72
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Injectable Hydrogel Loaded with CDs and FTY720 Combined with Neural Stem Cells for the Treatment of Spinal Cord Injury

, ORCID Icon, , ORCID Icon, , , & show all
Pages 4081-4101 | Received 09 Nov 2023, Accepted 18 Apr 2024, Published online: 08 May 2024

References

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24(9):2143–2155. doi:10.1523/jneurosci.3547-03.2004
  • David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci. 2011;12(7):388–399. doi:10.1038/nrn3053
  • Huang WL, George KJ, Ibba V, et al. The characteristics of neuronal injury in a static compression model of spinal cord injury in adult rats. Eur J Neurosci. 2007;25(2):362–372. doi:10.1111/j.1460-9568.2006.05284.x
  • Sofroniew MV. Dissecting spinal cord regeneration. Nature. 2018;557(7705):343–350. doi:10.1038/s41586-018-0068-4
  • Fan BY, Wei ZJ, Yao X, et al. Microenvironment imbalance of spinal cord injury. Cell Transpl. 2018;27(6):853–866. doi:10.1177/0963689718755778
  • Song YH, Agrawal NK, Griffin JM, Schmidt CE. Recent advances in nanotherapeutic strategies for spinal cord injury repair. Review. Adv Drug Delivery Rev. 2019;148:38–59. doi:10.1016/j.addr.2018.12.011
  • Amanda Phuong T, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury. Review. Physiol Rev. 2018;98(2):881–917. doi:10.1152/physrev.00017.2017
  • Zhou XH, Shi GD, Fan BY, et al. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. Int J Nanomed. 2018;13:6265–6277. doi:10.2147/ijn.S175914
  • Rao YJ, Zhu WX, Guo YX, et al. Long-term outcome of olfactory ensheathing cell transplantation in six patients with chronic complete spinal cord injury. Cell Transpl. 2013;22:S21–S25. doi:10.3727/096368913x672127
  • Barnabe-Heider F, Frisen J. Stem cells for spinal cord repair. Cell Stem Cell. 2008;3(1):16–24. doi:10.1016/j.stem.2008.06.011
  • Yin W, Li X, Zhao YN, et al. Taxol-modified collagen scaffold implantation promotes functional recovery after long-distance spinal cord complete transection in canines. Biomater Sci. 2018;6(5):1099–1108. doi:10.1039/c8bm00125a
  • Li X, Zhao YN, Cheng SX, et al. Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials. 2017;137:73–86. doi:10.1016/j.biomaterials.2017.05.027
  • Chen C, Zhao ML, Zhang RK, et al. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats. J Biomed Mater Res Part A. 2017;105(5):1324–1332. doi:10.1002/jbm.a.36011
  • Geissler SA, Sabin AL, Besser RR, et al. Biomimetic hydrogels direct spinal progenitor cell differentiation and promote functional recovery after spinal cord injury. J Neural Eng. 2018;15(2):025004. doi:10.1088/1741-2552/aaa55c
  • Liu K, Dong XZ, Wang Y, Wu XP, Dai HL. Dopamine-modified chitosan hydrogel for spinal cord injury. Carbohydr Polym. 2022;2022:298120047. doi:10.1016/j.carbpol.2022.120047
  • Xu C, Chang YK, Wu P, et al. Two-dimensional-germanium phosphide-reinforced conductive and biodegradable hydrogel scaffolds enhance spinal cord injury repair. Adv Funct Mater. 2021;31(41):2104440. doi:10.1002/adfm.202104440
  • Long YP, Yan LS, Dai HL, et al. Enhanced proliferation and differentiation of neural stem cells by peptide-containing temperature-sensitive hydrogel scaffold. Mater Sci Eng C Mater Biol Appl. 2020:116111258. doi:10.1016/j.msec.2020.111258
  • Fuhrmann T, Anandakumaran PN, Shoichet MS. Combinatorial therapies after spinal cord injury: how can biomaterials help? Adv Healthcare Mater. 2017;6(10):1601130. doi:10.1002/adhm.201601130
  • Hu SQ, Zhou L, Tu LJ, et al. Elastomeric conductive hybrid hydrogels with continuous conductive networks. J Mat Chem B. 2019;7(15):2389–2397. doi:10.1039/c9tb00173e
  • Jiang YQ, Fu PF, Liu YY, et al. Near-infrared light-triggered NO release for spinal cord injury repair. Sci Adv. 2020;6(39):eabc3513. doi:10.1126/sciadv.abc3513
  • Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci. 2016;1098. doi:10.3389/fncel.2016.00098
  • Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE. Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res. 1997;765(2):283–290. doi:10.1016/s0006-8993(97)00573-8
  • Kullmann AF, Truschel ST, Wolf-Johnston AS, et al. Acute spinal cord injury is associated with mitochondrial dysfunction in mouse urothelium. Neurourol Urodynamics. 2019;38(6):1551–1559. doi:10.1002/nau.24037
  • Zhang T, Lin F, Liu W, et al. Reactive oxide species-scavenging lipid-polymer nanoparticles for neuroprotection after spinal cord injury. Article. Appl Mater Today. 2021:24101109. doi:10.1016/j.apmt.2021.101109
  • Chen X, Cui J, Zhai X, et al. Inhalation of hydrogen of different concentrations ameliorates spinal cord injury in mice by protecting spinal cord neurons from apoptosis, oxidative injury and mitochondrial structure damages. Article. Cell Physiol Biochem. 2018;47(1):176–190. doi:10.1159/000489764
  • Ji Z, Zheng J, Ma Y, et al. Emergency treatment and photoacoustic assessment of spinal cord injury using reversible dual-signal transform-based selenium antioxidant. Article; Early Access. Small. 2023. doi:10.1002/smll.202207888
  • Li F, Li T, Sun C, Xia J, Jiao Y, Xu H. Selenium-doped carbon quantum dots for free-radical scavenging. Article. Angew Chem. 2017;56(33):9910–9914. doi:10.1002/anie.201705989
  • Luo W, Wang Y, Lin F, et al. Selenium-doped carbon quantum dots efficiently ameliorate secondary spinal cord injury via scavenging reactive oxygen species. Article. Int J Nanomed. 2020;15:10113–10125. doi:10.2147/ijn.S282985
  • Huang G, Lin Y, Zhang L, Yan Z, Wang Y, Liu Y. Synthesis of sulfur-selenium doped carbon quantum dots for biological imaging and scavenging reactive oxygen species. Article. Sci Rep. 2019;919651. doi:10.1038/s41598-019-55996-w
  • Teng YD, Lavik EB, Qu XL, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA. 2002;99(5):3024–3029. doi:10.1073/pnas.052678899
  • Puga DA, Toyar CA, Guan Z, et al. Stress exacerbates neuron loss and microglia proliferation in a rat model of excitotoxic lower motor neuron injury. Brain Behav Immun. 2015;49:246–254. doi:10.1016/j.bbi.2015.06.006
  • Lee KD, Chow WN, Sato-Bigbee C, et al. FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. J Neurotrauma. 2009;26(12):2335–2344. doi:10.1089/neu.2008.0840
  • Li Y, Chen Y, Hu X, et al. Fingolimod (FTY720) hinders interferon-gamma-mediated fibrotic scar formation and facilitates neurological recovery after spinal cord injury. Article; Early Access. J Neurotrauma. 2023. doi:10.1089/neu.2022.0387
  • Yamazaki K, Kawabori M, Seki T, et al. FTY720 attenuates neuropathic pain after spinal cord injury by decreasing systemic and local inflammation in a rat spinal cord compression model. Article. J Neurotrauma. 2020;37(15):1720–1728. doi:10.1089/neu.2019.6905
  • Xu Y, Zhou J, Liu C, et al. Understanding the role of tissue-specific decellularized spinal cord matrix hydrogel for neural stem/progenitor cell microenvironment reconstruction and spinal cord injury. Article. Biomaterials. 2021:268120596. doi:10.1016/j.biomaterials.2020.120596
  • Leibinger M, Zeitler C, Gobrecht P, Andreadaki A, Gisselmann G, Fischer D. Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice. Article. Nat Commun. 2021;12(1):391. doi:10.1038/s41467-020-20112-4
  • Wang Y, Lai X, Wu D, Liu B, Wang N, Rong L. Umbilical mesenchymal stem cell-derived exosomes facilitate spinal cord functional recovery through the miR-199a-3p/145-5p-mediated NGF/TrkA signaling pathway in rats. Article. Stem Cell Res Ther. 2021;12(1):117. doi:10.1186/s13287-021-02148-5
  • Khodabandeh Z, Mehrabani D, Dehghani F, et al. Spinal cord injury repair using mesenchymal stem cells derived from bone marrow in mice: a stereological study. Article. Acta Histochem. 2021;123(5):151720. doi:10.1016/j.acthis.2021.151720
  • Noori L, Arabzadeh S, Mohamadi Y, et al. Intrathecal administration of the extracellular vesicles derived from human Wharton’s jelly stem cells inhibit inflammation and attenuate the activity of inflammasome complexes after spinal cord injury in rats. Article. Neurosci Res. 2021;170:87–98. doi:10.1016/j.neures.2020.07.011
  • Yuan T, Shao Y, Zhou X, et al. Highly permeable DNA supramolecular hydrogel promotes neurogenesis and functional recovery after completely transected spinal cord injury. Article. Adv Mater. 2021;33(35):2102428. doi:10.1002/adma.202102428
  • Yang Y, Fan Y, Zhang H, et al. Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury. Article. Biomaterials. 2021:269120479. doi:10.1016/j.biomaterials.2020.120479
  • Yang B, Liang C, Chen D, et al. A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Article. Bioact Mater. 2022;15:103–119. doi:10.1016/j.bioactmat.2021.11.032
  • Zhou K, Chen H, Xu H, Jia X. Trehalose augments neuron survival and improves recovery from spinal cord injury via mTOR-independent activation of autophagy. Article. Oxid Med Cell Longev. 2021;20218898996. doi:10.1155/2021/8898996
  • Li Y, Qiu H, Yao S, et al. Geniposide exerts protective effects on spinal cord injury in rats by inhibiting the IKKs/NF-kappa B signaling pathway. Article. Int Immunopharmacol. 2021:100108158. doi:10.1016/j.intimp.2021.108158
  • Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders - time for clinical translation? J Clin Investig. 2010;120(1):29–40. doi:10.1172/jci40543
  • Katoh H, Yokota K, Fehlings MG. Regeneration of spinal cord connectivity through stem cell transplantation and biomaterial scaffolds. Front Cell Neurosci. 2019;13248. doi:10.3389/fncel.2019.00248
  • Shen H, Xu B, Yang C, et al. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials. 2022:280121279. doi:10.1016/j.biomaterials.2021.121279
  • Fan L, Liu C, Chen XX, et al. Exosomes-loaded electroconductive hydrogel synergistically promotes tissue repair after spinal cord injury via immunoregulation and enhancement of myelinated axon growth. Adv Sci. 2022;9(13):2105586. doi:10.1002/advs.202105586
  • Kimura A, Ohmori T, Ohkawa R, et al. Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells. 2007;25(1):115–124. doi:10.1634/stemcells.2006-0223
  • Liu ZY, Yao XQ, Sun BH, et al. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs–NF–κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic Biol Med. 2021;168:142–154. doi:10.1016/j.freeradbiomed.2021.03.037
  • Ge MH, Tian H, Mao L, et al. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci Ther. 2021;27(9):1023–1040. doi:10.1111/cns.13657
  • Liao J, Yao Y, Lee C-H, Wu Y, Li P. In vivo biodistribution, clearance, and biocompatibility of multiple carbon dots containing nanoparticles for biomedical application. Article. Pharmaceutics. 2021;13(11):1872. doi:10.3390/pharmaceutics13111872
  • Sajjad F, Han Y, Bao L, et al. The improvement of biocompatibility by incorporating porphyrins into carbon dots with photodynamic effects and pH sensitivities. Article. J Biomater Appl. 2022;36(8):1378–1389. doi:10.1177/08853282211050449
  • Chen X, Qin Y, Song X, et al. Green synthesis of carbon dots and their integration into Nylon-11 nanofibers for enhanced mechanical strength and biocompatibility. Article. Nanomaterials. 2022;12(19):3347. doi:10.3390/nano12193347
  • Shao A, Tu S, Lu J, Zhang J. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Review. Stem Cell Res Ther. 2019;10(1):238. doi:10.1186/s13287-019-1357-z
  • Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Review. Int J Mol Sci. 2020;21(20):7533. doi:10.3390/ijms21207533
  • Jiang D, Yang X, Ge M, et al. Zinc defends against Parthanatos and promotes functional recovery after spinal cord injury through SIRT3-mediated anti-oxidative stress and mitophagy. Article; Early Access. CNS Neurosci Ther. 2023. doi:10.1111/cns.14222