66
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Biodynamer Nano-Complexes and -Emulsions for Peptide and Protein Drug Delivery

ORCID Icon, , , , , ORCID Icon, , ORCID Icon & show all
Pages 4429-4449 | Received 07 Nov 2023, Accepted 26 Mar 2024, Published online: 18 May 2024

References

  • Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials. 2019;218:119358. doi:10.1016/j.biomaterials.2019.119358
  • Viegas C, Seck F, Fonte P. An insight on lipid nanoparticles for therapeutic proteins delivery. J Drug Delivery Sci Technol. 2022;77:103839. doi:10.1016/j.jddst.2022.103839
  • Olshefsky A, Richardson C, Pun SH, King NP. Engineering self-assembling protein nanoparticles for therapeutic delivery. Bioconjugate Chem. 2022;33(11):2018–2034. doi:10.1021/acs.bioconjchem.2c00030
  • Li Y, Ye Z, Yang H, Xu Q. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharm Sin B. 2022;12(6):2624–2639. doi:10.1016/j.apsb.2022.04.013
  • Ashok B, Peppas NA, Wechsler ME. Lipid- and polymer-based nanoparticle systems for the delivery of CRISPR/Cas9. J Drug Delivery Sci Technol. 2021;65. doi:10.1016/j.jddst.2021.102728
  • Le Saux S, Aubert‐Pouëssel A, Ouchait L, et al. Nanotechnologies for intracellular protein delivery: recent progress in inorganic and organic nanocarriers. Adv Ther. 2021;4(6):2100009. doi:10.1002/adtp.202100009
  • Zhang T, Xu J, Chen J, Wang Z, Wang X, Zhong J. Protein nanoparticles for Pickering emulsions: a comprehensive review on their shapes, preparation methods, and modification methods. Trends Food Sci Technol. 2021;113:26–41. doi:10.1016/j.tifs.2021.04.054
  • Zhou H-X, Pang X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev. 2018;118(4):1691–1741. doi:10.1021/acs.chemrev.7b00305
  • Yang X, Wang Y, Zhao J, et al. Coordinated regulation of BACH1 and mitochondrial metabolism through tumor-targeted self-assembled nanoparticles for effective triple negative breast cancer combination therapy. Acta Pharm Sin B. 2022;12(10):3934–3951. doi:10.1016/j.apsb.2022.06.009
  • Van der Vegt NFA, Nayar D. The hydrophobic effect and the role of cosolvents. Phys Chem B. 2017;121(43):9986–9998. doi:10.1021/acs.jpcb.7b06453
  • Zhuang W-R, Wang Y, Cui P-F, et al. Applications of π-π stacking interactions in the design of drug-delivery systems. J Controlled Release. 2019;294:311–326. doi:10.1016/j.jconrel.2018.12.014
  • McClements DJ, Jafari SM. Improving emulsion formation, stability and performance using mixed emulsifiers: a review. Adv Colloid Interface Sci. 2018;251:55–79. doi:10.1016/j.cis.2017.12.001
  • Crucho CIC, Barros MT. Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C. 2017;80:771–784. doi:10.1016/j.msec.2017.06.004
  • Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: a new paradigm in biomedical applications. Trac Trends Anal Chem. 2016;80(2):30–40. doi:10.1016/j.trac.2015.06.014
  • Saffarionpour S. One-step preparation of double emulsions stabilized with amphiphilic and stimuli-responsive block copolymers and nanoparticles for nutraceuticals and drug delivery. JCIS Open. 2021;3(2):100020. doi:10.1016/j.jciso.2021.100020
  • McClements DJ, Decker EA, Weiss J. Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci. 2007;72(8):R109–24. doi:10.1111/j.1750-3841.2007.00507.x
  • Hanson JA, Chang CB, Graves SM, Li Z, Mason TG, Deming TJ. Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature. 2008;455(7209):85–88. doi:10.1038/nature07197
  • Zhao S, Huang C, Yue X, et al. Application advance of electrosprayed micro/nanoparticles based on natural or synthetic polymers for drug delivery system. Mater Des. 2022;220(2):110850. doi:10.1016/j.matdes.2022.110850
  • Liu Y, Stuart MCA, Buhler E, Lehn J-M, Hirsch AKH. Proteoid dynamers with tunable properties. Adv Funct Mater. 2016;26(34):6297–6305. doi:10.1002/adfm.201601612
  • Liu Y, Lehn J-M, Hirsch AKH. Molecular biodynamers: dynamic covalent analogues of biopolymers. Acc Chem Res. 2017;50(2):376–386. doi:10.1021/acs.accounts.6b00594
  • Ding H, Tan P, Fu S, et al. Preparation and application of pH-responsive drug delivery systems. J Controlled Release. 2022;348:206–238. doi:10.1016/j.jconrel.2022.05.056
  • Hu Y, Ruan X, Lv X, et al. Biofilm microenvironment-responsive nanoparticles for the treatment of bacterial infection. Nano Today. 2022;46(1):101602. doi:10.1016/j.nantod.2022.101602
  • Socea L-I, Barbuceanu S-F, Pahontu EM, et al. Acylhydrazones and Their Biological Activity: a Review. Molecules. 2022;27(24). doi:10.3390/molecules27248719
  • Hirsch AKH, Buhler E, Lehn J-M. Biodynamers: self-organization-driven formation of doubly dynamic proteoids. J Am Chem Soc. 2012;134(9):4177–4183. doi:10.1021/ja2099134
  • Xiong X-B, Binkhathlan Z, Molavi O, Lavasanifar A. Amphiphilic block co-polymers: preparation and application in nanodrug and gene delivery. Acta Biomater. 2012;8(6):2017–2033. doi:10.1016/j.actbio.2012.03.006
  • Panta P, Kim DY, Kwon JS, Son AR, Lee KW, Kim MS. Protein drug-loaded polymeric nanoparticles. JBiSE. 2014;07(10):825–832. doi:10.4236/jbise.2014.710082
  • Zhao H, Lin ZY, Yildirimer L, Dhinakar A, Zhao X, Wu J. Polymer-based nanoparticles for protein delivery: design, strategies and applications. J Mater Chem B. 2016;4(23):4060–4071. doi:10.1039/C6TB00308G
  • Wu J, Sahoo JK, Li Y, Xu Q, Kaplan DL. Challenges in delivering therapeutic peptides and proteins: a silk-based solution. J Controlled Release. 2022;345:176–189. doi:10.1016/j.jconrel.2022.02.011
  • Elmowafy M, Shalaby K, Elkomy MH, et al. Polymeric nanoparticles for delivery of natural bioactive agents: recent advances and challenges. Polymers. 2023;15(5). doi:10.3390/polym15051123
  • Wang X, Shi C, Wang L, Luo J. Polycation-telodendrimer nanocomplexes for intracellular protein delivery. Colloids Surf B Biointerfaces. 2018;162:405–414. doi:10.1016/j.colsurfb.2017.12.021
  • Yukuyama MN, Kato ETM, Lobenberg R, Bou-Chacra NA. Challenges and future prospects of nanoemulsion as a drug delivery system. Curr Pharm Des. 2017;23(3):495–508. doi:10.2174/1381612822666161027111957
  • Bizeau J, Mertz D. Design and applications of protein delivery systems in nanomedicine and tissue engineering. Adv Colloid Interface Sci. 2021;287:102334. doi:10.1016/j.cis.2020.102334
  • Kleynhans J, Sathekge M, Ebenhan T. Obstacles and recommendations for clinical translation of nanoparticle system-based targeted alpha-particle therapy. Materials. 2021;14(17). doi:10.3390/ma14174784
  • Zhang Y, Guo Y, Liu F, Luo Y. Recent development of egg protein fractions and individual proteins as encapsulant materials for delivery of bioactives. Food Chem. 2023;403:134353. doi:10.1016/j.foodchem.2022.134353
  • Gao X, He C, Xiao C, Zhuang X, Chen X. Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer. 2013;54(7):1786–1793. doi:10.1016/j.polymer.2013.01.050
  • Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J Control Release. 2014;194:1–19. doi:10.1016/j.jconrel.2014.08.015
  • Yang T, Sun D, Xu P, et al. Stability of bovine serum albumin labelled by rhodamine B isothiocyanate. Biomed Res. 2017;28(9):3851–3854.
  • Czuba E, Diop M, Mura C, et al. Oral insulin delivery, the challenge to increase insulin bioavailability: influence of surface charge in nanoparticle system. Int J Pharm. 2018;542(1–2):47–55. doi:10.1016/j.ijpharm.2018.02.045
  • Wilson BK, Prud’homme RK. Nanoparticle size distribution quantification from transmission electron microscopy (TEM) of ruthenium tetroxide stained polymeric nanoparticles. J Colloid Interface Sci. 2021;604:208–220. doi:10.1016/j.jcis.2021.04.081
  • Discher DE, Ahmed F. Polymersomes. Annu Rev Biomed Eng. 2006;8:323–341. doi:10.1146/annurev.bioeng.8.061505.095838
  • Caputo F, Clogston J, Calzolai L, Rösslein M, Prina-Mello A. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J Controlled Release. 2019;299:31–43. doi:10.1016/j.jconrel.2019.02.030
  • Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine. 2017;12:4085–4109. doi:10.2147/IJN.S132780
  • Haim Zada M, Rottenberg Y, Domb AJ. Peptide loaded polymeric nanoparticles by non-aqueous nanoprecipitation. J Colloid Interface Sci. 2022;622:904–913. doi:10.1016/j.jcis.2022.05.007
  • Hickey JW, Santos JL, Williford J-M, Mao H-Q. Control of polymeric nanoparticle size to improve therapeutic delivery. J Control Release. 2015;219:536–547. doi:10.1016/j.jconrel.2015.10.006
  • Yang -Q-Q, Cai W-Q, Wang Z-X, et al. Structural characteristics, binding behaviors, and stability of ternary nanocomplexes of lecithin, polyvinylpyrrolidone, and curcumin. LWT. 2023;175(12):114489. doi:10.1016/j.lwt.2023.114489
  • Insua I, Wilkinson A, Fernandez-Trillo F. Polyion complex (PIC) particles: preparation and biomedical applications. Eur Polym J. 2016;81:198–215. doi:10.1016/j.eurpolymj.2016.06.003
  • Rehmani S, McLaughlin CM, Eltaher HM, Moffett RC, Flatt PR, Dixon JE. Orally-delivered insulin-peptide nanocomplexes enhance transcytosis from cellular depots and improve diabetic blood glucose control. J. Controlled Release. 2023;360:93–109. doi:10.1016/j.jconrel.2023.06.006
  • Niu Z, Samaridou E, Jaumain E, et al. PEG-PGA enveloped octaarginine-peptide nanocomplexes: an oral peptide delivery strategy. J. Controlled Release. 2018;276:125–139. doi:10.1016/j.jconrel.2018.03.004
  • Pochapski DJ, Carvalho Dos Santos C, Leite GW, Pulcinelli SH, Santilli CV. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: effects of experimental conditions and electrokinetic models on the interpretation of results. Langmuir. 2021;37(45):13379–13389. doi:10.1021/acs.langmuir.1c02056
  • Sun T, Jiang C. Stimuli-responsive drug delivery systems triggered by intracellular or subcellular microenvironments. Adv Drug Deliv Rev. 2023;196:114773. doi:10.1016/j.addr.2023.114773
  • Wu W, Luo L, Wang Y, et al. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics. 2018;8(11):3038–3058. doi:10.7150/thno.23459
  • Panigrahi D, Sahu PK, Swain S, Verma RK. Quality by design prospects of pharmaceuticals application of double emulsion method for PLGA loaded nanoparticles. SN Appl Sci. 2021;3(6):15. doi:10.1007/s42452-021-04609-1
  • Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR. The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv. 2012;3(2):181–194. doi:10.4155/tde.11.156
  • Cooley M, Sarode A, Hoore M, Fedosov DA, Mitragotri S, Sen Gupta A. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale. 2018;10(32):15350–15364. doi:10.1039/C8NR04042G
  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A. 2006;103(13):4930–4934. doi:10.1073/pnas.0600997103
  • Zhang K, Fang H, Chen Z, Taylor J-SA, Wooley KL. Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. Bioconjug Chem. 2008;19(9):1880–1887. doi:10.1021/bc800160b
  • Kapate N, Clegg JR, Mitragotri S. Non-spherical micro- and nanoparticles for drug delivery: progress over 15 years. Adv Drug Deliv Rev. 2021;177:113807. doi:10.1016/j.addr.2021.05.017
  • Safari H, Felder ML, Kaczorowski N, Eniola-Adefeso O. Effect of the emulsion solvent evaporation technique cosolvent choice on the loading efficiency and release profile of anti-CD47 from PLGA Nanospheres. J Pharm Sci. 2022;111(9):2525–2530. doi:10.1016/j.xphs.2022.04.007
  • Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater. 2020;9(4):153–174. doi:10.1007/s40204-020-00139-y
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi:10.1038/s41573-020-0090-8
  • Ghitman J, Biru EI, Stan R, Iovu H. Review of hybrid PLGA nanoparticles: future of smart drug delivery and theranostics medicine. Materials Design. 2020;193(1):108805. doi:10.1016/j.matdes.2020.108805
  • Han L, Lu K, Zhou S, Qi B, Li Y. Co-delivery of insulin and quercetin in W/O/W double emulsions stabilized by different hydrophilic emulsifiers. Food Chem. 2022;369:130918. doi:10.1016/j.foodchem.2021.130918
  • Jarudilokkul S, Tongthammachat A, Boonamnuayvittaya V. Preparation of chitosan nanoparticles for encapsulation and release of protein. Korean J Chem Eng. 2011;28(5):1247–1251. doi:10.1007/s11814-010-0485-z
  • Di Martino A, Kucharczyk P, Capakova Z, Humpolicek P, Sedlarik V. Chitosan-based nanocomplexes for simultaneous loading, burst reduction and controlled release of doxorubicin and 5-fluorouracil. Int J Biol Macromol. 2017;102:613–624. doi:10.1016/j.ijbiomac.2017.04.004
  • McCall RL, Sirianni RW. PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J Vis Exp. 2013;82:51015. doi:10.3791/51015
  • Leibrock L, Wagener S, Singh AV, Laux P, Luch A. Nanoparticle induced barrier function assessment at liquid-liquid and air-liquid interface in novel human lung epithelia cell lines. Toxicol Res. 2019;8(6):1016–1027. doi:10.1039/C9TX00179D
  • Barosova H, Meldrum K, Karakocak BB, et al. Inter-laboratory variability of A549 epithelial cells grown under submerged and air-liquid interface conditions. Toxicol In Vitro. 2021;75:105178. doi:10.1016/j.tiv.2021.105178
  • Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ. Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater. 2004;20(1):12–20. doi:10.1016/S0109-5641(03)00053-8
  • Zheng J, Fang X, Li L, Zhang R, Li C. Biomolecule-responsive nanoprobes for living cell analysis. TrAC Trends in Analytical Chemistry. 2023;169(4):117387. doi:10.1016/j.trac.2023.117387
  • Chen B, Liu L, Yue R, et al. Stimuli-responsive switchable MRI nanoprobe for tumor theranostics. Nano Today. 2023;51:101931. doi:10.1016/j.nantod.2023.101931
  • Banach Ł, Williams GT, Fossey JS. Insulin delivery using dynamic covalent boronic acid/ester‐controlled release. Adv Therap. 2021;4(11):S11. doi:10.1002/adtp.202100118
  • Sun P, Jiao J, Wang X, et al. Nanomedicine hybrid and catechol functionalized chitosan as pH-responsive multi-function hydrogel to efficiently promote infection wound healing. Int J Biol Macromol. 2023;238:124106. doi:10.1016/j.ijbiomac.2023.124106
  • Li D, Tang G, Yao H, et al. Formulation of pH-responsive PEGylated nanoparticles with high drug loading capacity and programmable drug release for enhanced antibacterial activity. Bioact Mater. 2022;16:47–56. doi:10.1016/j.bioactmat.2022.02.018
  • Tang Z, He C, Tian H, et al. Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science. 2016;60(Suppl. 24):86–128. doi:10.1016/j.progpolymsci.2016.05.005