300
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Hydrogel Loaded with Components for Therapeutic Applications in Hypertrophic Scars and Keloids

, , , , , & ORCID Icon show all
Pages 883-899 | Received 16 Nov 2023, Accepted 12 Jan 2024, Published online: 25 Jan 2024

References

  • Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med. 2011;17(1–2):113–125. doi:10.2119/molmed.2009.00153
  • Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. The keloid disorder: heterogeneity, histopathology, mechanisms and models. Front Cell Dev Biol. 2020;8:360. doi:10.3389/fcell.2020.00360
  • Knowles A, Glass DA. Keloids and hypertrophic scars. Dermatol Clin. 2023;41:509–517. doi:10.1016/j.det.2023.02.010
  • Morelli Coppola M, Salzillo R, Segreto F, Persichetti P. Triamcinolone acetonide intralesional injection for the treatment of keloid scars: patient selection and perspectives. Clin Cosmet Invest Dermatol. 2018;11:387–396. doi:10.2147/CCID.S133672
  • Hunasgi S, Koneru A, Vanishree M, Shamala R. Keloid: a case report and review of pathophysiology and differences between keloid and hypertrophic scars. J Oral Maxillofac Pathol. 2013;17:116–120. doi:10.4103/0973-029X.110701
  • Alfenas ER, Moreno A, Tanner PB, Netto HD, Fonseca MFL, Rios FG. Management of peri-implant hypertrophic scarring for an ear prosthesis. J Craniofac Surg. 2017;28:e777–e778. doi:10.1097/SCS.0000000000003976
  • Martin MS, Collawn SS. Combination treatment of CO2 fractional laser, pulsed dye laser, and triamcinolone acetonide injection for refractory keloid scars on the upper back. J Cosmet Laser Ther. 2013;15:166–170. doi:10.3109/14764172.2013.780448
  • Frech FS, Hernandez L, Urbonas R, Zaken GA, Dreyfuss I, Nouri K. Hypertrophic scars and keloids: advances in treatment and review of established therapies. Am J Clin Dermatol. 2023;24:225–245. doi:10.1007/s40257-022-00744-6
  • Mankowski P, Kanevsky J, Tomlinson J, Dyachenko A, Luc M. Optimizing radiotherapy for keloids: a meta-analysis systematic review comparing recurrence rates between different radiation modalities. Ann Plast Surg. 2017;78:403–411. doi:10.1097/SAP.0000000000000989
  • Broughton G, Janis JE, Attinger CE. Wound healing: an overview. Plast Reconstr Surg. 2006;117:1e-S-32e–S. doi:10.1097/01.prs.0000222562.60260.f9
  • Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2016;58:81–94. doi:10.1159/000454919
  • Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366:1736–1743. doi:10.1016/S0140-6736(05)67700-8
  • Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–321. doi:10.1038/nature07039
  • Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P. Oxygen in acute and chronic wound healing. Br J Dermatol. 2010;163:257–268. doi:10.1111/j.1365-2133.2010.09804.x
  • O’Toole EA. Extracellular matrix and keratinocyte migration. Clin Exp Dermatol. 2001;26:525–530. doi:10.1046/j.1365-2230.2001.00891.x
  • Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127:526–537. doi:10.1038/sj.jid.5700613
  • Harn HI-C, Ogawa R, Hsu C-K, Hughes MW, Tang M-J, Chuong C-M. The tension biology of wound healing. Exp Dermatol. 2019;28:464–471. doi:10.1111/exd.13460
  • Rosińczuk J, Taradaj J, Dymarek R, Sopel M. Mechanoregulation of wound healing and skin homeostasis. Biomed Res Int. 2016;2016:3943481. doi:10.1155/2016/3943481
  • Pakshir P, Hinz B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 2018;68–69:81–93. doi:10.1016/j.matbio.2018.01.019
  • Ballotta V, Driessen-Mol A, Bouten CVC, Baaijens FPT. Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials. 2014;35:4919–4928. doi:10.1016/j.biomaterials.2014.03.002
  • Deng Z, Subilia M, Chin IL, et al. Keloid fibroblasts have elevated and dysfunctional mechanotransduction signaling that is independent of TGF-β. J Dermatol Sci. 2021;104:11–20. doi:10.1016/j.jdermsci.2021.09.002
  • Lu H, Wang H, Huang G, Wang X, Bu X. Therapeutic targeting of mechanical stretch-induced FAK/ERK signaling by fisetin in hypertrophic scars. Eur J Pharmacol. 2022;932:175228. doi:10.1016/j.ejphar.2022.175228
  • El Ayadi A, Jay JW, Prasai A. Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. Int J Mol Sci. 2020;21:1105. doi:10.3390/ijms21031105
  • Van De Water L, Varney S, Tomasek JJ. Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: opportunities for new therapeutic intervention. Adv Wound Care. 2013;2:122–141. doi:10.1089/wound.2012.0393
  • Hamburg E, DiNuoscio GJ, Mullin NK, Lafayatis R, Atit RP. Sustained β-catenin activity in dermal fibroblasts promotes fibrosis by up-regulating expression of extracellular matrix protein-coding genes. J Pathol. 2015;235:686–697. doi:10.1002/path.4481
  • Igota S, Tosa M, Murakami M, et al. Identification and characterization of wnt signaling pathway in keloid pathogenesis. Int J Med Sci. 2013;10:344–354. doi:10.7150/ijms.5349
  • Yu D, Shang Y, Yuan J, Ding S, Luo S, Hao L. Wnt/β-catenin signaling exacerbates keloid cell proliferation by regulating telomerase. Cell Physiol Biochem. 2016;39:2001–2013. doi:10.1159/000447896
  • Teofoli P, Barduagni S, Ribuffo M, Campanella A, De Pita’ O, Puddu P. Expression of Bcl-2, p53, c-jun and c-fos protooncogenes in keloids and hypertrophic scars. J Dermatol Sci. 1999;22:31–37. doi:10.1016/s0923-1811(99)00040-7
  • Hu Z, Lou L, Luo S. 病理性瘢痕中c-myc、c-fos和ras原癌基因表达的实验研究 [Experimental study of the expression of c-myc, c-fos and proto-oncogenes on hypertrophic and scars]. Zhonghua Zheng Xing Wai Ke Za Zhi. 2002;18:165–167. Chinese.
  • De Felice B, Ciarmiello LF, Mondola P, et al. Differential p63 and p53 expression in human keloid fibroblasts and hypertrophic scar fibroblasts. DNA Cell Biol. 2007;26:541–547. doi:10.1089/dna.2007.0591
  • Chawla S, Ghosh S. Regulation of fibrotic changes by the synergistic effects of cytokines, dimensionality and matrix: towards the development of an in vitro human dermal hypertrophic scar model. Acta Biomater. 2018;69:131–145. doi:10.1016/j.actbio.2018.01.002
  • Jiao H, Dong P, Yan L, et al. TGF-β1 induces polypyrimidine tract-binding protein to alter fibroblasts proliferation and fibronectin deposition in keloid. Sci Rep. 2016;6:38033. doi:10.1038/srep38033
  • Zhou M-W, Yin W-T, Jiang R-H, et al. Inhibition of collagen synthesis by IWR-1 in normal and keloid-derived skin fibroblasts. Life Sci. 2017;173:86–93. doi:10.1016/j.lfs.2016.12.003
  • Imaizumi R, Akasaka Y, Inomata N, et al. Promoted activation of matrix metalloproteinase (MMP)-2 in keloid fibroblasts and increased expression of MMP-2 in collagen bundle regions: implications for mechanisms of keloid progression. Histopathology. 2009;54:722–730. doi:10.1111/j.1365-2559.2009.03287.x
  • Laberge A, Merjaneh M, Arif S, Larochelle S, Moulin VJ. Shedding of proangiogenic microvesicles from hypertrophic scar myofibroblasts. Exp Dermatol. 2021;30:112–120. doi:10.1111/exd.14178
  • Jiang D, Fu X, Chen W, Sun T. 血管生成因子及其受体过表达与瘢痕疙瘩侵袭性生长 [Relationship of overexpression of angiogenesis factors and their receptors with invasive growth of keloid]. Zhonghua Zheng Xing Wai Ke Za Zhi. 2004;20:128–131. Chinese.
  • Okuno R, Ito Y, Eid N, Otsuki Y, Kondo Y, Ueda K. Upregulation of autophagy and glycolysis markers in keloid hypoxic-zone fibroblasts: morphological characteristics and implications. Histol Histopathol. 2018;33:1075–1087. doi:10.14670/HH-18-005
  • Wang Q, Wang P, Qin Z, et al. Altered glucose metabolism and cell function in keloid fibroblasts under hypoxia. Redox Biol. 2021;38:101815. doi:10.1016/j.redox.2020.101815
  • Li Q, Qin Z, Nie F, et al. Metabolic reprogramming in keloid fibroblasts: aerobic glycolysis and a novel therapeutic strategy. Biochem Biophys Res Commun. 2018;496:641–647. doi:10.1016/j.bbrc.2018.01.068
  • Fedele M, Sgarra R, Battista S, Cerchia L, Manfioletti G. The epithelial-mesenchymal transition at the crossroads between metabolism and tumor progression. Int J Mol Sci. 2022;23:800. doi:10.3390/ijms23020800
  • Zhang N, Ng AS, Cai S, Li Q, Yang L, Kerr D. Novel therapeutic strategies: targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol. 2021;22:e358–e368. doi:10.1016/S1470-2045(21)00343-0
  • Yan C, Grimm WA, Garner WL, et al. Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. Am J Pathol. 2010;176:2247–2258. doi:10.2353/ajpath.2010.090048
  • Cui HS, Joo SY, Lee SY, Cho YS, Kim DH, Seo CH. Effect of hypertrophic scar fibroblast-derived exosomes on keratinocytes of normal human skin. Int J Mol Sci. 2023;24:6132. doi:10.3390/ijms24076132
  • Lee YI, Shim JE, Kim J, et al. WNT5A drives interleukin-6-dependent epithelial-mesenchymal transition via the JAK/STAT pathway in keloid pathogenesis. Burns Trauma. 2022;10:tkac023. doi:10.1093/burnst/tkac023
  • Satish L, Evdokiou A, Geletu E, Hahn JM, Supp DM. Pirfenidone inhibits epithelial-mesenchymal transition in keloid keratinocytes. Burns Trauma. 2020;8:tkz007. doi:10.1093/burnst/tkz007
  • Lei R, Zhang S, Wang Y, Dai S, Sun J, Zhu C. Metformin inhibits epithelial-to-mesenchymal transition of keloid fibroblasts via the HIF-1α/PKM2 signaling pathway. Int J Med Sci. 2019;16:960–966. doi:10.7150/ijms.32157
  • Qu M, Song N, Chai G, Wu X, Liu W. Pathological niche environment transforms dermal stem cells to keloid stem cells: a hypothesis of keloid formation and development. Med Hypotheses. 2013;81:807–812. doi:10.1016/j.mehy.2013.08.033
  • Macarak EJ, Wermuth PJ, Rosenbloom J, Uitto J. Keloid disorder: fibroblast differentiation and gene expression profile in fibrotic skin diseases. Exp Dermatol. 2021;30:132–145. doi:10.1111/exd.14243
  • Grant C, Chudakova DA, Itinteang T, et al. Expression of embryonic stem cell markers in keloid-associated lymphoid tissue. J Clin Pathol. 2016;69:643–646. doi:10.1136/jclinpath-2015-203483
  • Bazid HAS, Samaka RM, Mousa MEA, Seleit I. Immunohistochemical expression of Axin-2, as an implication of the role of stem cell in scar pathogenesis and prognosis. J Cosmet Dermatol. 2022;21:6010–6020. doi:10.1111/jocd.15075
  • Zhao X-F, Wang D-L, Wei Z-R, Xue Q-Y, Yu L-M. 人增生性瘢痕成纤维细胞的间充质干细胞表型及多向分化潜能 [The research of fibroblasts from human hypertrophic scar showing a mesenchymal stem cell phenotype and multilineage differentiation potentialities]. Zhonghua Zheng Xing Wai Ke Za Zhi. 2013;29:273–279. Chinese.
  • Lee SC, Kwon IK, Park K. Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev. 2013;65:17–20. doi:10.1016/j.addr.2012.07.015
  • Wichterle O, Lím D. Hydrophilic gels for biological use. Nature. 1960;185:117–118. doi:10.1038/185117a0
  • Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release. 2014;190:254–273. doi:10.1016/j.jconrel.2014.03.052
  • Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv. 2014;11:901–915. doi:10.1517/17425247.2014.902047
  • Mahapatra C, Jin G-Z, Kim H-W. Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance. Tissue Eng Regen Med. 2016;13:538–546. doi:10.1007/s13770-016-0059-1
  • Wang J, Youngblood R, Cassinotti L, Skoumal M, Corfas G, Shea L. An injectable PEG hydrogel controlling neurotrophin-3 release by affinity peptides. J Control Release. 2021;330:575–586. doi:10.1016/j.jconrel.2020.12.045
  • Murthy PSK, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana Raju K. First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci. 2008;318:217–224. doi:10.1016/j.jcis.2007.10.014
  • Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm. 2019;559:23–36. doi:10.1016/j.ijpharm.2019.01.019
  • Ho T-C, Chang -C-C, Chan H-P, et al. Hydrogels: properties and applications in biomedicine. Molecules. 2022;27:2902. doi:10.3390/molecules27092902
  • Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6:105–121. doi:10.1016/j.jare.2013.07.006
  • Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10:1886–1890. doi:10.1002/pmic.200900758
  • Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11:042001. doi:10.1088/1758-5090/ab331e
  • Patrulea V, Ostafe V, Borchard G, Jordan O. Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm. 2015;97:417–426. doi:10.1016/j.ejpb.2015.08.004
  • Lam J, Truong NF, Segura T. Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomater. 2014;10:1571–1580. doi:10.1016/j.actbio.2013.07.025
  • Mohanto S, Narayana S, Merai KP, et al. Advancements in gelatin-based hydrogel systems for biomedical applications: a state-of-The-art review. Int J Biol Macromol. 2023;253:127143. doi:10.1016/j.ijbiomac.2023.127143
  • Krsko P, Kaplan JB, Libera M. Spatially controlled bacterial adhesion using surface-patterned poly(ethylene glycol) hydrogels. Acta Biomater. 2009;5:589–596. doi:10.1016/j.actbio.2008.08.025
  • Madry H, Gao L, Rey-Rico A, et al. Thermosensitive hydrogel based on PEO-PPO-PEO poloxamers for a controlled in situ release of recombinant adeno-associated viral vectors for effective gene therapy of cartilage defects. Adv Mater. 2020;32:e1906508. doi:10.1002/adma.201906508
  • Pang Q, Wu K, Jiang Z, et al. A polyaniline nanoparticles crosslinked hydrogel with excellent photothermal antibacterial and mechanical properties for wound dressing. Macromol Biosci. 2022;22:e2100386. doi:10.1002/mabi.202100386
  • Huang B, Wu C, Hu Y, et al. Osmanthus-loaded PVP/PVA hydrogel inhibits the proliferation and migration of oral squamous cell carcinoma cells CAL-27. Polymers. 2022;14:5399. doi:10.3390/polym14245399
  • Wan WK, Campbell G, Zhang ZF, Hui AJ, Boughner DR. Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. J Biomed Mater Res. 2002;63:854–861. doi:10.1002/jbm.10333
  • Yue K, Trujillo-de santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–271. doi:10.1016/j.biomaterials.2015.08.045
  • Bakulina AA, Musina GR, Gavdush AA, et al. PEG-fibrin conjugates: the PEG impact on the polymerization dynamics. Soft Matter. 2023;19:2430–2437. doi:10.1039/d2sm01504h
  • Stahl PJ, Romano NH, Wirtz D, Yu SM. PEG-based hydrogels with collagen mimetic peptide-mediated and tunable physical cross-links. Biomacromolecules. 2010;11:2336–2344. doi:10.1021/bm100465q
  • Cruz-Acuña R, García AJ. Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions. Matrix Biol. 2017;57–58:324–333. doi:10.1016/j.matbio.2016.06.002
  • Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol. 2010;22:697–706. doi:10.1016/j.ceb.2010.08.015
  • Koide H, Okishima A, Hoshino Y, et al. Synthetic hydrogel nanoparticles for sepsis therapy. Nat Commun. 2021;12:5552. doi:10.1038/s41467-021-25847-2
  • Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: perspectives and challenges. Biotechnol Adv. 2019;37:109–131. doi:10.1016/j.biotechadv.2018.11.008
  • Chu T-W, Feng J, Yang J, Kopeček J. Hybrid polymeric hydrogels via peptide nucleic acid (PNA)/DNA complexation. J Control Release. 2015;220:608–616. doi:10.1016/j.jconrel.2015.09.035
  • Xu Z, Liu G, Huang J, Wu J. Novel glucose-responsive antioxidant hybrid hydrogel for enhanced diabetic wound repair. ACS Appl Mater Interfaces. 2022;14:7680–7689. doi:10.1021/acsami.1c23461
  • Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6:426. doi:10.1038/s41392-021-00830-x
  • Meng Z, Zhou X, Xu J, et al. Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv Mater. 2019;31:e1900927. doi:10.1002/adma.201900927
  • Malik R, Lelkes PI, Cukierman E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol. 2015;33:230–236. doi:10.1016/j.tibtech.2015.01.004
  • Yang Q, Su S, Liu S, et al. Exosomes-loaded electroconductive nerve dressing for nerve regeneration and pain relief against diabetic peripheral nerve injury. Bioact Mater. 2023;26:194–215. doi:10.1016/j.bioactmat.2023.02.024
  • Guo S, Ren Y, Chang R, et al. Injectable self-healing adhesive chitosan hydrogel with antioxidative, antibacterial, and hemostatic activities for rapid hemostasis and skin wound healing. ACS Appl Mater Interfaces. 2022;14:34455–34469. doi:10.1021/acsami.2c08870
  • Li S, Cong Y, Fu J. Tissue adhesive hydrogel bioelectronics. J Mater Chem B. 2021;9:4423–4443. doi:10.1039/d1tb00523e
  • Zhang F-X, Liu P, Ding W, et al. Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration. Biomaterials. 2021;278:121169. doi:10.1016/j.biomaterials.2021.121169
  • Xu J, Liu Y, Hsu S-H. Hydrogels based on Schiff base linkages for biomedical applications. Molecules. 2019;24:3005. doi:10.3390/molecules24163005
  • Liu Y, Zhang Z, Zhang Y, et al. Construction of adhesive and bioactive silk fibroin hydrogel for treatment of spinal cord injury. Acta Biomater. 2023;158:178–189. doi:10.1016/j.actbio.2022.12.048
  • Shirzaei Sani E, Portillo-Lara R, Spencer A, et al. Engineering adhesive and antimicrobial hyaluronic acid/elastin-like polypeptide hybrid hydrogels for tissue engineering applications. ACS Biomater Sci Eng. 2018;4:2528–2540. doi:10.1021/acsbiomaterials.8b00408
  • Theocharidis G, Yuk H, Roh H, et al. A strain-programmed patch for the healing of diabetic wounds. Nat Biomed Eng. 2022;6:1118–1133. doi:10.1038/s41551-022-00905-2
  • Wu Y, Wang Y, Long L, Hu C, Kong Q, Wang Y. A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing. J Control Release. 2022;341:147–165. doi:10.1016/j.jconrel.2021.11.027
  • Li D, Fei X, Xu L, Wang Y, Tian J, Li Y. Pressure-sensitive antibacterial hydrogel dressing for wound monitoring in bed ridden patients. J Colloid Interface Sci. 2022;627:942–955. doi:10.1016/j.jcis.2022.07.030
  • Cai C, Zhu H, Chen Y, et al. Mechanoactive nanocomposite hydrogel to accelerate wound repair in movable parts. ACS Nano. 2022;16:20044–20056. doi:10.1021/acsnano.2c07483
  • Osti E. Cutaneous burns treated with hydrogel (Burnshield) and a semipermeable adhesive film. Arch Surg. 2006;141:39–42. doi:10.1001/archsurg.141.1.39
  • Zhang N, Gao T, Wang Y, et al. Modulating cationicity of chitosan hydrogel to prevent hypertrophic scar formation during wound healing. Int J Biol Macromol. 2020;154:835–843. doi:10.1016/j.ijbiomac.2020.03.161
  • Berman B, Garikaparthi S, Smith E, Newburger J. A novel hydrogel scaffold for the prevention or reduction of the recurrence of keloid scars postsurgical excision. J Am Acad Dermatol. 2013;69:828–830. doi:10.1016/j.jaad.2013.06.025
  • Nizet J-L, Piérard GE, Quatresooz P. Revisiting biothermal effects on erythematous hypertrophic scars during pregnancy. J Cosmet Dermatol. 2009;8:27–31. doi:10.1111/j.1473-2165.2009.00420.x
  • Hartwell R, Poormasjedi-Meibod M-S, Chavez-Munoz C, Jalili RB, Hossenini-Tabatabaei A, Ghahary A. An in-situ forming skin substitute improves healing outcome in a hypertrophic scar model. Tissue Eng Part A. 2015;21:1085–1094. doi:10.1089/ten.TEA.2014.0271
  • Bao Z, Gao P, Xia G, et al. A thermosensitive hydroxybutyl chitosan hydrogel as a potential co-delivery matrix for drugs on keloid inhibition. J Mater Chem B. 2016;4:3936–3944. doi:10.1039/c6tb00378h
  • Chen Y-J, Cheng H-W, Yen W-Y, et al. The treatment of keloid scars via modulating heterogeneous gelatin-structured composite microneedles to control transdermal dual-drug release. Polymers. 2022;14:4436. doi:10.3390/polym14204436
  • Chen Z, Hu X, Lin Z, et al. Layered GelMA/PEGDA hydrogel microneedle patch as an intradermal delivery system for hypertrophic scar treatment. ACS Appl Mater Interfaces. 2023;15:43309–43320. doi:10.1021/acsami.3c06800
  • Lin W-C, Liou S-H, Kotsuchibashi Y. Development and characterisation of the Imiquimod Poly(2-(2-methoxyethoxy)ethyl Methacrylate) hydrogel dressing for keloid therapy. Polymers. 2017;9:579. doi:10.3390/polym9110579
  • Ma J-C, Wang Z-N, Xi M-F, Yin D, Jiang LI-F, Qi J. Experimental study on the effect of caffeine hydrogel on the expression of TGF -β1, α-SMA and collagen in hypertrophic scar of rabbit ears. J Burn Care Res. 2023;irad115. doi:10.1093/jbcr/irad115
  • Danielson JR, Walter RJ. Case studies: use of salicylic acid (Avosil) and hydrogel (Avogel) in limiting scar formation. J Burns Wounds. 2005;4:e6.
  • Wan H, Wang S, Li C, et al. LA67 liposome-loaded thermo-sensitive hydrogel with active targeting for efficient treatment of keloid via peritumoral injection. Pharmaceutics. 2023;15:2157. doi:10.3390/pharmaceutics15082157
  • Wu J, Xu R, Zhan R, et al. Effective symptomatic treatment for severe and intractable pruritus associated with severe burn-induced hypertrophic scars: a prospective, multicenter, controlled trial. Burns. 2016;42:1059–1066. doi:10.1016/j.burns.2015.09.021
  • Yang Y, Liu L, Wu X, Wang X, Lu Q, Zhang Z. CO2 fractional laser-assisted transdermal delivery of silk nanofiber carriers in a rabbit ear hypertrophic scar model. Burns Trauma. 2022;10:tkac040. doi:10.1093/burnst/tkac040
  • Qu C, Bao Z, Zhang X, et al. A thermosensitive RGD-modified hydroxybutyl chitosan hydrogel as a 3D scaffold for BMSCs culture on keloid treatment. Int J Biol Macromol. 2019;125:78–86. doi:10.1016/j.ijbiomac.2018.12.058
  • Dong Y, Cui M, Qu J, et al. Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomater. 2020;108:56–66. doi:10.1016/j.actbio.2020.03.040
  • Zhang C, Wang T, Zhang L, et al. Combination of lyophilized adipose-derived stem cell concentrated conditioned medium and polysaccharide hydrogel in the inhibition of hypertrophic scarring. Stem Cell Res Ther. 2021;12:23. doi:10.1186/s13287-020-02061-3
  • Zhao R, Yan Q, Huang H, Lv J, Ma W. Transdermal siRNA-TGFβ1-337 patch for hypertrophic scar treatment. Matrix Biol. 2013;32:265–276. doi:10.1016/j.matbio.2013.02.004
  • Xue Y, Qi C, Dong Y, et al. Poly (γ-glutamic acid)/chitooligo-saccharide/papain hydrogel prevents hypertrophic scar during skin wound healing. J Biomed Mater Res B Appl Biomater. 2021;109:1724–1734. doi:10.1002/jbm.b.34830
  • Li Z, Song J, Zhang J, et al. Topical application of silk fibroin-based hydrogel in preventing hypertrophic scars. Colloids Surf B Biointerfaces. 2020;186:110735. doi:10.1016/j.colsurfb.2019.110735
  • Jia S, Zhao Y, Mustoe TA. The effects of topically applied silicone gel and its silver derivative on the prevention of hypertrophic scarring in two rabbit ear-scarring models. J Plast Reconstr Aesthet Surg. 2011;64:e332–e334. doi:10.1016/j.bjps.2011.05.008
  • Munteanu A, Florescu I, Nitescu C. A modern method of treatment: the role of silver dressings in promoting healing and preventing pathological scarring in patients with burn wounds. J Med Life. 2016;9:306–315.
  • Fan D, Xia Q, Wu S, et al. Mesenchymal stem cells in the treatment of Cesarean section skin scars: study protocol for a randomized, controlled trial. Trials. 2018;19:155. doi:10.1186/s13063-018-2478-x
  • L PK, Kandoi S, Misra R, S V, K R, Verma RS. The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019;46:1–9. doi:10.1016/j.cytogfr.2019.04.002
  • Wu Z-Y, Zhang H-J, Zhou Z-H, et al. The effect of inhibiting exosomes derived from adipose-derived stem cells via the TGF-β1/Smad pathway on the fibrosis of keloid fibroblasts. Gland Surg. 2021;10:1046–1056. doi:10.21037/gs-21-4
  • Li Y, Zhang J, Shi J, et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res Ther. 2021;12:221. doi:10.1186/s13287-021-02290-0
  • Zhong Y, Zhang Y, Yu A, et al. Therapeutic role of exosomes and conditioned medium in keloid and hypertrophic scar and possible mechanisms. Front Physiol. 2023;14:1247734. doi:10.3389/fphys.2023.1247734
  • Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann Biomed Eng. 2016;44:2049–2061. doi:10.1007/s10439-016-1583-9
  • Xiao Y, Xu D, Song H, et al. Cuprous oxide nanoparticles reduces hypertrophic scarring by inducing fibroblast apoptosis. Int J Nanomed. 2019;14:5989–6000. doi:10.2147/IJN.S196794
  • Weng W, He S, Song H, et al. Aligned carbon nanotubes reduce hypertrophic scar via regulating cell behavior. ACS Nano. 2018;12:7601–7612. doi:10.1021/acsnano.7b07439
  • Aoki M, Matsumoto NM, Dohi T, et al. Direct delivery of apatite nanoparticle-encapsulated siRNA targeting TIMP-1 for intractable abnormal scars. Mol Ther Nucleic Acids. 2020;22:50–61. doi:10.1016/j.omtn.2020.08.005
  • Wang Q, Zhong Y, Li Z, et al. Multitranscriptome analyses of keloid fibroblasts reveal the role of the HIF-1α/HOXC6/ERK axis in keloid development. Burns Trauma. 2022;10:tkac013. doi:10.1093/burnst/tkac013
  • Shim J, Oh SJ, Yeo E, et al. Integrated analysis of single-cell and spatial transcriptomics in keloids: highlights on fibrovascular interactions in keloid pathogenesis. J Invest Dermatol. 2022;142:2128–2139.e11. doi:10.1016/j.jid.2022.01.017
  • Liu J, Yang C, Zhang H, et al. Quantitative proteomics approach reveals novel biomarkers and pathological mechanism of keloid. Proteomics Clin Appl. 2022;16:e2100127. doi:10.1002/prca.202100127
  • Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14:85. doi:10.1186/s13045-021-01096-0
  • Wang M, Huang X, Zheng H, et al. Nanomaterials applied in wound healing: mechanisms, limitations and perspectives. J Control Release. 2021;337:236–247. doi:10.1016/j.jconrel.2021.07.017