443
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Drug-Coformer Loaded-Mesoporous Silica Nanoparticles: A Review of the Preparation, Characterization, and Mechanism of Drug Release

, , , , , & ORCID Icon show all
Pages 281-305 | Received 10 Nov 2023, Accepted 19 Dec 2023, Published online: 11 Jan 2024

References

  • Budiman A, Nurfadilah N, Muchtaridi M, Sriwidodo S, Aulifa DL, Rusdin A. The impact of water-soluble chitosan on the inhibition of crystal nucleation of alpha-mangostin from. Polymers. 2022;14(20):4370. doi:10.3390/polym14204370
  • Budiman A, Citraloka ZG, Muchtaridi M, Sriwidodo S, Aulifa DL, Rusdin A. Inhibition of crystal nucleation and growth in aqueous drug solutions: impact of different polymers on the supersaturation profiles of amorphous drugs—the case of alpha-mangostin. Pharmaceutics. 2022;14(11):2386. doi:10.3390/pharmaceutics14112386
  • Budiman A, Aulifa DL. Characterization of drugs with good glass formers in loaded-mesoporous silica and its theoretical value relevance with mesopores surface and pore-filling capacity. Pharmaceuticals. 2022;15(1):1–16. doi:10.3390/ph15010093
  • Al-Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs. J Control Release. 2017;260(28):202–212. doi:10.1016/j.jconrel.2017.06.003
  • Johnson JLH, He Y, Yalkowsky SH. Prediction of precipitation-induced phlebitis: a statistical validation of an in vitro model. J Pharm Sci. 2003;92(8):1574–1581. doi:10.1002/jps.10396
  • Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–1025. doi:10.1021/js950534b
  • Skorupska E, Paluch P, Jeziorna A, Potrzebowski MJ. NMR study of BA/FBA cocrystal confined within mesoporous silica nanoparticles employing thermal solid phase transformation. J Phys Chem C. 2015;119(16):8652–8661. doi:10.1021/jp5123008
  • Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48(1):27–42. doi:10.1016/S0169-409X(01)00098-9
  • Hancock BC, Parks M. What is the true solubility advantage of amorphous pharmaceuticals? Pharm Res. 2000;17:397–403. doi:10.1023/A:1007516718048
  • Azad M, Moreno J, Davé R. Stable and fast-dissolving amorphous drug composites preparation via impregnation of Neusilin® UFL2. J Pharm Sci. 2018;107(1):170–182. doi:10.1016/j.xphs.2017.10.007
  • Yamamoto K, Kojima T, Karashima M, Ikeda Y. Physicochemical evaluation and developability assessment of co-amorphouses of low soluble drugs and comparison to the co-crystals. Chem Pharm Bull. 2016;64(12):1739–1746. doi:10.1248/cpb.c16-00604
  • Moinuddin SM, Ruan S, Huang Y, et al. Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: enhanced physical stability, dissolution and pharmacokinetic profile. Int J Pharm. 2017;532(1):393–400. doi:10.1016/j.ijpharm.2017.09.020
  • Newman A, Reutzel-Edens SM, Zografi G, et al. Coamorphous active pharmaceutical ingredient-small molecule mixtures: considerations in the choice of coformers for enhancing dissolution and oral bioavailability. J Pharm Sci. 2018;107:5–17. doi:10.1016/j.xphs.2017.09.024
  • Löbmann K, Grohganz H, Laitinen R, Strachan C, Rades T. Amino acids as co-amorphous stabilizers for poorly water soluble drugs - Part 1: preparation, stability and dissolution enhancement. Eur J Pharm Biopharm. 2013;85(3 PART B):873–881. doi:10.1016/j.ejpb.2013.03.014
  • Korhonen O, Pajula K, Laitinen R. Rational excipient selection for co-amorphous formulations. Expert Opin Drug Deliv. 2017;14(4):551–569. doi:10.1080/17425247.2016.1198770
  • Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B. 2019;9(1):19–35. doi:10.1016/j.apsb.2018.08.002
  • Aitipamula S, Banerjee R, Bansal AK, et al. Polymorphs, salts, and cocrystals: what’s in a name? Cryst Growth Des. 2012;5(12):2147–2152. doi:10.1021/cg3002948
  • Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun. 2016;52(4):640–655. doi:10.1039/c5cc08216a
  • Bavishi DD, Borkhataria CH. Spring and parachute: how cocrystals enhance solubility. Prog Cryst Growth Charact Mater. 2016;62(3):1–8. doi:10.1016/j.pcrysgrow.2016.07.001
  • Pallavi P, Harini K, Alshehri S, et al. From synthetic route of silica nanoparticles to theranostic applications. Processes. 2022;10(12):2595. doi:10.3390/pr10122595
  • Dening TJ, Zemlyanov D, Taylor LS. Application of an adsorption isotherm to explain incomplete drug release from ordered mesoporous silica materials under supersaturating conditions. J Control Release. 2019;307(March):186–199. doi:10.1016/j.jconrel.2019.06.028
  • Qian KENK, Bogner RH. Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal compounds in the presence of porous media, part 1 : thermodynamics of spontaneous amorphization. J Pharm Sci. 2011;100(7):2801–2815. doi:10.1002/jps
  • Mellaerts R, Jammaer JAG. Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers : a case study with itraconazole and ibuprofen. Langmuir. 2008;24(16):8651–8659. doi:10.1021/la801161g
  • Van Speybroeck M, Mellaerts R, Mols R, et al. Enhanced absorption of the poorly soluble drug fenofibrate by tuning its release rate from ordered mesoporous silica. Eur J Pharm Sci. 2010;41(5):623–630. doi:10.1016/j.ejps.2010.09.002
  • Mccarthy CA, Ahern RJ, Dontireddy R, Ryan KB, Crean AM. Mesoporous silica formulation strategies for drug dissolution enhancement: a review. Expert Opin Drug Deliv. 2016;13(1):93–108. doi:10.1517/17425247.2016.1100165
  • Skorupska E, Kaźmierski S, Potrzebowski MJ. Solid state NMR characterization of ibuprofen:nicotinamide cocrystals and new idea for controlling release of drugs embedded into mesoporous silica particles. Mol Pharm. 2017;14(5):1800–1810. doi:10.1021/acs.molpharmaceut.7b00092
  • Skorupska E, Jeziorna A, Potrzebowski MJ. Thermal solvent-free method of loading of pharmaceutical cocrystals into the pores of silica particles: a Case of naproxen/picolinamide cocrystal. J Phys Chem C. 2016;120(24):13169–13180. doi:10.1021/acs.jpcc.6b05302
  • Bi Y, Xiao D, Ren S, Bi S, Wang J, Li F. The binary system of ibuprofen-nicotinamide under nanoscale confinement: from cocrystal to coamorphous state. J Pharm Sci. 2017;106(10):3150–3155. doi:10.1016/j.xphs.2017.06.005
  • Basavoju S, Boström D, Velaga SP. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res. 2008;25(3):530–541. doi:10.1007/s11095-007-9394-1
  • Gao Y, Zu H, Zhang J. Enhanced dissolution and stability of Adefovir dipivoxil by cocrystal formation. J Pharm Pharmacol. 2011;63(4):483–490. doi:10.1111/j.2042-7158.2010.01246.x
  • Karki S, Friščić T, Fábián L, Laity PR, Day GM, Jones W. Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater. 2009;21(38–39):3905–3909. doi:10.1002/adma.200900533
  • Good DJ, Rodríguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9(5):2252–2264. doi:10.1021/cg801039j
  • Wouters J, Rome S, Quéré L. Monographs of Most Frequent Co-Crystal Formers; 2011.
  • Blagden N, Colesb SJ, Berry DJ. Pharmaceutical co-crystals—are we there yet? Cryst Eng Comm. 2014;16(26):5753–5761. doi:10.1039/C4CE00127C
  • Etter MC. Hydrogen bonds as design elements in organic chemistry. J Phys Chem. 1991;95(12):4601–4610. doi:10.1021/j100165a007
  • Kuminek G, Cao F, da Rocha ABDO, Cardoso SG, Rodríguez-Hornedo N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv Drug Deliv Rev. 2016;101:143–166. doi:10.1016/j.addr.2016.04.022
  • Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res. 1990;23(4):120–126. doi:10.1021/ar00172a005
  • Donohue J. The hydrogen bond in organic crystals. J Phys Chem. 1952;56:502–510. doi:10.1021/j150496a023
  • Alhalaweh A, Roy L, Rodríguez-Hornedo N, Velaga SP. pH-dependent solubility of indomethacin-saccharin and carbamazepine- saccharin cocrystals in aqueous media. Mol Pharm. 2012;9(9):2605–2612. doi:10.1021/mp300189b
  • Roy L, Lipert MP, Rodríguez-Hornedo N. Co-crystal solubility and thermodynamic stability. Pharm Salts Co-Crystals. 2012;2012;247–279.
  • Good D, Miranda C, Rodríguez-Hornedo N. Dependence of cocrystal formation and thermodynamic stability on moisture sorption by amorphous polymer. CrystEngComm. 2011;13(4):1181–1189. doi:10.1039/c0ce00592d
  • Childs SL, Rodríguez-Hornedo N, Reddy LS, et al. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm. 2008;10(7):856–864. doi:10.1039/b715396a
  • Chadha R, Saini A, Arora P, Jain DS, Dasgupta A, Guru Row TN. Multicomponent solids of lamotrigine with some selected coformers and their characterization by thermoanalytical, spectroscopic and X-ray diffraction methods. CrystEngComm. 2011;13(20):6271–6284. doi:10.1039/c1ce05458a
  • Laitinen R, Löbmann K, Grohganz H, Priemel P, Strachan CJ, Rades T. Supersaturating drug delivery systems: the potential of co-amorphous drug formulations. Int J Pharm. 2017;532(1):1–12. doi:10.1016/j.ijpharm.2017.08.123
  • Sun DD, Wen H, Taylor LS. Non-sink dissolution conditions for predicting product quality and in vivo performance of supersaturating drug delivery systems. J Pharm Sci. 2016;105(9):2477–2488. doi:10.1016/j.xphs.2016.03.024
  • Taylor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:22–142. doi:10.1016/j.addr.2016.03.006
  • Wang R, Han J, Jiang A, et al. Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine. Int J Pharm. 2019;561(20):9–18. doi:10.1016/j.ijpharm.2019.02.027
  • Wei Y, Zhou S, Hao T, et al. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin. Eur J Pharm Sci. 2019;129:21–30. doi:10.1016/j.ejps.2018.12.016
  • Ojarinta R, Heikkinen AT, Sievänen E, Laitinen R. Dissolution behavior of co-amorphous amino acid-indomethacin mixtures: the ability of amino acids to stabilize the supersaturated state of indomethacin. Eur J Pharm Biopharm. 2017;112(85):85–95. doi:10.1016/j.ejpb.2016.11.023
  • Kresge CT, Roth WJ. The discovery of mesoporous molecular sieves from the twenty year perspective. Chem Soc Rev. 2013;42(9):3663–3670. doi:10.1039/c3cs60016e
  • Bremmell KE, Prestidge CA. Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges. Drug Dev Ind Pharm. 2019;45(3):349–358. doi:10.1080/03639045.2018.1542709
  • Maleki A, Kettiger H, Schoubben A, Rosenholm JM, Ambrogi V, Hamidi M. Mesoporous silica materials: from physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J Control Release. 2017;262:329–347. doi:10.1016/j.jconrel.2017.07.047
  • Diab R, Canilho N, Pavel IA, Haffner FB, Girardon M, Pasc A. Silica-based systems for oral delivery of drugs, macromolecules and cells. Adv Colloid Interface Sci. 2017;249:346–362. doi:10.1016/j.cis.2017.04.005
  • Simovic S, Ghouchi-Eskandar N, Moom Sinn A, et al. Silica materials in drug delivery applications. Curr Drug Discov Technol. 2011;8(3):250–268. doi:10.2174/157016311796799026
  • Xu B, Li S, Shi R, et al. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther. 2023;8(1):435. doi:10.1038/s41392-023-01654-7
  • McCarthy CA, Ahern RJ, Devine KJ, Crean AM. Role of drug adsorption onto the silica surface in drug release from mesoporous silica systems. Mol Pharm. 2018;15(1):141–149. doi:10.1021/acs.molpharmaceut.7b00778
  • Martín A, Morales V, Ortiz-Bustos J, et al.. Modelling the adsorption and controlled release of drugs from the pure and amino surface-functionalized mesoporous silica hosts. Microporous Mesoporous Mater. 2018;262:23–24. doi:10.1016/j.micromeso.2017.11.009
  • Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34(10):2565–2575. doi:10.1016/j.biomaterials.2012.12.043
  • Li L, Liu T, Fu C, et al. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomed Nanotech Biol Med. 2015;11(8):1915–1924. doi:10.1016/j.nano.2015.07.004
  • Huang X, Li L, Liu T, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5(7):5390–5399. doi:10.1021/nn200365a
  • Hashim Ali K, Mohsin Ansari M, Ali Shah F, et al. Enhanced dissolution of valsartan-vanillin binary co-amorphous system loaded in mesoporous silica particles. J Microencapsul. 2019;36(1):10–20. doi:10.1080/02652048.2019.1579265
  • Budiman A, Higashi K, Ueda K, Moribe K. Effect of drug-coformer interactions on drug dissolution from a coamorphous in mesoporous silica. Int J Pharm. 2021;600(March):120492. doi:10.1016/j.ijpharm.2021.120492
  • Ohta R, Ueno Y, Ajito K. Raman spectroscopy of pharmaceutical cocrystals in nanosized pores of mesoporous silica. Anal Sci. 2017;33(1):47–52. doi:10.2116/analsci.33.47
  • Salas-Zúñiga R, Mondragón-Vásquez K, Alcalá-Alcalá S, et al. Nanoconfinement of a pharmaceutical cocrystal with praziquantel in mesoporous silica: the influence of the solid form on dissolution enhancement. Mol Pharm. 2022;19(2):414–431. doi:10.1021/acs.molpharmaceut.1c00606
  • Trzeciak K, Wielgus E, Kaźmierski S, et al.Unexpected factors affecting the kinetics of guest molecule release from investigation of binary chemical systems trapped in a single void of mesoporous silica particles. Eur J Chem Phys Phys Chem. 2022;24(7):25.
  • Trzeciak K, Kaźmierski S, Wielgus E, Potrzebowski MJ. DiSupLo - new extremely easy and efficient method for loading of active pharmaceutical ingredients into the pores of MCM-41 mesoporous silica particles. Microporous Mesoporous Mater. 2020;308:110506. doi:10.1016/j.micromeso.2020.110506
  • Trzeciak K, Chotera‐ouda A, Bak‐sypien II, Potrzebowski MJ. Mesoporous silica particles as drug delivery systems—the state of the art in loading methods and the recent progress in analytical techniques for monitoring these processes. Pharmaceutics. 2021;13(7):950. doi:10.3390/pharmaceutics13070950
  • European Medicines Agency. ICH guideline Q3C (R6) on impurities: guideline for residual solvents. Int Conf Harmon Tech Requir Regist Pharm Hum Use. 2019;31(August):1.
  • Eren ZS, Tunçer S, Gezer G, Yildirim LT, Banerjee S, Yilmaz A. Improved solubility of celecoxib by inclusion in SBA-15 mesoporous silica: drug loading in different solvents and release. Microporous Mesoporous Mater. 2016;235:211–223. doi:10.1016/j.micromeso.2016.08.014
  • Hillerström A, van Stam J, Andersson M. Ibuprofen loading into mesostructured silica using liquid carbon dioxide as a solvent. Green Chem. 2009;11:662–667. doi:10.1039/b821281c
  • Belhadj-Ahmed F, Badens E, Llewellyn P, Denoyel R, Charbit G. Impregnation of vitamin E acetate on silica mesoporous phases using supercritical carbon dioxide. J Supercrit Fluids. 2009;51:278–286. doi:10.1016/j.supflu.2009.07.012
  • Lehto VP, Riikonen J. Drug Loading and Characterization of Porous Silicon Materials. Woodhead Publishing Limited; 2014. doi:10.1533/9780857097156.3.337
  • Brás AR, Fonseca IM, Dionísio M, Schönhals A, Affouard F, Correia NT. Influence of nanoscale confinement on the molecular mobility of ibuprofen. J Phys Chem C. 2014;118(25):13857–13868. doi:10.1021/jp500630m
  • Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine Nanotechnology, Biol Med. 2015;11(2):313–327. doi:10.1016/j.nano.2014.09.014
  • Abd-Elbary A, El Nabarawi MA, Hassen DH, Taha AA. Inclusion and characterization of ketoprofen into different mesoporous silica nanoparticles using three loading methods. Int J Pharm Pharm Sci. 2014;6(9):183–191.
  • He Y, Liang S, Long M, Xu H. Mesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel. Mater Sci Eng C. 2017;78:12–17. doi:10.1016/j.msec.2017.04.049
  • Uejo F, Limwikrant W, Moribe K, Yamamoto K. Dissolution improvement of fenofibrate by melting inclusion in mesoporous silica. Asian J Pharm Sci. 2013;8(6):329–335. doi:10.1016/j.ajps.2013.11.001
  • Niu X, Wan L, Hou Z, et al. Mesoporous carbon as a novel drug carrier of fenofibrate for enhancement of the dissolution and oral bioavailability. Int J Pharm. 2013;452(1–2):382–389. doi:10.1016/j.ijpharm.2013.05.016
  • Hampsey JE, De Castro CL, McCaughey B, Wang D, Mitchell BS, Lu Y. Preparation of micrometer- to sub-micrometer-sized nanostructured silica particles using high-energy ball milling. J Am Ceram Soc. 2004;87(7):1280–1286. doi:10.1111/j.1151-2916.2004.tb07723.x
  • Willart JF, Descamps M. ChemInform abstract: solid state amorphization of pharmaceuticals. ChemInform. 2009;40(3):905–920. doi:10.1002/chin.200903277
  • Trzeciak K, Kaźmierski S, Drużbicki K, Potrzebowski MJ. Mapping of guest localization in mesoporous silica particles by solid-state NMR and Ab initio modeling: new insights into benzoic acid and p-fluorobenzoic acid embedded in MCM-41 via ball milling. J Phys Chem C. 2021;125(18):10096–10109. doi:10.1021/acs.jpcc.1c01675
  • Sing KS. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem. 1985;57(4):603–619. doi:10.1351/pac198557040603
  • Thommes M, Kaneko K, Neimark AV, et al.. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015;87(9–10):1051–1069. doi:10.1515/pac-2014-1117
  • Rouquerol J, Avnir D, Everett DH, et al.. Guidelines for the characterization of porous solids. Stud Surf Sci Catal. 1994;87:1–9.
  • Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharm. 2012;9(3):505–513. doi:10.1021/mp200287c
  • Sayed E, Karavasili C, Ruparelia K, et al. Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. J Control Release. 2018;278:142–155. doi:10.1016/j.jconrel.2018.03.031
  • Giunchedi P, Juliano C, Gavini E, Cossu M, Sorrenti M. Formulation and in vivo evaluation of chlorhexidine buccal tablets prepared using drug-loaded chitosan microspheres. Eur J Pharm Biopharm. 2002;53(2):233–239. doi:10.1016/S0939-6411(01)00237-5
  • Laitinen R, Löbmann K, Grohganz H, Strachan C, Rades T. Amino acids as Co-amorphous excipients for simvastatin and glibenclamide: physical properties and stability. Mol Pharm. 2014;11(7):2381–2389. doi:10.1021/mp500107s
  • Yamamura S, Gotoh H, Sakamoto Y, Momose Y. Physicochemical properties of amorphous precipitates of cimetidine-indomethacin binary system. Eur J Pharm Biopharm. 2000;49(3):259–265. doi:10.1016/S0939-6411(00)00060-6
  • Wang J, Chang R, Zhao Y, et al. Coamorphous loratadine-citric acid system with enhanced physical stability and bioavailability. AAPS Pharm Sci Tech. 2017;18(7):2541–2550. doi:10.1208/s12249-017-0734-0
  • Nartowski KP, Tedder J, Braun DE, Fábián L, Khimyak YZ. Building solids inside nano-space: from confined amorphous through confined solvate to confined “metastable” polymorph. Phys Chem Chem Phys. 2015;17(38):24761–24773. doi:10.1039/c5cp03880d
  • Nartowski KP, Malhotra D, Hawarden LE, Fábián L, Khimyak YZ. Nanocrystallization of rare tolbutamide form V in mesoporous MCM-41 Silica. Mol Pharm. 2018;15:4926–4932. doi:10.1021/acs.molpharmaceut.8b00575s
  • Hamilton BD, Ha JM, Hillmyer MA, Ward MD. Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers. Acc Chem Res. 2012;45(3):414–423. doi:10.1021/ar200147v
  • Dwyer LM, Michaelis VK, O’Mahony M, Griffin RG, Myerson AS. Confined crystallization of fenofibrate in nanoporous silica. CrystEngComm. 2015;17(41):7922–7929. doi:10.1039/c5ce01148e
  • Cheng S, McKenna GB. Nanoconfinement effects on the glass transition and crystallization behaviors of nifedipine. Mol Pharm. 2019;16(2):856–866. doi:10.1021/acs.molpharmaceut.8b01172
  • Koh YP, Simon SL. Trimerization of monocyanate ester in nanopores. J Phys Chem B. 2010;114(23):7727–7734. doi:10.1021/jp912235c
  • Li W, Quan P, Zhang Y, et al. Influence of drug physicochemical properties on absorption of water insoluble drug nanosuspensions. Int J Pharm. 2014;460(1–2):13–23. doi:10.1016/j.ijpharm.2013.10.038
  • Li Q, Simon SL. Curing of bisphenol M dicyanate ester under nanoscale constraint. Macromolecules. 2008;41(4):1310–1317. doi:10.1021/ma702144b
  • Wu H, Xiao Y, Guo Y, Miao S, Chen Q, Chen Z. Functionalization of SBA-15 mesoporous materials with 2-acetylthiophene for adsorption of Cr(III) ions. Microporous Mesoporous Mater. 2020;292(May 2019):109754. doi:10.1016/j.micromeso.2019.109754
  • Melnyk IV, Nazarchuk GI, Václavíková M, Zub YL. IR spectroscopy study of SBA-15 silicas functionalized with the ethylthiocarbamidepropyl groups and their interactions with Ag (I) and Hg (II) ions. Appl Nanosci. 2019;9:683–694. doi:10.1007/s13204-018-0761-5
  • Tomozawa M, Hong JW, Ryu SR. Infrared (IR) investigation of the structural changes of silica glasses with fictive temperature. J Non Cryst Solids. 2005;351(12–13):1054–1060. doi:10.1016/j.jnoncrysol.2005.01.017
  • Acharya M, Mishra S, Sahoo RN, Mallick S. Infrared spectroscopy for analysis of co-processed ibuprofen and magnesium trisilicate at milling and freeze drying. Acta Chim Slov. 2017;64(1):45–54. doi:10.17344/acsi.2016.2772
  • Kinnari P, Mäkilä E, Heikkilä T, Salonen J, Hirvonen J, Santos HA. Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. Int J Pharm. 2011;414(1–2):148–156. doi:10.1016/j.ijpharm.2011.05.021
  • Peng H, Xiong H, Li J, et al. Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chem. 2010;121(1):23–28. doi:10.1016/j.foodchem.2009.11.085
  • Kong K, Kendall C, Stone N, Notingher I. Raman spectroscopy for medical diagnostics - from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev. 2015;89:121–134. doi:10.1016/j.addr.2015.03.009
  • Huang N, Short M, Zhao J, et al.. Full range characterization of the Raman spectra of organs in a murine model. Opt Express. 2011;19(23):22892–22909. doi:10.1364/OE.19.022892
  • Li S, Chen G, Zhang Y, et al.. Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques. Opt Express. 2014;22(21):25895–25908. doi:10.1364/OE.22.025895
  • Ajito K, Han C, Torimitsu K. Detection of glutamate in optically trapped single nerve terminals by Raman spectroscopy. Anal Chem. 2004;76(9):2506–2510. doi:10.1021/ac049969m
  • Moser C, Havermeyer F. Ultra-narrow-band tunable laserline notch filter. Appl Phys B Lasers Opt. 2009;95(3):597–601. doi:10.1007/s00340-009-3447-6
  • Parrott EPJ, Zeitler JA. Terahertz time-domain and low-frequency Raman spectroscopy of organic materials. Appl Spectrosc. 2015;69(1):1–25. doi:10.1366/14-07707
  • Hédoux A, Decroix AA, Guinet Y, Paccou L, Derollez P, Descamps M. Low- and high-frequency Raman investigations on caffeine: polymorphism, disorder and phase transformation. J Phys Chem B. 2011;115(19):5746–5753. doi:10.1021/jp112074w
  • Allesø M, Velaga S, Alhalaweh A, et al. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy. Anal Chem. 2008;80(20):7755–7764. doi:10.1021/ac8011329
  • Edwards HGM, Munshi T, Anstis M. Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2005;61(7):1453–1459. doi:10.1016/j.saa.2004.10.022
  • Pavel I, Szeghalmi A, Moigno D, Cîntă S, Kiefer W. Theoretical and pH dependent surface enhanced Raman spectroscopy study on caffeine. Biopolym Orig Res Biomol. 2003;72(1):25–37.
  • Kang J, Gu H, Zhong L, Hu Y, Liu F. The pH dependent Raman spectroscopic study of caffeine. Spectrochimica acta part A. Mol Biomol Spectrosc. 2011;78(2):757–762. doi:10.1016/j.saa.2010.11.055
  • Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36(1):43–48. doi:10.1177/0192623307310946
  • Geppi M, Mollica G, Borsacchi S, Veracini CA. Solid-state NMR studies of pharmaceutical systems. Appl Spectrosc Rev. 2008;43(3):202–302. doi:10.1080/05704920801944338
  • Trébosc J, Wiench JW, Huh S, Lin VSY, Pruski M. Solid-state MMR study of MCM-41-type mesoporous silica nanoparticles. J Am Chem Soc. 2005;127(9):3057–3068. doi:10.1021/ja043567e
  • Trebosc J, Wiench JW, Huh S, Lin VSY, Pruski M. Studies of organically functionalized mesoporous silicas using heteronuclear solid-state correlation NMR spectroscopy under fast magic angle spinning. J Am Chem Soc. 2005;127(20):7587–7593. doi:10.1021/ja0509127
  • Wiench JW, Avadhut YS, Maity N, et al.. Characterization of covalent linkages in organically functionalized MCM-41 mesoporous materials by solid-state NMR and theoretical calculations. J Phys Chem B. 2007;111(15):3877–3885. doi:10.1021/jp067417x
  • Mao K, Kobayashi T, Wiench JW, et al.. Conformations of silica-bound (pentafluorophenyl) propyl groups determined by solid-state NMR spectroscopy and theoretical calculations. J Am Chem Soc. 2010;132(35):12452–12457. doi:10.1021/ja105007b
  • Baccile N. Application of advanced solid-state nmr techniques to the characterization of nanomaterials: a focus on interfaces and structure; 2010.
  • Shenderovich IG, Limbach HH. Solid state NMR for nonexperts: an overview of simple but general practical methods. Solids. 2021;2(2):139–154. doi:10.3390/solids2020009
  • Qian KK, Bogner RH. Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems. J Pharm Sci. 2012;101(7):2271–2280. doi:10.1002/jps
  • Chieng N, Aaltonen J, Saville D, Rades T. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Eur J Pharm Biopharm. 2009;71(1):47–54. doi:10.1016/j.ejpb.2008.06.022
  • Kissi EO, Ruggiero MT, Hempel NJ, et al. Characterising glass transition temperatures and glass dynamics in mesoporous silica-based amorphous drugs. Phys Chem Chem Phys. 2019;21(35):19686–19694. doi:10.1039/c9cp01764j
  • Paul R, Chattaraj KG, Paul S. Role of hydrotropes in sparingly soluble drug solubilization: insight from a molecular dynamics simulation and experimental perspectives. Langmuir. 2021;37(16):4745–4762. doi:10.1021/acs.langmuir.1c00169