204
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Advances in Ferroptosis-Inducing Agents by Targeted Delivery System in Cancer Therapy

, , , , , ORCID Icon, & ORCID Icon show all
Pages 2091-2112 | Received 09 Nov 2023, Accepted 16 Feb 2024, Published online: 04 Mar 2024

References

  • Machado V, Morais M. Hyaluronic acid-based nanomaterials applied to cancer: where are we now? Pharmaceutics. 2022;14:10.
  • Xie C, Gu A, Khan M, et al. Opportunities and challenges of hepatocellular carcinoma organoids for targeted drugs sensitivity screening. Front Oncol. 2022;12:1105454. doi:10.3389/fonc.2022.1105454
  • Ma M, Liang J, Zhang D, et al. Monitoring treatment efficacy of antiangiogenic therapy combined with hypoxia-activated prodrugs online using functional MRI. Front Oncol. 2021;11:672047. doi:10.3389/fonc.2021.672047
  • Le Y, Gao H, Bleday R, Zhu Z. The homeobox protein VentX reverts immune suppression in the tumor microenvironment. Nat Commun. 2018;9(1):2175. doi:10.1038/s41467-018-04567-0
  • Wu Z, Li S, Zhu X. The mechanism of stimulating and mobilizing the immune system enhancing the anti-tumor immunity. Front Immunol. 2021;12:682435. doi:10.3389/fimmu.2021.682435
  • Hont AB, Cruz CR, Ulrey R, et al. Immunotherapy of relapsed and refractory solid tumors with ex vivo expanded multi-tumor associated antigen specific cytotoxic t lymphocytes: a phase I study. J Clin Oncol. 2019;37(26):2349–2359. doi:10.1200/JCO.19.00177
  • Zhang X, Lin A, Han QY, et al. Intratumor heterogeneity of HLA-G expression in cancer lesions. Front Immunol. 2020;11:565759. doi:10.3389/fimmu.2020.565759
  • Raniolo S, Unida V, Vindigni G, Stolfi C. Combined and selective miR-21 silencing and doxorubicin delivery in cancer cells using tailored DNA nanostructures. Cell Death Dis. 2021;12(1):7. doi:10.1038/s41419-020-03339-3
  • Ding Y, Chen X, Liu C, et al. Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol. 2021;14(1):19. doi:10.1186/s13045-020-01016-8
  • Jiang Z, Li J, Feng W, Sun Y, Bu J. A ferroptosis-related lncRNA model to enhance the predicted value of cervical cancer. J Oncol. 2022;2022:6080049. doi:10.1155/2022/6080049
  • Zhao X, Zhang X, Xu T, Luo J. Comparative effects between oral lactoferrin and ferrous sulfate supplementation on iron-deficiency anemia: a comprehensive review and meta-analysis of clinical trials. Nutrients. 2022;14:3.
  • Rozema J, van Asten I, Kwant B, et al. Clinical view versus guideline adherence in ferritin monitoring and initiating iron chelation therapy in patients with myelodysplastic syndromes. Europ J Haematol Europ J Haematol. 2022;109(6):772–778. doi:10.1111/ejh.13865
  • Collatuzzo G, Teglia F, Pelucchi C. Inverse association between dietary iron intake and gastric cancer: a pooled analysis of case-control studies of the stop consortium. Nutrients. 2022;14(12):2555. doi:10.3390/nu14122555
  • Shao B, Mao L, Tang M, Yan ZY, Shao J. Caffeic acid phenyl ester (CAPE) protects against iron-mediated cellular DNA damage through its strong iron-binding ability and high lipophilicity. Antioxidants. 2021;10(5):798. doi:10.3390/antiox10050798
  • Li X, Si W, Li Z, et al. miR‑335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson’s disease. Int J Mol Med. 2021;47(4). doi:10.3892/ijmm.2021.4894
  • Tang X, Chen W, Liu H, et al. Research progress on SLC7A11 in the regulation of cystine/cysteine metabolism in tumors. Oncol Lett. 2022;23(2):47. doi:10.3892/ol.2021.13165
  • Zhao T, Wang H, Liu Z, et al. Recent perspective of lactobacillus in reducing oxidative stress to prevent disease. Antioxidants. 2023;12(3):769. doi:10.3390/antiox12030769
  • Sun W, Zeng C, Yue D, et al. Ageratina adenophora causes spleen toxicity by inducing oxidative stress and pyroptosis in mice. Royal Soc Open Sci. 2019;6(7):190127. doi:10.1098/rsos.190127
  • Hamblin MR, Abrahamse H. Inorganic salts and antimicrobial photodynamic therapy: mechanistic conundrums? Molecules. 2018;23(12):3190. doi:10.3390/molecules23123190
  • El-Garawani IM, Khallaf EA, Alne-Na-Ei AA, et al. The effect of neonicotinoids exposure on Oreochromis niloticus histopathological alterations and genotoxicity. Bull Environm Contaminat Toxicol. 2022;109(6):1001–1009. doi:10.1007/s00128-022-03611-6
  • Yang Z, Huang R, Wang Y, et al. SIRT6 drives sensitivity to ferroptosis in anaplastic thyroid cancer through NCOA4-dependent autophagy. Am J Can Res. 2023;13(2):464–474.
  • Wang J, Zhao Z, Liu Y, et al. ‘Mito-Bomb’: a novel mitochondria-targeting nanosystem for ferroptosis-boosted sonodynamic antitumor therapy. Drug Delivery. 2022;29(1):3111–3122. doi:10.1080/10717544.2022.2126027
  • Cheng Z, Chen Y, Huang H. Identification and validation of a novel prognostic signature based on ferroptosis-related genes in ovarian cancer. Vaccines. 2023;11(2):205. doi:10.3390/vaccines11020205
  • Huang S, Cao B, Zhang J. Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: molecular mechanism and therapeutic potential. Cell Death Dis. 2021;12(3):237. doi:10.1038/s41419-021-03516-y
  • Zhu JF, Liu Y, Li WT, et al. Ibrutinib facilitates the sensitivity of colorectal cancer cells to ferroptosis through BTK/NRF2 pathway. Cell Death Dis. 2023;14(2):151. doi:10.1038/s41419-023-05664-9
  • Li Q, Chen Q, Yang X, et al. Cocktail strategy based on a dual function nanoparticle and immune activator for effective tumor suppressive. J Nanobiotechnol. 2022;20(1):84. doi:10.1186/s12951-022-01241-y
  • Peng P, Chen Z, Wang M, Wen B, Deng X. Polysaccharide-modified liposomes and their application in cancer research. Chem Biol Drug Des. 2023;101(4):998–1011. doi:10.1111/cbdd.14201
  • Liu J, Mu W, Gao T, Fang Y, Zhang N, Liu Y. CD13-mediated pegylated carboxymethyl chitosan-capped mesoporous silica nanoparticles for enhancing the therapeutic efficacy of hepatocellular carcinoma. Pharmaceutics. 2023;15(2):426. doi:10.3390/pharmaceutics15020426
  • Wan Z, Xie F, Wang L, Zhang G, Zhang H. Preparation and evaluation of cabazitaxel-loaded bovine serum albumin nanoparticles for prostate cancer. Int j Nanomed. 2020;15:5333–5344. doi:10.2147/IJN.S258856
  • Domiński A, Domińska M, Skonieczna M, Pastuch-Gawołek G, Kurcok P. Shell-sheddable micelles based on poly(ethylene glycol)-hydrazone-poly[R,S]-3-hydroxybutyrate copolymer loaded with 8-hydroxyquinoline glycoconjugates as a dual tumor-targeting drug delivery system. Pharmaceutics. 2022;14(2):290. doi:10.3390/pharmaceutics14020290
  • Wu D, Vogus D, Krishnan V, Broto M, Pusuluri A, Zhao Z. Optimized 5-fluorouridine prodrug for co-loading with doxorubicin in clinically relevant liposomes. Pharmaceutics. 2021;13(1):107. doi:10.3390/pharmaceutics13010107
  • Dai C, Zhang D, Li J, Li J. Effect of colistin exposure on calcium homeostasis and mitochondria functions in chick cortex neurons. Toxicol Mech Methods. 2013;23(4):281–288. doi:10.3109/15376516.2012.754533
  • Zhao M, van Straten D, Broekman MLD, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics. 2020;10(3):1355–1372. doi:10.7150/thno.38147
  • Piao X, Yin H, Guo S, Wang H, Guo P. RNA nanotechnology to solubilize hydrophobic antitumor drug for targeted delivery. Advan Sci. 2019;6(22):1900951. doi:10.1002/advs.201900951
  • Zhang X, Wang L, Li H, Zhang L, Zheng X, Cheng W. Crosstalk between noncoding RNAs and ferroptosis: new Dawn for overcoming cancer progression. Cell Death Dis. 2020;11(7):580.
  • Kong F, He H, Bai H, et al. A biomimetic nanocomposite with enzyme-like activities and CXCR4 antagonism efficiently enhances the therapeutic efficacy of acute myeloid leukemia. Bioact Mater. 2022;18:526–538. doi:10.1016/j.bioactmat.2022.03.022
  • Yang G, Tian J, Chen C. An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors. Chem Sci. 2019;10(22):5766–5772. doi:10.1039/C9SC00985J
  • Zuo S, Yu J, Pan H, Lu L. Novel insights on targeting ferroptosis in cancer therapy. Biomarker Res. 2020;8:50. doi:10.1186/s40364-020-00229-w
  • Hu Y, Guo N, Yang T, Yan J, Wang W. The Potential mechanisms by which artemisinin and its derivatives induce ferroptosis in the treatment of cancer. Oxid Med Cell Longev. 2022;2022:1458143. doi:10.1155/2022/1458143
  • Li S, Wang R, Wang Y, et al. Ferroptosis: a new insight for treatment of acute kidney injury. Front Pharmacol. 2022;13:1065867. doi:10.3389/fphar.2022.1065867
  • Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell Develop Biol. 2020;8:590226. doi:10.3389/fcell.2020.590226
  • Akiyama H, Carter BZ, Andreeff M, Ishizawa J. Molecular mechanisms of ferroptosis and updates of ferroptosis studies in cancers and leukemia. Cells. 2023;12(8). doi:10.3390/cells12081128
  • Shen Z, Shao J, Zhang J, Qu W. Ultrasound cavitation enhanced chemotherapy: in vivo research and clinical application. Experim Biol Med. 2020;245(14):1200–1212. doi:10.1177/1535370220936150
  • Sun J, Wang J, Hu L, Yan J. K-3-Rh protects against cerebral ischemia/reperfusion injury by anti-apoptotic effect through PI3K-Akt signaling pathway in rat. Neuropsychiatr Dis Treat. 2020;16:1217–1227. doi:10.2147/NDT.S233622
  • Do Carmo AL, Bettanin F, Oliveira Almeida M, et al. Competition between phenothiazines and BH3 peptide for the binding site of the antiapoptotic BCL-2 protein. Front Chem. 2020;8:235. doi:10.3389/fchem.2020.00235
  • Duan PY, Ma Y, Li XN, et al. Inhibition of RIPK1-dependent regulated acinar cell necrosis provides protection against acute pancreatitis via the RIPK1/NF-κB/AQP8 pathway. Exp Mol Med. 2019;51(8):1–17. doi:10.1038/s12276-019-0278-3
  • Jia Y, Wang F, Guo Q, et al. Curcumol induces RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling in hepatic stellate cells. Redox Biol. 2018;19:375–387. doi:10.1016/j.redox.2018.09.007
  • Wang Y, Kanneganti TD. From pyroptosis, apoptosis and necroptosis to PANoptosis: a mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J. 2021;19:4641–4657. doi:10.1016/j.csbj.2021.07.038
  • Wang J, Yu Y, Lu K, et al. Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. Int j Nanomed. 2017;12:809–825. doi:10.2147/IJN.S123596
  • Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev. 2023;24(8):560–575. doi:10.1038/s41580-023-00585-z
  • Rivera Vargas T, Cai Z, Shen Y, et al. Selective degradation of PU.1 during autophagy represses the differentiation and antitumour activity of T(H)9 cells. Nat Commun. 2017;8(1):559. doi:10.1038/s41467-017-00468-w
  • Kang C, Elledge SJ. How autophagy both activates and inhibits cellular senescence. Autophagy. 2016;12(5):898–899. doi:10.1080/15548627.2015.1121361
  • Mouri A, Kaira K, Yamaguchi O, et al. Efficacy and feasibility of programmed death-1/programmed death ligand-1 blockade therapy in non-small cell lung cancer patients with high antinuclear antibody titers. Front Oncol. 2021;11:610952. doi:10.3389/fonc.2021.610952
  • Du T, Gao J, Li P, et al. Pyroptosis, metabolism, and tumor immune microenvironment. Clin Translat Med. 2021;11(8):e492. doi:10.1002/ctm2.492
  • Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 2022;32(5):417–418. doi:10.1038/s41422-022-00653-7
  • Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1005–L1028. doi:10.1152/ajplung.2000.279.6.L1005
  • Pan F, Xu W, Ding J, Wang C. Elucidating the progress and impact of ferroptosis in hemorrhagic stroke. Front Cell Neurosci. 2022;16:1067570. doi:10.3389/fncel.2022.1067570
  • Yang Y, Zhu T, Wang X, et al. ACSL3 and ACSL4, distinct roles in ferroptosis and cancers. Cancers. 2022;14(23):5896. doi:10.3390/cancers14235896
  • Chen S, Zhang Z, Zhang B, et al. CircCDK14 promotes tumor progression and resists ferroptosis in glioma by regulating PDGFRA. Int J Bio Sci. 2022;18(2):841–857. doi:10.7150/ijbs.66114
  • Zhang J, Sheng S, Wang W, et al. Molecular mechanisms of iron mediated programmed cell death and its roles in eye diseases. Frontiers in Nutrition. 2022;9:844757. doi:10.3389/fnut.2022.844757
  • Liu B, Wang W, Shah A, et al. Sodium iodate induces ferroptosis in human retinal pigment epithelium ARPE-19 cells. Cell Death Dis. 2021;12(3):230. doi:10.1038/s41419-021-03520-2
  • Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Advan Mater. 2019;31(51):e1904197. doi:10.1002/adma.201904197
  • Chen Y, Li L, Lan J, et al. CRISPR screens uncover protective effect of PSTK as a regulator of chemotherapy-induced ferroptosis in hepatocellular carcinoma. Mol Cancer. 2022;21(1):11. doi:10.1186/s12943-021-01466-9
  • Chaudhary K, Promsote W, Ananth S, et al. Iron overload accelerates the progression of diabetic retinopathy in association with increased retinal renin expression. Sci Rep. 2018;8(1):3025. doi:10.1038/s41598-018-21276-2
  • Lu Y, Chan YT, Tan HY, et al. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Experiment Clin Can Res. 2022;41(1):3. doi:10.1186/s13046-021-02208-x
  • Yan N, Zhang JJ. The emerging roles of ferroptosis in vascular cognitive impairment. Front Neurosci. 2019;13:811. doi:10.3389/fnins.2019.00811
  • He F, Huang X, Wei G, et al. Regulation of ACSL4-catalyzed lipid peroxidation process resists cisplatin ototoxicity. Oxid Med Cell Longev. 2022;2022:3080263. doi:10.1155/2022/3080263
  • Wiernicki B, Dubois H, Tyurina YY, Hassannia B, Bayir H, Kagan VE. Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death Dis. 2020;11(10):922. doi:10.1038/s41419-020-03118-0
  • Zhang Q, Li N, Deng L. ACSL1-induced ferroptosis and platinum resistance in ovarian cancer by increasing FSP1 N-myristylation and stability. Cell Death Discovery. 2023;9(1):83. doi:10.1038/s41420-023-01385-2
  • Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of autophagy in oxidative stress. Int J Mol Sci. 2020;21(9):3289. doi:10.3390/ijms21093289
  • Ng SW, Norwitz SG, Norwitz ER. The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci. 2019;20(13):3283. doi:10.3390/ijms20133283
  • Yao W, Liao H, Pang M, et al. Inhibition of the NADPH oxidase pathway reduces ferroptosis during septic renal injury in diabetic mice. Oxid Med Cell Longev. 2022;2022:1193734. doi:10.1155/2022/1193734
  • Trzaskalski NA, Vulesevic B, Nguyen MA, et al. Hepatocyte-derived DPP4 regulates portal GLP-1 bioactivity, modulates glucose production, and when absent influences NAFLD progression. JCI Insight. 2023;8(2). doi:10.1172/jci.insight.154314
  • Chen C, Xie B, Li Z, Chen L, Chen Y, Zhou J. Fascin enhances the vulnerability of breast cancer to erastin-induced ferroptosis. Cell Death Dis. 2022;13(2):150. doi:10.1038/s41419-022-04579-1
  • Xue X, Ma L, Zhang X, et al. Tumour cells are sensitised to ferroptosis via RB1CC1-mediated transcriptional reprogramming. Clin Translat Med. 2022;12(2):e747. doi:10.1002/ctm2.747
  • Wang K, Shang F, Chen D, et al. Protein liposomes-mediated targeted acetylcholinesterase gene delivery for effective liver cancer therapy. J Nanobiotechnol. 2021;19(1):31. doi:10.1186/s12951-021-00777-9
  • Zhou Y, Que KT, Zhang Z, et al. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med. 2018;7(8):4012–4022. doi:10.1002/cam4.1670
  • Wan Q, Liao Z, Rao Y, et al. Transferrin receptor 1-associated iron accumulation and oxidative stress provides a way for grass carp to fight against reovirus infection. Int J Mol Sci. 2019;20(23):5857. doi:10.3390/ijms20235857
  • Liu X, Chen C, Han D, Zhou W. SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of triptolide-induced cardiotoxicity. Oxid Med Cell Longev. 2022;2022:3192607. doi:10.1155/2022/3192607
  • Mou Y, Wang J, Wu J, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12(1):34. doi:10.1186/s13045-019-0720-y
  • Amaral C, Vicente CT, Caetano SM, Gaspar-Cordeiro A. An internal promoter drives the expression of a truncated form of CCC1 capable of protecting yeast from iron toxicity. Microorganisms. 2021;9(6):1337. doi:10.3390/microorganisms9061337
  • Zhu L, Chen D, Zhu Y, et al. GPX4-regulated ferroptosis mediates S100-induced experimental autoimmune hepatitis associated with the Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev. 2021;2021:6551069. doi:10.1155/2021/6551069
  • Kasztura M, Kiczak L. Hemosiderin accumulation in liver decreases iron availability in tachycardia-induced porcine congestive heart failure model. Oxid Med Cell Longev. 2022;23:3.
  • Pei Z, Qin Y, Fu X, et al. Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model. Redox Biol. 2022;57:102509. doi:10.1016/j.redox.2022.102509
  • Liu D, Yang M, Yao Y, et al. Cardiac fibroblasts promote ferroptosis in atrial fibrillation by secreting exo-miR-23a-3p targeting SLC7A11. Oxid Med Cell Longev. 2022;2022:3961495. doi:10.1155/2022/3961495
  • Guo J, Duan L, He X, et al. A combined model of human iPSC-derived liver organoids and hepatocytes reveals ferroptosis in DGUOK Mutant mtDNA depletion syndrome. Adv Sci. 2021;8(10):2004680. doi:10.1002/advs.202004680
  • Lee J, Hyun DH. The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases. Antioxidants. 2023;12:4.
  • Chen Y, Mi Y, Zhang X, et al. Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Experiment Clin Can Res. 2019;38(1):402. doi:10.1186/s13046-019-1413-7
  • Wei Y, Lv H, Shaikh AB, et al. Directly targeting glutathione peroxidase 4 may be more effective than disrupting glutathione on ferroptosis-based cancer therapy. Biochim Biophys Acta Gen Subj. 2020;1864(4):129539. doi:10.1016/j.bbagen.2020.129539
  • Chen L, Wu D, Zhou L, Ye Y. Platelet-rich plasma promotes diabetic ulcer repair through inhibition of ferroptosis. Ann Translat Med. 2022;10(20):1121. doi:10.21037/atm-22-4654
  • Gao L, Hua W, Tian L. Molecular mechanism of ferroptosis in orthopedic diseases. Cells. 2022;11(19):2979. doi:10.3390/cells11192979
  • Shao J, Bai Z, Zhang L, Zhang F. Ferrostatin-1 alleviates tissue and cell damage in diabetic retinopathy by improving the antioxidant capacity of the Xc(-)-GPX4 system. Cell Death Discovery. 2022;8(1):426. doi:10.1038/s41420-022-01141-y
  • Xu W, Sun T, Wang J, et al. GPX4 alleviates diabetes mellitus-induced erectile dysfunction by inhibiting ferroptosis. Antioxidants. 2022;11:10.
  • Jellusova J. The role of metabolic checkpoint regulators in B cell survival and transformation. Immunol Rev. 2020;295(1):39–53. doi:10.1111/imr.12855
  • Honarpisheh M, Desai J, Marschner JA, et al. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis. Biosci Rep. 2016;36(6). doi:10.1042/BSR20160336
  • Roberts JA, Varma VR, Huang CW, An Y, Oommen A. Blood metabolite signature of metabolic syndrome implicates alterations in amino acid metabolism: findings from the Baltimore longitudinal study of aging (BLSA) and the tsuruoka metabolomics cohort study (TMCS). Int J Mol Sci. 2020;21(4):1249. doi:10.3390/ijms21041249
  • Liu C, Li B, Yan Q. Protective effects and mechanisms of recombinant human glutathione peroxidase 4 on isoproterenol-induced myocardial ischemia injury. Oxid Med Cell Longev. 2021;2021:6632813. doi:10.1155/2021/6632813
  • Yuan F, Sun Q, Zhang S, et al. The dual role of p62 in ferroptosis of glioblastoma according to p53 status. Cell Biosci. 2022;12(1):20. doi:10.1186/s13578-022-00764-z
  • Zhou Y, Lin W, Rao T, et al. Ferroptosis and its potential role in the nervous system diseases. J Inflamm Res. 2022;15:1555–1574. doi:10.2147/JIR.S351799
  • Kitakata H, Endo J. Therapeutic targets for DOX-induced cardiomyopathy: role of apoptosis vs. ferroptosis. Int J Mol Sci. 2022;23(3). doi:10.3390/ijms23031414
  • Santoro MM. The antioxidant role of non-mitochondrial CoQ10: mystery solved! Cell Metab. 2020;31(1):13–15. doi:10.1016/j.cmet.2019.12.007
  • Arslanbaeva L, Tosi G, Ravazzolo M, et al. UBIAD1 and CoQ10 protect melanoma cells from lipid peroxidation-mediated cell death. Redox Biol. 2022;51:102272. doi:10.1016/j.redox.2022.102272
  • Xu S, Min J, Wang F. Ferroptosis: an emerging player in immune cells. Sci Bull. 2021;66(22):2257–2260. doi:10.1016/j.scib.2021.02.026
  • Zhang P, Wang X, Peng Q. Four-octyl itaconate protects chondrocytes against H(2)O(2)-induced oxidative injury and attenuates osteoarthritis progression by activating Nrf2 signaling. Oxid Med Cell Longev. 2022;2022:2206167. doi:10.1155/2022/2206167
  • Ismail MB, Rajendran P, AbuZahra HM, et al. Mangiferin inhibits apoptosis in doxorubicin-induced vascular endothelial cells via the Nrf2 signaling pathway. Int J Mol Sci. 2021;22(8):4259. doi:10.3390/ijms22084259
  • Hanus J, Anderson C, Sarraf D, Ma J, Wang S. Retinal pigment epithelial cell necroptosis in response to sodium iodate. Cell Death Discovery. 2016;2:16054. doi:10.1038/cddiscovery.2016.54
  • Xu Y, Li Y, Li J, Chen W. Ethyl carbamate triggers ferroptosis in liver through inhibiting GSH synthesis and suppressing Nrf2 activation. Redox Biol. 2022;53:102349. doi:10.1016/j.redox.2022.102349
  • Cai B, Zhong L, Liu Y, Xu Q, Chen T. δ-opioid receptor activation inhibits ferroptosis by activating the Nrf2 pathway in MPTP-induced Parkinson disease models. Evidence Bas Complem Altern Med. 2023;2023:4130937. doi:10.1155/2023/4130937
  • Liu Y, Myojin T, Li K, et al. A major intestinal catabolite of quercetin glycosides, 3-hydroxyphenylacetic acid, protects the hepatocytes from the acetaldehyde-induced cytotoxicity through the enhancement of the total aldehyde dehydrogenase activity. Int J Mol Sci. 2022;23:3.
  • Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev. 2020;64:101194. doi:10.1016/j.arr.2020.101194
  • Qi W, Li Z, Xia L, et al. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep. 2019;9(1):16185. doi:10.1038/s41598-019-52837-8
  • Da Q, Ren M, Huang L, Qu J, Yang Q, Xu J. Identification and validation of a ferroptosis-related signature for predicting prognosis and immune microenvironment in papillary renal cell carcinoma. Int J Gene Med. 2022;15:2963–2977. doi:10.2147/IJGM.S354882
  • Nowak G, Megyesi J, Craigen WJ. Deletion of VDAC1 hinders recovery of mitochondrial and renal functions after acute kidney injury. Biomolecules. 2020;10(4):585. doi:10.3390/biom10040585
  • Shi Z, Zheng J, Tang W, et al. Multifunctional nanomaterials for ferroptotic cancer therapy. Front Chem. 2022;10:868630. doi:10.3389/fchem.2022.868630
  • Xiao FJ, Zhang D, Wu Y, et al. miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem Biophys Res Commun. 2019;515(3):448–454. doi:10.1016/j.bbrc.2019.05.147
  • Xia X, Fan X, Zhao M, Zhu P. The relationship between ferroptosis and tumors: a novel landscape for therapeutic approach. Current Gene Therapy. 2019;19(2):117–124. doi:10.2174/1566523219666190628152137
  • Cierluk K, Szlasa W, Rossowska J, et al. Cepharanthine induces ROS stress in glioma and neuronal cells via modulation of VDAC permeability. Saudi Pharma J. 2020;28(11):1364–1373. doi:10.1016/j.jsps.2020.08.026
  • Yi J, Minikes AM, Jiang X. Aiming at cancer in vivo: ferroptosis-inducer delivered by nanoparticles. Cell Chem Biol. 2019;26(5):621–622. doi:10.1016/j.chembiol.2019.05.002
  • Semerad J, Pacheco NIN, Grasserova A. In vitro study of the toxicity mechanisms of nanoscale zero-valent iron (nZVI) and released iron ions using earthworm cells. Nanomaterials. 2020;10(11):2189. doi:10.3390/nano10112189
  • Zhou Y, Shen Y, Chen C, et al. The crosstalk between autophagy and ferroptosis: what can we learn to target drug resistance in cancer? Can Biol Med. 2019;16(4):630–646. doi:10.20892/j.issn.2095-3941.2019.0158
  • Zhang TT, Xu J, Wang YM, Xue CH. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res. 2019;75:100997. doi:10.1016/j.plipres.2019.100997
  • Ranji-Burachaloo H, Gurr PA, Dunstan DE, Qiao GG. Cancer treatment through nanoparticle-facilitated Fenton reaction. ACS nano. 2018;12(12):11819–11837. doi:10.1021/acsnano.8b07635
  • Xu R, Yang J, Qian Y, et al. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF. Nanoscale Horiz. 2021;6(4):348–356. doi:10.1039/D0NH00674B
  • Lin J, Yang H, Zhang Y, et al. Ferrocene-based polymeric nanoparticles carrying doxorubicin for oncotherapeutic combination of chemotherapy and ferroptosis. Small. 2023;19(2):e2205024. doi:10.1002/smll.202205024
  • Li H. Extraction, purification, characterization and antioxidant activities of polysaccharides from Ramaria botrytis (Pers.) Ricken. Chem Cent J. 2017;11:24. doi:10.1186/s13065-017-0252-x
  • He Z, Guo Y, Chen J, et al. Unsaturated phospholipid modified FeOCl nanosheets for enhancing tumor ferroptosis. J Mat Chem B. 2023;11(9):1891–1903. doi:10.1039/D2TB01854C
  • Huang Z, Xu B, Huang X, et al. Metabolomics reveals the role of acetyl-l-carnitine metabolism in γ-Fe(2)O(3) NP-induced embryonic development toxicity via mitochondria damage. Nanotoxicology. 2019;13(2):204–220. doi:10.1080/17435390.2018.1537411
  • Liang Z, Wang Y, Wang J, et al. Multifunctional Fe(3)O(4)-PEI@HA nanoparticles in the ferroptosis treatment of hepatocellular carcinoma through modulating reactive oxygen species. Colloids Surf B. 2023;227:113358. doi:10.1016/j.colsurfb.2023.113358
  • Liu X, Zhu X, Qi X, Meng X, Xu K. Co-Administration of iRGD with sorafenib-loaded iron-based metal-organic framework as a targeted ferroptosis agent for liver cancer therapy. Int j Nanomed. 2021;16:1037–1050. doi:10.2147/IJN.S292528
  • Wang S, Li F, Qiao R, et al. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS nano. 2018;12(12):12380–12392. doi:10.1021/acsnano.8b06399
  • Tang H, Chen D, Li C, et al. Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells. Int J Pharm. 2019;572:118782. doi:10.1016/j.ijpharm.2019.118782
  • Zhang Z, Pan Y, Cun JE, et al. A reactive oxygen species-replenishing coordination polymer nanomedicine disrupts redox homeostasis and induces concurrent apoptosis-ferroptosis for combinational cancer therapy. Acta Biomater. 2022;151:480–490. doi:10.1016/j.actbio.2022.07.055
  • He P, Xu S, Miao Z, et al. Anti-Her2 affibody-decorated arsenene nanosheets induce ferroptosis through depleting intracellular GSH to overcome cisplatin resistance. J Nanobiotechnol. 2023;21(1):203. doi:10.1186/s12951-023-01963-7
  • Yu M, Gai C, Li Z, Ding D, Zheng J. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Can Sci. 2019;110(10):3173–3182. doi:10.1111/cas.14181
  • Gai C, Liu C, Wu X, et al. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 2020;11(9):751. doi:10.1038/s41419-020-02939-3
  • Khalid HMB, Rasul A, Shah S, Abbas G, Mahmood A. Disulfide bridged nanoparticles of thiolated sodium alginate and eudragit RS100 for oral delivery of paclitaxel: in vitro and in vivo evaluation: in vitro and in vivo evaluation. ACS omega. 2023;8(10):9662–9672. doi:10.1021/acsomega.3c00400
  • Beatty A, Singh T, Tyurina YY, Nicolas E, Peterson JR. Conjugated linolenic fatty acids trigger ferroptosis in triple-negative breast cancer. Cold Spring Harbor Lab. 2019;2019:1.
  • Zhou Z, Song J, Tian R, et al. Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy. Angew Chem. 2017;56(23):6492–6496. doi:10.1002/anie.201701181
  • Gao M, Deng J, Liu F, et al. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials. 2019;223:119486. doi:10.1016/j.biomaterials.2019.119486
  • Cheng W, Zeng X, Chen H. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS nano. 2019;13(8):8537–8565. doi:10.1021/acsnano.9b04436
  • Yang X, Lan T, Zhong H, et al. To systematically evaluate and analyze the efficacy and safety of transcatheter arterial chemoembolization (TACE) in the treatment of primary liver cancer. J Health Engin. 2022;2022:8223336. doi:10.1155/2022/8223336
  • Henkin JS, Botton CE, Simon MS, et al. Telehealth multicomponent exercise and health education in breast cancer patients undergoing primary treatment: rationale and methodological protocol for a randomized clinical trial (ABRACE: telehealth). Trials. 2023;24(1):42. doi:10.1186/s13063-022-07015-z
  • Kashfi K. Nitric oxide in cancer and beyond. Biochem Pharmacol. 2020;176:114006. doi:10.1016/j.bcp.2020.114006
  • Ji P, Wang X, Yin J, Yao Y, Du W. Amplification of ferroptosis with a liposomal nanoreactor cooperates with low-toxicity doxorubicin apoptosis for enhanced tumor chemotherapy. Biomater Sci. 2022;10(6):1544–1553. doi:10.1039/D2BM00079B
  • Jiang X, Yang M, Fang Y, et al. A photo-activated thermoelectric catalyst for ferroptosis-/pyroptosis-boosted tumor nanotherapy. Adv Healthcare Mater. 2023;12(24):e2300699. doi:10.1002/adhm.202300699
  • Zhou Y, Chen K, Lin WK, et al. Photo-enhanced synergistic induction of ferroptosis for anti-cancer immunotherapy. Adv Healthcare Mater. 2023;12:27.
  • Bai S, Yang N, Wang X. Ultrasmall iron-doped titanium oxide nanodots for enhanced sonodynamic and chemodynamic cancer therapy. ACS nano. 2020;14(11):15119–15130. doi:10.1021/acsnano.0c05235
  • Hu Z, Song X, Ding L, et al. Engineering Fe/Mn-doped zinc oxide nanosonosensitizers for ultrasound-activated and multiple ferroptosis-augmented nanodynamic tumor suppression. Mater Today Bio. 2022;16:100452. doi:10.1016/j.mtbio.2022.100452
  • Zhu M, Wu P, Li Y, Zhang L, Zong Y, Wan M. Synergistic therapy for orthotopic gliomas via biomimetic nanosonosensitizer-mediated sonodynamic therapy and ferroptosis. Biomater Sci. 2022;10(14):3911–3923. doi:10.1039/D2BM00562J
  • Yang Q, Liu T, Zheng H, et al. A nanoformulation for immunosuppression reversal and broad-spectrum self-amplifying antitumor ferroptosis-immunotherapy. Biomaterials. 2023;292:121936. doi:10.1016/j.biomaterials.2022.121936
  • Zhu X, Gong Y, Liu Y, et al. Ru@CeO(2) yolk shell nanozymes: oxygen supply in situ enhanced dual chemotherapy combined with photothermal therapy for orthotopic/subcutaneous colorectal cancer. Biomaterials. 2020;242:119923. doi:10.1016/j.biomaterials.2020.119923
  • Yang Q, Wang J, Zhong P. The clinical prognostic value of lncRNA FAM83H-AS1 in cancer patients: a meta-analysis. Can Cell Inter. 2020;20:72. doi:10.1186/s12935-020-1148-8
  • Liu L, Wang R, Wang C, Wang J, Chen L, Cheng J. Light-triggered release of drug conjugates for an efficient combination of chemotherapy and photodynamic therapy. Biomater Sci. 2018;6(5):997–1001. doi:10.1039/C7BM01114H
  • Zhang S, Zheng F, Liu K, Liu S, Xiao T. Mitochondria-targeting polymer micelles in stepwise response releasing gemcitabine and destroying the mitochondria and nucleus for combined antitumor chemotherapy. Int J Mol Sci. 2022;23:20.
  • Lin Y, Li C, Liu A, Zhen X, Gao J, Wu W. Responsive hyaluronic acid-gold cluster hybrid nanogel theranostic systems. Biomater Sci. 2021;9(4):1363–1373. doi:10.1039/D0BM01815E
  • Nieto C, Vega MA, Martín Del Valle EM. Tailored-made polydopamine nanoparticles to induce ferroptosis in breast cancer cells in combination with chemotherapy. Int J Mol Sci. 2021;22(6):3161. doi:10.3390/ijms22063161
  • Bao W, Liu X, Lv Y, et al. Nanolongan with multiple on-demand conversions for ferroptosis-apoptosis combined anticancer therapy. Int J Mol Sci. 2019;13(1):260–273.
  • Shen Z, Liu T, Li Y, Lau J, Yang Z. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS nano. 2018;12(11):11355–11365. doi:10.1021/acsnano.8b06201
  • Chen Y, Yao Z, Liu P, et al. A self-assembly nano-prodrug for triple-negative breast cancer combined treatment by ferroptosis therapy and chemotherapy. Acta Biomater. 2023;159:275–288. doi:10.1016/j.actbio.2023.01.050
  • Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48(7):2053–2108. doi:10.1039/c8cs00618k
  • Wang Y, Meng HM, Li Z. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. Nanoscale. 2021;13(19):8751–8772. doi:10.1039/D1NR00323B
  • Hader M, Streit S, Rosin A. In vitro examinations of cell death induction and the immune phenotype of cancer cells following radiative-based hyperthermia with 915 MHz in combination with radiotherapy. Cells. 2021;10(6):1436. doi:10.3390/cells10061436
  • Lee WT, Yoon J, Kim SS, et al. Combined antitumor therapy using in situ injectable hydrogels formulated with albumin nanoparticles containing indocyanine green, chlorin e6, and perfluorocarbon in hypoxic tumors. Pharmaceutics. 2022;14(1). doi:10.3390/pharmaceutics14010148
  • Kim D, Kim H. Optimization of photothermal therapy treatment effect under various laser irradiation conditions. Int J Mol Sci. 2022;23:11.
  • Tan X, Pang X, Lei M, et al. An efficient dual-loaded multifunctional nanocarrier for combined photothermal and photodynamic therapy based on copper sulfide and chlorin e6. Int J Pharm. 2016;503(1–2):220–228. doi:10.1016/j.ijpharm.2016.03.019
  • Zhang Y, Zhang K, Yang H, Hao Y, Zhang J, Zhao W. Highly penetrable drug-loaded nanomotors for photothermal-enhanced ferroptosis treatment of tumor. ACS Appl Mater Interfaces. 2023;8:3.
  • Chen Y, Su M, Jia L, Zhang Z. Synergistic chemo-photothermal and ferroptosis therapy of polydopamine nanoparticles for esophageal cancer. Nanomedicine. 2022;17(16):1115–1130. doi:10.2217/nnm-2022-0064
  • Chang MH, Pai CL, Chen YC, Yu HP, Hsu CY, Lai PS. Enhanced antitumor effects of epidermal growth factor receptor targetable cetuximab-conjugated polymeric micelles for photodynamic therapy. Nanomaterials. 2018;8(2):121. doi:10.3390/nano8020121
  • Liu Z, Xie Z, Li W, et al. Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges. J Nanobiotechnol. 2021;19(1):160. doi:10.1186/s12951-021-00903-7
  • Zhou M, Zheng M, Zhou X, et al. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal. 2023;21(1):8. doi:10.1186/s12964-022-01009-9
  • Wang D, Wu H, Phua SZF, et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat Commun. 2020;11(1):357. doi:10.1038/s41467-019-14199-7
  • Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021;45:102056. doi:10.1016/j.redox.2021.102056
  • Meng X, Deng J, Liu F, et al. Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy. Nano Lett. 2019;19(11):7866–7876. doi:10.1021/acs.nanolett.9b02904
  • Hu C, Hou B, Xie S. Application of nanosonosensitizer materials in cancer sono-dynamic therapy. RSC Adv. 2022;12(35):22722–22747. doi:10.1039/D2RA03786F
  • Martins YA, Fonseca MJV, Pavan TZ, Lopez RF. Bifunctional therapeutic application of low-frequency ultrasound associated with zinc phthalocyanine-loaded micelles. Int j Nanomed. 2020;15:8075–8095. doi:10.2147/IJN.S264528
  • Yuan M, Liang S, Zhou Y. A robust oxygen-carrying hemoglobin-based natural sonosensitizer for sonodynamic cancer therapy. Int j Nanomed. 2021;21(14):6042–6050.
  • Yang C, Zhang C, Luo X, Liu X, Cao F, Zhang YL. Isomerization and degradation of levoglucosan via the photo-Fenton process: insights from aqueous-phase experiments and atmospheric particulate matter. Environ Sci Technol. 2020;54(19):11789–11797. doi:10.1021/acs.est.0c02499
  • Lagori G, Fornaini C, Rocca JP, Merigo E. Use of photo-Fenton’s reaction by 400-nm LED light for endodontic disinfection: a preliminary in vitro study on Enterococcus faecalis. J Photochem Photobiol B Biol. 2017;171:85–89. doi:10.1016/j.jphotobiol.2017.04.033
  • Nie T, Zou W, Meng Z, et al. Bioactive iridium nanoclusters with glutathione depletion ability for enhanced sonodynamic-triggered ferroptosis-like cancer cell death. Advan Mater. 2022;34(45):e2206286. doi:10.1002/adma.202206286
  • Zong S, Li J, Ye Z, et al. Lachnum polysaccharide suppresses S180 sarcoma by boosting anti-tumor immune responses and skewing tumor-associated macrophages toward M1 phenotype. Int J Biol Macromol. 2020;144:1022–1033. doi:10.1016/j.ijbiomac.2019.09.179
  • Qin Z, Zhang W, Liu S, Wang Y, Peng X, Jia L. PVT1 inhibition stimulates anti-tumor immunity, prevents metastasis, and depletes cancer stem cells in squamous cell carcinoma. Cell Death Dis. 2023;14(3):187. doi:10.1038/s41419-023-05710-6
  • Cronin SJF, Woolf CJ, Weiss G, Penninger JM. The role of iron regulation in immunometabolism and immune-related disease. Front Mol Biosci. 2019;6:116. doi:10.3389/fmolb.2019.00116
  • Chen X, Lan H, He D, et al. Analysis of autophagy-related signatures identified two distinct subtypes for evaluating the tumor immune microenvironment and predicting prognosis in ovarian cancer. Front Oncol. 2021;11:616133. doi:10.3389/fonc.2021.616133
  • Li M, Xu Y, Liang J, et al. USP22 deficiency in melanoma mediates resistance to T cells through IFNγ-JAK1-STAT1 signal axis. Molecular Thera. 2021;29(6):2108–2120. doi:10.1016/j.ymthe.2021.02.018
  • Saleh T, Shojaosadati SA. Multifunctional nanoparticles for cancer immunotherapy. Hum Vaccines Immunother. 2016;12(7):1863–1875.
  • Ding B, Zheng P, Jiang F, et al. MnO(x) nanospikes as nanoadjuvants and immunogenic cell death drugs with enhanced antitumor immunity and antimetastatic effect. Angew Chem. 2020;59(38):16381–16384. doi:10.1002/anie.202005111
  • Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29(5):347–364. doi:10.1038/s41422-019-0164-5
  • Jiang Q, Wang K, Zhang X, et al. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small. 2020;16:22.
  • Wen Q, Liu J, Kang R, Zhou B, Tang D. The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 2019;510(2):278–283. doi:10.1016/j.bbrc.2019.01.090
  • Zhang F, Li F, Lu GH, et al. Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS nano. 2019;13(5):5662–5673. doi:10.1021/acsnano.9b00892
  • Lang X, Green MD, Wang W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discovery. 2019;9(12):1673–1685. doi:10.1158/2159-8290.CD-19-0338
  • Zhao L, Zhou X, Xie F, et al. Ferroptosis in cancer and cancer immunotherapy. Cancer Communic. 2022;42(2):88–116. doi:10.1002/cac2.12250
  • Chin YC, Yang LX, Hsu FT, et al. Iron oxide@chlorophyll clustered nanoparticles eliminate bladder cancer by photodynamic immunotherapy-initiated ferroptosis and immunostimulation. J Nanobiotechnol. 2022;20(1):373. doi:10.1186/s12951-022-01575-7
  • Wang Y, Chen Q, Song H, et al. A triple therapeutic strategy with antiexosomal iron efflux for enhanced ferroptosis therapy and immunotherapy. Small. 2022;18:41.
  • Cheu JW, Lee D, Li Q, et al. Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer. CMGH. 2023;16(1):133–159. doi:10.1016/j.jcmgh.2023.03.001
  • Zhu H, Li Y, Ming Z, Liu W. Glucose oxidase-mediated tumor starvation therapy combined with photothermal therapy for colon cancer. Biomater Sci. 2021;9(16):5577–5587. doi:10.1039/D1BM00869B
  • Wan X, Song L, Pan W, Zhong H, Li N, Tang B. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS nano. 2020;14(9):11017–11028. doi:10.1021/acsnano.9b07789
  • Liang Y, Zhang L, Peng C, et al. Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy. Acta pharmaceutica Sinica B. 2021;11(10):3231–3243. doi:10.1016/j.apsb.2021.01.016
  • Wang C, Cheng X, Peng H, Zhang Y. NIR-triggered and ROS-boosted nanoplatform for enhanced chemo/PDT/PTT synergistic therapy of sorafenib in hepatocellular carcinoma. Nanoscale Res Lett. 2022;17(1):1–16. doi:10.1186/s11671-022-03729-w