adduct of sulfathiazole-amantadine: the first dual-drug molecular salt containing both antiviral and antibacterial ingredients. CrystEngComm. 2020;22(22):3804–3813. doi:10.1039/d0ce00368a
  • Sorinolu AJ, Mamun MM, Vadarevu H, Vivero-Escoto JL, Vejerano EP, Munir M. Antiviral activity of nano-monocaprin against Phi6 as a surrogate for SARS-CoV-2. Int Microbiol. 2022;0123456789. doi:10.1007/s10123-022-00300-6
  • Moradian H, Roch T, Anthofer L, Lendlein A, Gossen M. Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in primary human macrophages. Mol Ther Nucleic Acids. 2022;27:854–869. doi:10.1016/j.omtn.2022.01.004
  • Giongo V, Falanga A, De Melo CPP, et al. Antiviral potential of naphthoquinones derivatives encapsulated within liposomes. Molecules. 2021;26(21):6440. doi:10.3390/molecules26216440
  • Wang LY, Bu FZ, Li YT, Wu ZY, Yan CW. A Sulfathiazole-Amantadine Hydrochloride Cocrystal: the First Codrug Simultaneously Comprising Antiviral and Antibacterial Components. Cryst Growth Des. 2020;20(5):3236–3246. doi:10.1021/acs.cgd.0c00075
  • Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018;46(D1):D708–D717. doi:10.1093/nar/gkx932
  • Morgan GJ. What is a virus species? Radical pluralism in viral taxonomy. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci. 2016;59:64–70. doi:10.1016/j.shpsc.2016.02.009
  • Barr JN, Fearns R. Genetic instability of RNA viruses. In: Genome Stability. Elsevier; 2016:21–35.
  • Calisher CH. The taxonomy of viruses should include viruses. Arch. Virol. 2016;161(5):1419–1422. doi:10.1007/s00705-016-2779-x
  • Francki RIB, Fauquet CM, Knudson DL, Brown F. Classification and Nomenclature of Viruses: Fifth Report of the International Committee on Taxonomy of Viruses. Virology Division of the International Union of Microbiological Societies. Vol. 2. Springer Science & Business Media; 2012.
  • Morales-Sánchez A, Fuentes-Pananá EM. Human viruses and cancer. Viruses. 2014;6(10):4047–4079. doi:10.3390/v6104047
  • West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017;17(6):363–375. doi:10.1038/nri.2017.21
  • Chin Y-W, Kinghorn AD. Structural Characterization, Biological Effects, and Synthetic Studies on Xanthones from Mangosteen (Garcinia mangostana), a Popular Botanical Dietary Supplement. Mini Rev Org Chem. 2008;5(4):355–364. doi:10.2174/157019308786242223
  • Domingo E. Virus as Populations: Composition, Complexity, Dynamics, and Biological Implications. Academic Press; 2015.
  • McLaughlin-Drubin ME, Munger K. Viruses associated with human cancer. Biochim Biophys Acta. 2008;1782(3):127–150.
  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63(6):1129–1136. doi:10.1016/0092-8674(90)90409-8
  • Cazalet C, Rusniok C, Brüggemann H, et al. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet. 2004;36(11):1165–1173. doi:10.1038/ng1447
  • Lori F, Lisziewicz J, Smythe J, et al. Rapid protection against human immunodeficiency virus type 1 (HIV-1) replication mediated by high efficiency non-retroviral delivery of genes interfering with HIV-1 tat and gag. Gene Ther. 1994;1(1):27–31.
  • Baba M, Nishimura O, Kanzaki N, et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci. 1999;96(10):5698–5703. doi:10.1073/pnas.96.10.5698
  • Westby M, van der Ryst E. CCR5 antagonists: host-targeted antivirals for the treatment of HIV infection. Antivir Chem Chemother. 2005;16(6):339–354. doi:10.1177/095632020501600601
  • Leung D, Abbenante G, Fairlie DP. Protease inhibitors: current status and future prospects. J Med Chem. 2000;43(3):305–341. doi:10.1021/jm990412m
  • Nowak DA, Hermsdörfer J, Glasauer S, Philipp J, Meyer L, Mai N. The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. Eur J Neurosci. 2001;14(4):756–762. doi:10.1046/j.0953-816x.2001.01697.x
  • de Béthune M-P. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989–2009). Antiviral Res. 2010;85(1):75–90. doi:10.1016/j.antiviral.2009.09.008
  • Sluis-Cremer N, Arion D, Parniak MA. Molecular mechanisms of HIV-1 resistance to nucleoside reverse transcriptase inhibitors (NRTIs). Cell Mol Life Sci C. 2000;57(10):1408–1422. doi:10.1007/PL00000626
  • Roers A, Hiller B, Hornung V. Recognition of endogenous nucleic acids by the innate immune system. Immunity. 2016;44(4):739–754. doi:10.1016/j.immuni.2016.04.002
  • Kanneganti T-D. Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol. 2010;10(10):688–698. doi:10.1038/nri2851
  • Van Regenmortel MHV. Applying the species concept to plant viruses. Arch. Virol. 1989;104(1):1–17. doi:10.1007/BF01313804
  • Crow YJ. Type I interferonopathies: Mendelian type I interferon up-regulation. Curr Opin Immunol. 2015;32:7–12. doi:10.1016/j.coi.2014.10.005
  • Weidenmaier C, Peschel A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol. 2008;6(4):276–287. doi:10.1038/nrmicro1861
  • Jana B, Chatterjee A, Roy D, et al. Chitosan/benzyloxy-benzaldehyde modified ZnO nano template having optimized and distinct antiviral potency to human cytomegalovirus. Carbohydr Polym. 2022;278(2021):118965. doi:10.1016/j.carbpol.2021.118965
  • Galante AJ, Yates KA, Romanowski EG, Shanks RMQ, Leu PW. Coal-Derived Functionalized Nano-Graphene Oxide for Bleach Washable, Durable Antiviral Fabric Coatings. ACS Appl Nano Mater. 2022;5(1):718–728. doi:10.1021/acsanm.1c03448
  • Alhakamy NA, Ahmed OAA, Ibrahim TS, et al. Evaluation of the antiviral activity of sitagliptin-glatiramer acetate nano-conjugates against sars-cov-2 virus. Pharmaceuticals. 2021;14(3):1–16. doi:10.3390/ph14030178
  • Zakaria MY, Abd El-Halim SM, Beshay BY, Zaki I, Abourehab MAS. ‘Poly phenolic phytoceutical loaded nano-bilosomes for enhanced caco-2 cell permeability and SARS-CoV 2 antiviral activity’: in-vitro and insilico studies. Drug Deliv. 2023;30(1). doi:10.1080/10717544.2022.2162157
  • Dolatyari M, Rostami A. Strong anti-viral nano biocide based on Ag/ZnO modified by amodiaquine as an antibacterial and antiviral composite. Sci Rep. 2022;12(1):1–11. doi:10.1038/s41598-022-24540-8
  • Ullah F, et al. Synthesis and surface modification of chitosan built nanohydrogel with antiviral and antimicrobial agent for controlled drug delivery. Biointerface Res Appl Chem. 2019;9(6):4439–4445. doi:10.33263/BRIAC96.439445
  • Bhattacharya I, Yadavalli T, Wu D, Shukla D. Plasma Membrane-Derived Liposomes Exhibit Robust Antiviral Activity against HSV-1. Viruses. 2022;14(4):1–13. doi:10.3390/v14040799
  • Zakaria MY, Fayad E, Althobaiti F, Zaki I, Abu Almaaty AH. Statistical optimization of bile salt deployed nanovesicles as a potential platform for oral delivery of piperine: accentuated antiviral and anti-inflammatory activity in MERS-CoV challenged mice. Drug Deliv. 2021;28(1):1150–1165. doi:10.1080/10717544.2021.1934190
  • Wang LY, Zhao M-Y, Bu F-Z, et al. Cocrystallization of Amantadine Hydrochloride with Resveratrol: the First Drug-Nutraceutical Cocrystal Displaying Synergistic Antiviral Activity. Cryst Growth Des. 2021;21(5):2763–2776. doi:10.1021/acs.cgd.0c01673
  • Yadav D, Savjani J, Savjani K, Kumar A, Patel S. Pharmaceutical Co-crystal of Antiviral Agent Efavirenz with Nicotinamide for the Enhancement of Solubility, Physicochemical Stability, and Oral Bioavailability. AAPS Pharm Sci Tech. 2022;24(1):7. doi:10.1208/s12249-022-02467-7
  • Damian F, Blaton N, Kinget R, Van Den Mooter G. Physical stability of solid dispersions of the antiviral agent UC-781 with PEG 6000, Gelucire® 44/14 and PVP K30. Int J Pharm. 2002;244(1–2):87–98. doi:10.1016/S0378-5173(02)00316-2
  • Damian F, Blaton N, Naesens L, et al. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur J Pharm Sci. 2000;10(4):311–322. doi:10.1016/S0928-0987(00)00084-1
  • Wang L-Y, Bu F-Z, Yu Y-M, et al. A novel crystalline molecular salt of sulfamethoxazole and amantadine hybridizing antiviral-antibacterial dual drugs with optimal in vitro/vivo pharmaceutical properties. Eur J Pharm Sci. 2021;163:105883. doi:10.1016/j.ejps.2021.105883
  • Yoon J, Kim J, Lee J, et al. Fabrication of antiviral nanofibers containing various Cu salts and ZnO nanorods by electrospinning. J Ind Eng Chem. 2022;116:572–580. doi:10.1016/j.jiec.2022.09.045
  • Chen S, Gao Y, Lou X, et al. Overcoming Bioavailability Challenges of Dasabuvir and Enabling a Triple-Combination Direct-Acting Antiviral HCV Regimen through a Salt of Very Weak Acid for Oral Delivery. Mol Pharm. 2022;19(7):2367–2379. doi:10.1021/acs.molpharmaceut.2c00161
  • Vorozhtsov NO, Yarovaya OI, Roznyatovskii VA, et al. Synthesis and antiviral activity of novel 3-substituted pyrazolinium salts. Chem Heterocycl Compd. 2021;57(4):432–441. doi:10.1007/s10593-021-02921-7
  • Martínez-Gualda B, Sun L, Martí-Marí O, et al. Modifications in the branched arms of a class of dual inhibitors of HIV and EV71 replication expand their antiviral spectrum. Antiviral Res. 2019;168:210–214. doi:10.1016/j.antiviral.2019.06.006
  • Chuchkov K, Chayrov R, Hinkov A, Todorov D, Shishkova K, Stankova IG. Modifications on the heterocyclic base of ganciclovir, penciclovir, Acyclovir - syntheses and antiviral properties. Nucleosides Nucleotides Nucleic Acids. 2020;39(7):979–990. doi:10.1080/15257770.2020.1725043
  • Whittle E, Martín-Illana A, Cazorla-Luna R, et al. Silane modification of mesoporous materials for the optimization of antiviral drug adsorption and release capabilities in vaginal media. Pharmaceutics. 2021;13(9):1416. doi:10.3390/pharmaceutics13091416
  • Qiao Z, Wei N, Jin L, et al. The Mpro structure-based modifications of ebselen derivatives for improved antiviral activity against SARS-CoV-2 virus. Bioorg Chem. 2021;117:105455. doi:10.1016/j.bioorg.2021.105455
  • Spagnoli G, Pouyanfard S, Cavazzini D, et al. Broadly neutralizing antiviral responses induced by a single-molecule HPV vaccine based on thermostable thioredoxin-L2 multiepitope nanoparticles. Sci Rep. 2017;7(1):1–13. doi:10.1038/s41598-017-18177-1
  • Smith BJ, McKimm-Breshkin JL, McDonald M, Fernley RT, Varghese JN, Colman PM. Structural studies of the resistance of influenza virus neuramindase to inhibitors. J Med Chem. 2002;45(11):2207–2212. doi:10.1021/jm010528u
  • Gubareva LV. Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus Res. 2004;103(1–2):199–203. doi:10.1016/j.virusres.2004.02.034
  • Bantia S, Arnold CS, Parker CD, Upshaw R, Chand P. Anti-influenza virus activity of peramivir in mice with single intramuscular injection. Antiviral Res. 2006;69(1):39–45. doi:10.1016/j.antiviral.2005.10.002
  • Ishizuka H, Yoshiba S, Okabe H, Yoshihara K. Clinical pharmacokinetics of laninamivir, a novel long‐acting neuraminidase inhibitor, after single and multiple inhaled doses of its prodrug, CS‐8958, in healthy male volunteers. J Clin Pharmacol. 2010;50(11):1319–1329. doi:10.1177/0091270009356297
  • Grabrucker AM, et al. Nanoparticles as blood–brain barrier permeable CNS targeted drug delivery systems. In: The Blood Brain Barrier (BBB). Springer; 2013:71–89.
  • Nel A, Ruoslahti E, Meng H. New insights into ‘permeability’ as in the enhanced permeability and retention effect of cancer nanotherapeutics Acs Nano. Vol. 11(10):ACS Publications:9567–9569. 2017
  • Meijer DKF, Jansen RW, Molema G. Drug targeting systems for antiviral agents: options and limitations. Antiviral Res. 1992;18(3–4):215–258. doi:10.1016/0166-3542(92)90058-D
  • Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013;453(1):126–141. doi:10.1016/j.ijpharm.2013.01.019
  • Alzaid A, et al. Saudi Parents’ Knowledge, Attitudes, and Practices Regarding Antibiotic use for Upper Respiratory Tract Infections in Children. Int J Pharm Res Allied Sci. 2020;9(1):56.
  • Sankarganesh M, Adwin Jose P, Dhaveethu Raja J, et al. New pyrimidine based ligand capped gold and platinum nano particles: synthesis, characterization, antimicrobial, antioxidant, DNA interaction and in vitro anticancer activities. J Photochem Photobiol B: Biol. 2017;176:44–53. doi:10.1016/j.jphotobiol.2017.09.013
  • Chen Z-L, Huang M, Wang X-R, et al. Transferrin-modified liposome promotes α-mangostin to penetrate the blood–brain barrier. Nanomedicine Nanotechnology, Biol Med. 2016;12(2):421–430. doi:10.1016/j.nano.2015.10.021
  • Drozd KV, Manin AN, Voronin AP, Boycov DE, Churakov AV, Perlovich GL. A combined experimental and theoretical study of miconazole salts and cocrystals: crystal structures, DFT computations, formation thermodynamics and solubility improvement. Phys Chem Chem Phys. 2021;23(21):12456–12470. doi:10.1039/D1CP00956G
  • Nechipadappu SK, Reddy IR, Tarafder K, Trivedi DR. Salt/cocrystal of anti-fibrinolytic hemostatic drug tranexamic acid: structural, DFT, and stability study of salt/cocrystal with GRAS molecules. Cryst Growth Des. 2018;19(1):347–361. doi:10.1021/acs.cgd.8b01451
  • Dengale SJ, Grohganz H, Rades T, Löbmann K. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev. 2016;100(2016):116–125. doi:10.1016/j.addr.2015.12.009
  • Buldurun K, Turan N, Bursal E, et al. Synthesis, spectroscopic properties, crystal structures, antioxidant activities and enzyme inhibition determination of Co(II) and Fe(II) complexes of Schiff base. Res Chem Intermed. 2020;46(1):283–297. doi:10.1007/s11164-019-03949-3
  • Venkateswarlu K, Kumar MP, Rambabu A, et al. Crystal structure, DNA binding, cleavage, antioxidant and antibacterial studies of Cu(II), Ni(II) and Co(III) complexes with 2-((furan-2-yl)methylimino)methyl)-6-ethoxyphenol Schiff base. J Mol Struct. 2018;1160(Ii):198–207. doi:10.1016/j.molstruc.2018.02.004
  • Li S-D, Li P-W, Yang Z-M, et al. Synthesis and characterization of chitosan quaternary ammonium salt and its application as drug carrier for ribavirin. Drug Deliv. 2014;21(7):548–552. doi:10.3109/10717544.2013.853708
  • Moser D, Duan Y, Wang F, Ma Y, O’Neill MJ, Cornella J. Selective functionalization of aminoheterocycles by a pyrylium salt. Angew Chem Int Ed. 2018;57(34):11035–11039. doi:10.1002/anie.201806271
  • Alatas F. Perbaikan Kelarutan Albendazol Melalui Pembentukan Kristal Multikomponen dengan Asam Malat. J Farm Galen. 2020;6(1):114–123.
  • Hamill RJ, Sobel J, El‐Sadr W, et al. Comparison of 2 doses of liposomal amphotericin B and conventional amphotericin B deoxycholate for treatment of AIDS-associated acute cryptococcal meningitis: a randomized, double-blind clinical trial of efficacy and safety. Clin Infect Dis. 2010;51(2):225–232. doi:10.1086/653606
  • Budiman A, Citraloka Z Ganesya, Muchtaridi M, Sriwidodo S, Aulifa D Lia and Rusdin A. (2022). Inhibition of Crystal Nucleation and Growth in Aqueous Drug Solutions: Impact of Different Polymers on the Supersaturation Profiles of Amorphous Drugs—The Case of Alpha-Mangostin. Pharmaceutics, 14(11), 2386 10.3390/pharmaceutics14112386
  • Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials. 2020;10(7):1403. doi:10.3390/nano10071403
  • Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193. doi:10.3389/fmolb.2020.00193
  • Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers. 2019;11(5):640. doi:10.3390/cancers11050640
  • Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects. 2019;20:100397. doi:10.1016/j.nanoso.2019.100397
  • Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliv Rev. 2020;156:4–22. doi:10.1016/j.addr.2020.06.022
  • Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev. 2021;176:113851. doi:10.1016/j.addr.2021.113851
  • Maja L, Željko K, Mateja P. Sustainable technologies for liposome preparation. J Supercritical Fluids. 2020;165:104984. doi:10.1016/j.supflu.2020.104984
  • Huang Y, Kuminek G, Roy L, Cavanagh KL, Yin Q, Rodríguez-Hornedo N. Cocrystal solubility advantage diagrams as a means to control dissolution, supersaturation, and precipitation. Mol Pharm. 2019;16(9):3887–3895. doi:10.1021/acs.molpharmaceut.9b00501
  • Cavanagh KL, Kuminek G, Rodríguez-Hornedo N. Cocrystal solubility advantage and dose/solubility ratio diagrams: a mechanistic approach to selecting additives and controlling dissolution–supersaturation–precipitation behavior. Mol Pharm. 2020;17(11):4286–4301. doi:10.1021/acs.molpharmaceut.0c00713
  • Zhang Y-X, Wang L-Y, Dai J-K, et al. The comparative study of cocrystal/salt in simultaneously improving solubility and permeability of Acetazolamide. J Mol Struct. 2019;1184:225–232. doi:10.1016/j.molstruc.2019.01.090