109
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Targeting Telomere Dynamics as an Effective Approach for the Development of Cancer Therapeutics

, , ORCID Icon, &
Pages 3805-3825 | Received 07 Nov 2023, Accepted 14 Mar 2024, Published online: 30 Apr 2024

References

  • Fan HC, Chang FW, Tsai JD, et al. Telomeres and cancer. Life. 2021;11(12):1405. doi:10.3390/life11121405
  • Okamoto K, Seimiya H. Revisiting telomere shortening in cancer. Cells. 2019;8(2):107. doi:10.3390/cells8020107
  • Barthel FP, Wei W, Tang M, et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet. 2017;49(3):349–357. doi:10.1038/ng.3781
  • Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017;18(3):175–186. doi:10.1038/nrm.2016.171
  • Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer. 2022;22(9):515–532. doi:10.1038/s41568-022-00490-1
  • Muller HJ. The remaking of chromosomes. Collect Net. 1938;8:182–195.
  • Moyzis R, Buckingham J, Cram L, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988;85(18):6622–6626. doi:10.1073/pnas.85.18.6622
  • Meyne J, Ratliff R, Moyzis R. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A. 1989;86(18):7049–7053. doi:10.1073/pnas.86.18.7049
  • Turner KJ, Vasu V, Griffin DK. Telomere biology and human phenotype. Cells. 2019;8(1):73. doi:10.3390/cells8010073
  • Greider C. Telomeres do D-loop-T-loop. Cell. 1999;97(4):419–422. doi:10.1016/S0092-8674(00)80750-3
  • de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19(18):2100–2110. doi:10.1101/gad.1346005
  • Smith EM, Pendlebury DF, Nandakumar J. Structural biology of telomeres and telomerase. Cell Mol Life Sci. 2020;77(1):61–79. doi:10.1007/s00018-019-03369-x
  • de Lange T. How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol. 2010;75:167–177. doi:10.1101/sqb.2010.75.017
  • d’Adda Di Fagagna F, Reaper P, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426(6963):194–198. doi:10.1038/nature02118
  • Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discov. 2016;6(6):584–593. doi:10.1158/2159-8290.CD-16-0062
  • Vertecchi E, Rizzo A, Salvati E. Telomere targeting approaches in cancer: beyond length maintenance. Int J Mol Sci. 2022;23(7):3784. doi:10.3390/ijms23073784
  • Greider C, Blackburn E. Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell. 1985;43(2):405–413. doi:10.1016/0092-8674(85)90170-9
  • Kim N, Piatyszek M, Prowse K, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–2015. doi:10.1126/science.7605428
  • Dilley RL, Greenberg RA. ALTernative telomere maintenance and cancer. Trends Cancer. 2015;1(2):145–156. doi:10.1016/j.trecan.2015.07.007
  • Jiang J, Wang Y, Susac L, et al. Structure of telomerase with telomeric DNA. Cell. 2018;173(5):1179–1190 e13. doi:10.1016/j.cell.2018.04.038
  • Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. Biochemistry. 2010;75(13):1563–1583. doi:10.1134/s0006297910130055
  • Podlevsky JD, Chen JJ. It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res. 2012;730(1–2):3–11. doi:10.1016/j.mrfmmm.2011.11.002
  • Liu N, Guo XH, Liu JP, Cong YS. Role of telomerase in the tumour microenvironment. Clin Exp Pharmacol Physiol. 2020;47(3):357–364. doi:10.1111/1440-1681.13223
  • Ebata H, Loo TM, Takahashi A. Telomere maintenance and the cGAS-STING pathway in cancer. Cells. 2022;11(12):1958. doi:10.3390/cells11121958
  • Liu N, Ding D, Hao W, et al. hTERT promotes tumor angiogenesis by activating VEGF via interactions with the Sp1 transcription factor. Nucleic Acids Res. 2016;44(18):8693–8703. doi:10.1093/nar/gkw549
  • Walter K, Rodriguez-Aznar E, Ferreira MSV, et al. Telomerase and pluripotency factors jointly regulate stemness in pancreatic cancer stem cells. Cancers. 2021;13(13):3145. doi:10.3390/cancers13133145
  • Wu L, Fidan K, Um JY, Ahn KS. Telomerase: key regulator of inflammation and cancer. Pharmacol Res. 2020;155:104726. doi:10.1016/j.phrs.2020.104726
  • Hou K, Yu Y, Li D, et al. Alternative lengthening of telomeres and mediated telomere synthesis. Cancers. 2022;14(9):2194. doi:10.3390/cancers14092194
  • Cleal K, Norris K, Baird D. Telomere length dynamics and the evolution of cancer genome architecture. Int J Mol Sci. 2018;19(2):482. doi:10.3390/ijms19020482
  • De Vitis M, Berardinelli F, Sgura A. Telomere length maintenance in cancer: at the crossroad between telomerase and alternative lengthening of telomeres (ALT). Int J Mol Sci. 2018;19(2):606. doi:10.3390/ijms19020606
  • Hu J, Hwang SS, Liesa M, et al. Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell. 2012;148(4):651–663. doi:10.1016/j.cell.2011.12.028
  • Thompson PA, Drissi R, Muscal JA, et al. A Phase I trial of imetelstat in children with refractory or recurrent solid tumors: a children’s oncology group phase I consortium study (ADVL1112. Clin Cancer Res. 2013;19(23):6578–6584. doi:10.1158/1078-0432.CCR-13-1117
  • Salloum R, Hummel TR, Kumar SS, et al. A molecular biology and Phase II study of imetelstat (GRN163L) in children with recurrent or refractory central nervous system malignancies: a pediatric brain tumor consortium study. J Neurooncol. 2016;129(3):443–451. doi:10.1007/s11060-016-2189-7
  • clinicaltrials.gov. Imetelstat sodium in treating young patients with refractory or recurrent solid tumors or lymphoma; 2011. Available from: https://clinicaltrials.gov/ct2/show/NCT01273090?term=NCT01273090&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. A study inhibiting telomerase to reverse trastuzumab resistance in HER2+ breast cancer; 2010. Available from: https://clinicaltrials.gov/ct2/results?cond=&term=NCT01265927&cntry=&state=&city=&dist=. Accessed April 15, 2024.
  • Chiappori AA, Kolevska T, Spigel DR, et al. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann Oncol. 2015;26(2):354–362. doi:10.1093/annonc/mdu550
  • clinicaltrials.gov. Imetelstat in combination with paclitaxel (with or without bevacizumab) in patients with locally recurrent or metastatic breast cancer; 2010. Available from: https://clinicaltrials.gov/ct2/show/NCT01256762?term=NCT01256762&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. Open label study with imetelstat to determine effect of imetelstat in patients w/ previously treated multiple myeloma; 2010. Available from: https://clinicaltrials.gov/ct2/show/NCT01242930?term=NCT01242930&draw=2&rank=1. Accessed April 15, 2024.
  • Edelman MJ, Lapidus R, Feliciano J, et al. Phase I and pharmacokinetic evaluation of the anti-telomerase agent KML-001 with cisplatin in advanced solid tumors. Cancer Chemother Pharmacol. 2016;78(5):959–967. doi:10.1007/s00280-016-3148-x
  • clinicaltrials.gov. THIO sequenced with cemiplimab in advanced NSCLC; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT05208944?term=NCT05208944&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. Testing the addition of the anti-cancer viral therapy telomelysin™ to chemoradiation for patients with advanced esophageal cancer and are not candidates for surgery; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04391049?term=NCT04391049&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. Evaluate efficacy, immunological response of intratumoral/intralesional oncolytic virus (OBP-301) in metastatic melanoma; 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT03190824?term=NCT03190824&draw=2&rank=1. Accessed April 15, 2024.
  • Shirakawa Y, Tazawa H, Tanabe S, et al. Phase I dose-escalation study of endoscopic intratumoral injection of OBP-301 (Telomelysin) with radiotherapy in oesophageal cancer patients unfit for standard treatments. Eur J Cancer. 2021;153:98–108. doi:10.1016/j.ejca.2021.04.043
  • Nemunaitis J, Tong AW, Nemunaitis M, et al. A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther. 2010;18(2):429–434. doi:10.1038/mt.2009.262
  • Chang J, Zhao X, Wu X, et al. A Phase I study of KH901, a conditionally replicating granulocyte-macrophage colony-stimulating factor: armed oncolytic adenovirus for the treatment of head and neck cancers. Cancer Biol Ther. 2009;8(8):676–682. doi:10.4161/cbt.8.8.7913
  • clinicaltrials.gov. Study of the telomerase vaccine GV1001 to treat patients with inoperable stage III non-small cell lung cancer (LucaVax); 2012. Available from: https://clinicaltrials.gov/ct2/show/NCT01579188?term=NCT01579188&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. Gemcitabine and capecitabine with or without vaccine therapy in treating patients with locally advanced or metastatic pancreatic cancer; 2007. Available from: https://clinicaltrials.gov/ct2/show/NCT00425360?term=NCT00425360&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. GV 1001 immunotherapy in patients with non-small cell lung cancer (NSCLC); 2007. Available from: https://clinicaltrials.gov/ct2/show/NCT00509457?term=NCT00509457&draw=2&rank=1. Accessed April 15, 2024.
  • Greten TF, Forner A, Korangy F, et al. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer. 2010;10(1):209. doi:10.1186/1471-2407-10-209
  • Brunsvig PF, Aamdal S, Gjertsen MK, et al. Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother. 2006;55(12):1553–1564. doi:10.1007/s00262-006-0145-7
  • Bernhardt SL, Gjertsen MK, Trachsel S, et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br J Cancer. 2006;95(11):1474–1482. doi:10.1038/sj.bjc.6603437
  • clinicaltrials.gov. Trial with telomerase peptide vaccine in combination with temozolomide in patients with advanced malignant melanoma; 2010. Available from: https://clinicaltrials.gov/ct2/show/NCT01247623?term=NCT01247623&draw=2&rank=1. Accessed April 15, 2024.
  • Kyte JA, Gaudernack G, Dueland S, Trachsel S, Julsrud L, Aamdal S. Telomerase peptide vaccination combined with temozolomide: a clinical trial in stage IV melanoma patients. Clin Cancer Res. 2011;17(13):4568–4580. doi:10.1158/1078-0432.CCR-11-0184
  • Hunger RE, Kernland Lang K, Markowski CJ, et al. Vaccination of patients with cutaneous melanoma with telomerase-specific peptides. Cancer Immunol Immunother. 2011;60(11):1553–1564. doi:10.1007/s00262-011-1061-z
  • Brunsvig PF, Kyte JA, Kersten C, et al. Telomerase peptide vaccination in NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clin Cancer Res. 2011;17(21):6847–6857. doi:10.1158/1078-0432.CCR-11-1385
  • Middleton G, Greenhalf W, Costello E, et al. Immunobiological effects of gemcitabine and capecitabine combination chemotherapy in advanced pancreatic ductal adenocarcinoma. Br J Cancer. 2016;114(5):510–518. doi:10.1038/bjc.2015.468
  • clinicaltrials.gov. Universal cancer peptide-based vaccination in metastatic NSCLC (UCPVax); 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT02818426?term=NCT02818426&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. Evaluation of the interest to combine a CD4 Th1-inducer cancer vaccine derived from telomerase and Atezolizumab plus Bevacizumab in unresectable hepatocellular carcinoma (TERTIO); 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT05528952?term=NCT05528952&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. Anticancer therapeutic vaccination using telomerase-derived universal cancer peptides in glioblastoma (UCPVax-Glio); 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04280848?term=NCT04280848&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. Combination of UCPVax vaccine and Atezolizumab for the treatment of human papillomavirus positive cancers (VolATIL) (VolATIL). 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT03946358?term=NCT03946358&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. Evaluation of UCPVax plus Nivolumab as second line therapy in advanced non small cell lung cancer (Optim-UCPVax); 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04263051?term=NCT04263051&draw=2&rank=1. Accessed April 15, 2024.
  • Gridelli C, Ciuleanu T, Domine M, et al. Clinical activity of a htert (vx-001) cancer vaccine as post-chemotherapy maintenance immunotherapy in patients with stage IV non-small cell lung cancer: final results of a randomised Phase 2 clinical trial. Br J Cancer. 2020;122(10):1461–1466. doi:10.1038/s41416-020-0785-y
  • Kotsakis A, Vetsika EK, Christou S, et al. Clinical outcome of patients with various advanced cancer types vaccinated with an optimized cryptic human telomerase reverse transcriptase (TERT) peptide: results of an expanded phase II study. Ann Oncol. 2012;23(2):442–449. doi:10.1093/annonc/mdr396
  • Georgoulias V, Douillard JY, Khayat D, et al. A multicenter randomized phase IIb efficacy study of Vx-001, a peptide-based cancer vaccine as maintenance treatment in advanced non-small-cell lung cancer: treatment rationale and protocol dynamics. Clin Lung Cancer. 2013;14(4):461–465. doi:10.1016/j.cllc.2013.02.001
  • Kotsakis A, Papadimitraki E, Vetsika EK, et al. A phase II trial evaluating the clinical and immunologic response of HLA-A2(+) non-small cell lung cancer patients vaccinated with an hTERT cryptic peptide. Lung Cancer. 2014;86(1):59–66. doi:10.1016/j.lungcan.2014.07.018
  • Haakensen VD, Nowak AK, Ellingsen EB, et al. NIPU: a randomised, open-label, phase II study evaluating nivolumab and ipilimumab combined with UV1 vaccination as second line treatment in patients with malignant mesothelioma. J Transl Med. 2021;19(1):232. doi:10.1186/s12967-021-02905-3
  • Brunsvig PF, Guren TK, Nyakas M, et al. Long-term outcomes of a phase I study with UV1, a second generation telomerase based vaccine, in patients with advanced non-small cell lung cancer. Front Immunol. 2020;11:572172. doi:10.3389/fimmu.2020.572172
  • Ellingsen EB, Bounova G, Kerzeli I, et al. Characterization of the T cell receptor repertoire and melanoma tumor microenvironment upon combined treatment with ipilimumab and hTERT vaccination. J Transl Med. 2022;20(1):419. doi:10.1186/s12967-022-03624-z
  • Lilleby W, Gaudernack G, Brunsvig PF, et al. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol Immunother. 2017;66(7):891–901. doi:10.1007/s00262-017-1994-y
  • Filaci G, Fenoglio D, Nole F, et al. Telomerase-based GX301 cancer vaccine in patients with metastatic castration-resistant prostate cancer: a randomized phase II trial. Cancer Immunol Immunother. 2021;70(12):3679–3692. doi:10.1007/s00262-021-03024-0
  • clinicaltrials.gov. Vaccine plus montanide ISA-51 and sargramostim in treating patients with stage IV breast cancer; 2004. Available from: https://clinicaltrials.gov/ct2/show/NCT00079157?term=NCT00079157&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. Vaccine therapy in treating patients with metastatic cancer; 2003. Available from: https://clinicaltrials.gov/ct2/show/NCT00021164?term=NCT00021164&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. Vaccine therapy and sargramostim in treating patients with sarcoma or brain tumor; 2003. Available from: https://clinicaltrials.gov/ct2/show/NCT00069940?term=NCT00069940&draw=2&rank=1. Accessed April 15, 2024.
  • Mavroudis D, Bolonakis I, Cornet S, et al. A phase I study of the optimized cryptic peptide TERT(572y) in patients with advanced malignancies. Oncology. 2006;70(4):306–314. doi:10.1159/000096252
  • Bolonaki I, Kotsakis A, Papadimitraki E, et al. Vaccination of patients with advanced non-small-cell lung cancer with an optimized cryptic human telomerase reverse transcriptase peptide. J Clin Oncol. 2007;25(19):2727–2734. doi:10.1200/JCO.2006.10.3465
  • clinicaltrials.gov. Multipeptide vaccine for advanced breast cancer; 2007. Available from: https://clinicaltrials.gov/ct2/show/NCT00573495?term=NCT00573495&draw=2&rank=1. Accessed April 15, 2024.
  • Rapoport AP, Aqui NA, Stadtmauer EA, et al. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood. 2011;117(3):788–797. doi:10.1182/blood-2010-08-299396
  • clinicaltrials.gov. Exploratory study addendum to INVAC1-CT-101 (NCT02301754); 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04515043?term=NCT04515043&draw=2&rank=1. Accessed April 15, 2024.
  • Aurisicchio L, Fridman A, Mauro D, et al. Safety, tolerability and immunogenicity of V934/V935 hTERT vaccination in cancer patients with selected solid tumors: a phase I study. J Transl Med. 2020;18(1):39. doi:10.1186/s12967-020-02228-9
  • Vonderheide RH, Kraynyak KA, Shields AF, et al. Phase 1 study of safety, tolerability and immunogenicity of the human telomerase (hTERT)-encoded DNA plasmids INO-1400 and INO-1401 with or without IL-12 DNA plasmid INO-9012 in adult patients with solid tumors. J Immunother Cancer. 2021;9(7):e003019. doi:10.1136/jitc-2021-003019
  • clinicaltrials.gov. INO-5401 + INO-9012 in combination with atezolizumab in locally advanced unresectable or metastatic/recurrent urothelial carcinoma; 2018. Available from: https://clinicaltrials.gov/ct2/show/NCT03502785?term=NCT03502785&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. INO-5401 and INO-9012 delivered by electroporation (EP) in combination with cemiplimab (REGN2810) in newly-diagnosed glioblastoma (GBM); 2018. Available from: https://clinicaltrials.gov/ct2/show/NCT03491683?term=NCT03491683&draw=2&rank=1. Accessed April 15, 2024.
  • Rittig SM, Haentschel M, Weimer KJ, et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther. 2011;19(5):990–999. doi:10.1038/mt.2010.289
  • Khoury HJ, Collins RH, Blum W, et al. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer. 2017;123(16):3061–3072. doi:10.1002/cncr.30696
  • clinicaltrials.gov. Human telomerase reverse transcriptase messenger RNA (hTERT mRNA) transfected dendritic cell vaccines; 2010. Available from: https://clinicaltrials.gov/ct2/show/NCT01153113?term=NCT01153113&draw=2&rank=1. Accessed April 15, 2024.
  • Su Z, Dannull J, Heiser A, et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res. 2003;63(9):2127–2133.
  • Mehrotra S, Britten CD, Chin S, et al. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J Hematol Oncol. 2017;10(1):82. doi:10.1186/s13045-017-0459-2
  • clinicaltrials.gov. Dendritic cell based therapy of malignant melanoma; 2005. Available from: https://clinicaltrials.gov/ct2/show/NCT00197912?term=NCT00197912&draw=2&rank=1. Accessed April 15, 2024.
  • Berntsen A, Trepiakas R, Wenandy L, et al. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial. J Immunother. 2008;31(8):771–780. doi:10.1097/CJI.0b013e3181833818
  • Soleimani A, Berntsen A, Svane IM, Pedersen AE. Immune responses in patients with metastatic renal cell carcinoma treated with dendritic cells pulsed with tumor lysate. Scand J Immunol. 2009;70(5):481–489. doi:10.1111/j.1365-3083.2009.02322.x
  • Trepiakas R, Berntsen A, Hadrup SR, et al. Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial. Cytotherapy. 2010;12(6):721–734. doi:10.3109/14653241003774045
  • Danet-Desnoyers GA, Luongo JL, Bonnet DA, Domchek SM, Vonderheide RH. Telomerase vaccination has no detectable effect on SCID-repopulating and colony-forming activities in the bone marrow of cancer patients. Exp Hematol. 2005;33(11):1275–1280. doi:10.1016/j.exphem.2005.07.011
  • clinicaltrials.gov. Evaluation of transgenic lymphocyte immunization vaccine in subjects with prostate adenocarcinoma; 2003. Available from: https://clinicaltrials.gov/ct2/show/NCT00061035?term=NCT00061035&draw=2&rank=1. Accessed April 15, 2024.
  • clinicaltrials.gov. A study of transgenic lymphocyte immunization (TLI) against telomerase in subjects with stage III melanoma; 2009. Available from: https://clinicaltrials.gov/ct2/show/NCT00925314?term=NCT00925314&draw=2&rank=1. Accessed April 15, 2024.
  • Staff C, Mozaffari F, Frodin JE, Mellstedt H, Liljefors M. Telomerase (GV1001) vaccination together with gemcitabine in advanced pancreatic cancer patients. Int J Oncol. 2014;45(3):1293–1303. doi:10.3892/ijo.2014.2496
  • Kim BK, Kim BR, Lee HJ, et al. Tumor-suppressive effect of a telomerase-derived peptide by inhibiting hypoxia-induced HIF-1alpha-VEGF signaling axis. Biomaterials. 2014;35(9):2924–2933. doi:10.1016/j.biomaterials.2013.12.077
  • Park J, Kim Y, Kim H, et al. The anti-fibrotic effect of GV1001 combined with gemcitabine on treatment of pancreatic ductal adenocarcinoma. Oncotarget. 2016;7(46):75081–75093. doi:10.18632/oncotarget.12057
  • Kim JW, Yadav DK, Kim SJ, et al. Anti-cancer effect of GV1001 for prostate cancer: function as a ligand of GnRHR. Endocr Relat Cancer. 2019;26(2):147–162. doi:10.1530/ERC-18-0454
  • Dosset M, Godet Y, Vauchy C, et al. Universal cancer peptide-based therapeutic vaccine breaks tolerance against telomerase and eradicates established tumor. Clin Cancer Res. 2012;18(22):6284–6295. doi:10.1158/1078-0432.CCR-12-0896
  • Kumagai M, Mizukoshi E, Tamai T, et al. Immune response to human telomerase reverse transcriptase-derived helper T cell epitopes in hepatocellular carcinoma patients. Liver Int. 2018;38(9):1635–1645. doi:10.1111/liv.13713
  • Huo L, Yao H, Wang X, Wong GW, Kung HF, Lin MC. Inhibition of melanoma growth by subcutaneous administration of hTERTC27 viral cocktail in C57BL/6 mice. PLoS One. 2010;5(9):e12705. doi:10.1371/journal.pone.0012705
  • Adotevi O, Mollier K, Neuveut C, et al. Targeting human telomerase reverse transcriptase with recombinant lentivector is highly effective to stimulate antitumor CD8 T-cell immunity in vivo. Blood. 2010;115(15):3025–3032. doi:10.1182/blood-2009-11-253641
  • Scardino A, Gross DA, Alves P, et al. HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol. 2002;168(11):5900–5906. doi:10.4049/jimmunol.168.11.5900
  • Tagliamonte M, Petrizzo A, Napolitano M, et al. Novel metronomic chemotherapy and cancer vaccine combinatorial strategy for hepatocellular carcinoma in a mouse model. Cancer Immunol Immunother. 2015;64(10):1305–1314. doi:10.1007/s00262-015-1698-0
  • Jansons J, Skrastina D, Kurlanda A, et al. Reciprocal inhibition of immunogenic performance in mice of two potent DNA immunogens targeting HCV-related liver cancer. Microorganisms. 2021;9(5):1073. doi:10.3390/microorganisms9051073
  • Lin X, Zhou C, Wang S, et al. Enhanced antitumor effect against human telomerase reverse transcriptase (hTERT) by vaccination with chemotactic-hTERT gene-modified tumor cell and the combination with anti-4-1BB monoclonal antibodies. Int J Cancer. 2006;119(8):1886–1896. doi:10.1002/ijc.22048
  • Duperret EK, Wise MC, Trautz A, et al. Synergy of immune checkpoint blockade with a novel synthetic consensus DNA vaccine targeting TERT. Mol Ther. 2018;26(2):435–445. doi:10.1016/j.ymthe.2017.11.010
  • Yamano T, Kaneda Y, Hiramatsu SH, et al. Immunity against breast cancer by TERT DNA vaccine primed with chemokine CCL21. Cancer Gene Ther. 2007;14(5):451–459. doi:10.1038/sj.cgt.7701035
  • Cui J, Cui L, Liu Q, Sun Q. Dendritic cells transfected with lentiviral vector-encoding hTERT peptide augment antitumor T cell response in vitro. Mol Med Rep. 2012;5(1):103–107. doi:10.3892/mmr.2011.610
  • Chen L, Liang GP, Tang XD, et al. In vitro anti-tumor immune response induced by dendritic cells transfected with hTERT recombinant adenovirus. Biochem Biophys Res Commun. 2006;351(4):927–934. doi:10.1016/j.bbrc.2006.10.165
  • Frolkis M, Fischer MB, Wang Z, Lebkowski JS, Chiu CP, Majumdar AS. Dendritic cells reconstituted with human telomerase gene induce potent cytotoxic T-cell response against different types of tumors. Cancer Gene Ther. 2003;10(3):239–249. doi:10.1038/sj.cgt.7700563
  • Qiu J, Li GW, Sui YF, et al. Immunization with truncated sequence of telomerase reverse transcriptase induces a specific antitumor response in vivo. Acta Oncol. 2007;46(7):961–968. doi:10.1080/02841860601166941
  • Sioud M, Saeboe-Larssen S, Hetland TE, Kaern J, Mobergslien A, Kvalheim G. Silencing of indoleamine 2,3-dioxygenase enhances dendritic cell immunogenicity and antitumour immunity in cancer patients. Int J Oncol. 2013;43(1):280–288. doi:10.3892/ijo.2013.1922
  • Dillard P, Koksal H, Maggadottir SM, et al. Targeting telomerase with an HLA Class II-restricted TCR for cancer immunotherapy. Mol Ther. 2021;29(3):1199–1213. doi:10.1016/j.ymthe.2020.11.019
  • Ding ZY, Wu Y, Luo Y, et al. Mannan-modified adenovirus as a vaccine to induce antitumor immunity. Gene Ther. 2007;14(8):657–663. doi:10.1038/sj.gt.3302893
  • Wang Y, Zhang J, Wu Y, et al. Mannan-modified adenovirus targeting TERT and VEGFR-2: a universal tumour vaccine. Sci Rep. 2015;5(1):11275. doi:10.1038/srep11275
  • Grandjenette C, Schnekenburger M, Karius T, et al. 5-aza-2’-deoxycytidine-mediated c-myc Down-regulation triggers telomere-dependent senescence by regulating human telomerase reverse transcriptase in chronic myeloid leukemia. Neoplasia. 2014;16(6):511–528. doi:10.1016/j.neo.2014.05.009
  • Taka T, Huang L, Wongnoppavich A, Tam-Chang SW, Lee TR, Tuntiwechapikul W. Telomere shortening and cell senescence induced by perylene derivatives in A549 human lung cancer cells. Bioorg Med Chem. 2013;21(4):883–890. doi:10.1016/j.bmc.2012.12.020
  • Qi Z, Mi R. Inhibition of human telomerase reverse transcriptase in vivo and in vitro for retroviral vector-based antisense oligonucleotide therapy in ovarian cancer. Cancer Gene Ther. 2016;23(1):36–42. doi:10.1038/cgt.2015.64
  • Zheng JN, Pei DS, Sun FH, et al. Inhibition of renal cancer cell growth by oncolytic adenovirus armed short hairpin RNA targeting hTERT gene. Cancer Biol Ther. 2009;8(1):84–91. doi:10.4161/cbt.8.1.7204
  • Xie Y, Qiao H, Su Z, Chen M, Ping Q, Sun M. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Biomaterials. 2014;35(27):7978–7991. doi:10.1016/j.biomaterials.2014.05.068
  • Kazemi Noureini S, Fatemi L, Wink M, Lustig AJ. Telomere shortening in breast cancer cells (MCF7) under treatment with low doses of the benzylisoquinoline alkaloid chelidonine. PLoS One. 2018;13(10):e0204901. doi:10.1371/journal.pone.0204901
  • Zhdanov DD, Pokrovsky VS, Pokrovskaya MV, et al. Rhodospirillum rubruml-asparaginase targets tumor growth by a dual mechanism involving telomerase inhibition. Biochem Biophys Res Commun. 2017;492(2):282–288. doi:10.1016/j.bbrc.2017.08.078
  • Gan Y, Lu J, Yeung BZ, Cottage CT, Wientjes MG, Au JLS. Pharmacodynamics of telomerase inhibition and telomere shortening by noncytotoxic suramin. AAPS J. 2014;17(1):268–276. doi:10.1208/s12248-014-9703-7
  • Beisner J, Dong M, Taetz S, et al. Nanoparticle mediated delivery of 2′-O-methyl-RNA leads to efficient telomerase inhibition and telomere shortening in human lung cancer cells. Lung Cancer. 2010;68(3):346–354. doi:10.1016/j.lungcan.2009.07.010
  • Bavelaar BM, Song L, Jackson MR, et al. Oligonucleotide-functionalized gold nanoparticles for synchronous telomerase inhibition, radiosensitization, and delivery of theranostic radionuclides. Mol Pharmaceut. 2021;18(10):3820–3831. doi:10.1021/acs.molpharmaceut.1c00442
  • Nakashima M, Nandakumar J, Sullivan KD, Espinosa JM, Cech TR. Inhibition of telomerase recruitment and cancer cell death. J Biol Chem. 2013;288(46):33171–33180. doi:10.1074/jbc.M113.518175
  • Zhu J, Liu W, Chen C, et al. TPP1 OB-fold domain protein suppresses cell proliferation and induces cell apoptosis by inhibiting telomerase recruitment to telomeres in human lung cancer cells. J Cancer Res Clin Oncol. 2019;145(6):1509–1519. doi:10.1007/s00432-019-02921-3
  • Zheng XH, Nie X, Fang Y, et al. A cisplatin derivative Tetra-Pt(bpy) as an oncotherapeutic agent for targeting ALT cancer. J Natl Cancer Inst. 2017;109(10). doi:10.1093/jnci/djx061
  • Yu Y, Katiyar SP, Sundar D, et al. Withaferin-A kills cancer cells with and without telomerase: chemical, computational and experimental evidences. Cell Death Dis. 2017;8(4):e2755. doi:10.1038/cddis.2017.33
  • Chen J, Jin X, Mei Y, et al. The different biological effects of TMPyP4 and cisplatin in the inflammatory microenvironment of osteosarcoma are attributed to G-quadruplex. Cell Prolif. 2021;54(9):e13101. doi:10.1111/cpr.13101
  • Mender I, Gryaznov S, Dikmen ZG, Wright WE, Shay JW. Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2’-deoxyguanosine. Cancer Discov. 2015;5(1):82–95. doi:10.1158/2159-8290.CD-14-0609
  • Zhang G, Wu LW, Mender I, et al. Induction of telomere dysfunction prolongs disease control of therapy-resistant melanoma. Clin Cancer Res. 2018;24(19):4771–4784. doi:10.1158/1078-0432.CCR-17-2773
  • Ali S, Lombardi EP, Ghosh D, et al. Pt-ttpy, a G-quadruplex binding platinum complex, induces telomere dysfunction and G-rich regions DNA damage. Metallomics. 2021;13(6). doi:10.1093/mtomcs/mfab029
  • Petrov N, Lee H, Liskovykh M, et al. Terpyridine platinum compounds induce telomere dysfunction and chromosome instability in cancer cells. Oncotarget. 2021;12(15):1444–1456. doi:10.18632/oncotarget.28020
  • Xiong K, Ouyang C, Liu J, et al. Chiral RuII‐PtIIComplexes inducing telomere dysfunction against cisplatin‐resistant cancer cells. Angew Chem Int Ed. 2022;61(33). doi:10.1002/anie.202204866
  • Zhou G, Liu X, Li Y, et al. Telomere targeting with a novel G-quadruplex-interactive ligand BRACO-19 induces T-loop disassembly and telomerase displacement in human glioblastoma cells. Oncotarget. 2016;7(12):14925–14939. doi:10.18632/oncotarget.7483
  • Hasegawa D, Okabe S, Okamoto K, Nakano I, Shin-ya K, Seimiya H. G-quadruplex ligand-induced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells. Biochem Biophys Res Commun. 2016;471(1):75–81. doi:10.1016/j.bbrc.2016.01.176
  • Che T, Chen SB, Tu JL, et al. Discovery of novel schizocommunin derivatives as telomeric G-Quadruplex ligands that trigger telomere dysfunction and the deoxyribonucleic acid (DNA) damage response. J Med Chem. 2018;61(8):3436–3453. doi:10.1021/acs.jmedchem.7b01615
  • Muller S, Sanders DA, Di Antonio M, et al. Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Org Biomol Chem. 2012;10(32):6537–6546. doi:10.1039/c2ob25830g
  • Dinami R, Pompili L, Petti E, et al. MiR‐182‐3p targets TRF2 and impairs tumor growth of triple‐negative breast cancer. EMBO Mol Med. 2022;15(1):e16033.
  • Zhang X, Li B, de Jonge N, Björkholm M, Xu D. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression. Oncotarget. 2015;6(7):4888–4900. doi:10.18632/oncotarget.2917
  • Ci X, Li B, Ma X, et al. Bortezomib-mediated down-regulation of telomerase and disruption of telomere homeostasis contributes to apoptosis of malignant cells. Oncotarget. 2015;6(35):38079–38092. doi:10.18632/oncotarget.5752
  • Gurung RL, Lim SN, Low GK, Hande MP. MST-312 alters telomere dynamics, gene expression profiles and growth in human breast cancer cells. J Nutrigenet Nutrigenomics. 2014;7(4–6):283–298. doi:10.1159/000381346
  • Zong S, Wang Z, Chen H, Zhu D, Chen P, Cui Y. Telomerase triggered drug release using a SERS traceable nanocarrier. IEEE Trans NanoBiosci. 2014;13(1):55–60. doi:10.1109/TNB.2014.2301996
  • Srivastava P, Hira SK, Sharma A, et al. Telomerase responsive delivery of doxorubicin from mesoporous silica nanoparticles in multiple malignancies: therapeutic efficacies against experimental aggressive murine lymphoma. Bioconjug Chem. 2018;29(6):2107–2119. doi:10.1021/acs.bioconjchem.8b00342
  • Ma Y, Mao G, Wu G, Cui Z, Zhang XE, Huang W. CRISPR-dCas9-guided and telomerase-responsive nanosystem for precise anti-cancer drug delivery. ACS Appl Mater Interfaces. 2021;13(7):7890–7896. doi:10.1021/acsami.0c19217
  • Ma Y, Wang Z, Ma Y, et al. A telomerase-responsive DNA icosahedron for precise delivery of platinum nanodrugs to cisplatin-resistant cancer. Angew Chem Int Ed Engl. 2018;57(19):5389–5393. doi:10.1002/anie.201801195
  • Li CH, Lv WY, Yan Y, Yang FF, Zhen SJ, Huang CZ. Nucleolin-targeted DNA nanotube for precise cancer therapy through forster resonance energy transfer-indicated telomerase responsiveness. Anal Chem. 2021;93(7):3526–3534. doi:10.1021/acs.analchem.0c04917
  • Zhu X, Ye H, Liu JW, Yu RQ, Jiang JH. Multivalent self-assembled DNA polymer for tumor-targeted delivery and live cell imaging of telomerase activity. Anal Chem. 2018;90(22):13188–13192. doi:10.1021/acs.analchem.8b04631
  • Ma Y, Wang Z, Zhang M, et al. A telomerase-specific doxorubicin-releasing molecular beacon for cancer theranostics. Angew Chem Int Ed Engl. 2016;55(10):3304–3308. doi:10.1002/anie.201509182
  • Zhang Z, Jiao Y, Zhu M, Zhang S. Nuclear-shell biopolymers initiated by telomere elongation for individual cancer cell imaging and drug delivery. Anal Chem. 2017;89(7):4320–4327. doi:10.1021/acs.analchem.7b00591
  • Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature. 2012;492(7428):285–289. doi:10.1038/nature11648
  • Rossiello F, Jurk D, Passos JF, d’Adda Di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol. 2022;24(2):135–147. doi:10.1038/s41556-022-00842-x
  • Hänsel-Hertsch R, Di Antonio M, Balasubramanian S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol. 2017;18(5):279–284. doi:10.1038/nrm.2017.3
  • Li H, Feng Y, Luo Q, et al. Stimuli-activatable nanomedicine meets cancer theranostics. Theranostics. 2023;13(15):5386–5417. doi:10.7150/thno.87854
  • Hannen R, Bartsch JW. Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Lett. 2018;592(12):2023–2031. doi:10.1002/1873-3468.13084
  • Robinson NJ, Schiemann WP. Means to the ends: the role of telomeres and telomere processing machinery in metastasis. Biochim Biophys Acta. 2016;1866(2):320–329. doi:10.1016/j.bbcan.2016.10.005
  • Carneiro T, Khair L, Reis CC, et al. Telomeres avoid end detection by severing the checkpoint signal transduction pathway. Nature. 2010;467(7312):228–232. doi:10.1038/nature09353
  • Mender I, Zhang A, Ren Z, et al. Telomere stress potentiates STING-dependent anti-tumor immunity. Cancer Cell. 2020;38(3):400–411 e6. doi:10.1016/j.ccell.2020.05.020
  • Nassour J, Aguiar LG, Correia A, et al. Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis. Nature. 2023;614(7949):767–773. doi:10.1038/s41586-023-05710-8
  • El Ahanidi H, El Azzouzi M, Hafidi Alaoui C, et al. Immune checkpoint and telomerase crosstalk is mediated by miRNA-138 in bladder cancer. Front Oncol. 2021;11:795242. doi:10.3389/fonc.2021.795242
  • Tao H, He S, Zhao C, Wang Y, Sheng W, Zhen Y. Antitumor efficacy of a recombinant EGFR-targeted fusion protein conjugate that induces telomere shortening and telomerase downregulation. Int J Biol Macromol. 2023;226:1088–1099. doi:10.1016/j.ijbiomac.2022.11.225