181
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Reduced Graphene Oxide Fibers Combined with Electrical Stimulation Promote Peripheral Nerve Regeneration

, , , , , & show all
Pages 2341-2357 | Received 10 Nov 2023, Accepted 29 Feb 2024, Published online: 07 Mar 2024

References

  • Asthana P, Zhang G, Sheikh KA, Him Eddie Ma C. Heat shock protein is a key therapeutic target for nerve repair in autoimmune peripheral neuropathy and severe peripheral nerve injury. Brain Behav Immun. 2021; 91:48–64.
  • Liu B, Xin W, Tan JR, et al. Myelin sheath structure and regeneration in peripheral nerve injury repair. Proc Natl Acad Sci U S A. 2019;116(44):22347–22352. doi:10.1073/pnas.1910292116
  • Lin YC, Marra KG. Injectable systems and implantable conduits for peripheral nerve repair. Biomed Mater. 2012;7(2):024102. doi:10.1088/1748-6041/7/2/024102
  • Pan D, Mackinnon SE, Wood MD. Advances in the repair of segmental nerve injuries and trends in reconstruction. Muscle Nerve. 2020;61(6):726–739. doi:10.1002/mus.26797
  • Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012;43(5):553–572. doi:10.1016/j.injury.2010.12.030
  • Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods. Acta Biomater. 2020;106:54–69. doi:10.1016/j.actbio.2020.02.003
  • Parker BJ, Rhodes DI, O’Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: a Commercial Perspective. Acta Biomater. 2021;135:64–86. doi:10.1016/j.actbio.2021.08.052
  • Yang HC, Li Q, Li LM, et al. Gastrodin modified polyurethane conduit promotes nerve repair via optimizing Schwann cells function. Bioact Mater. 2022;8:355–367. doi:10.1016/j.bioactmat.2021.06.020
  • Guan YJ, Ren ZQ, Yang BY, et al. Dual-bionic regenerative microenvironment for peripheral nerve repair. Bioact Mater. 2023;26:370–386. doi:10.1016/j.bioactmat.2023.02.002
  • Lu SY, Chen W, Wang JY, et al. Polydopamine‐decorated PLCL conduit to induce synergetic effect of electrical stimulation and topological morphology for peripheral nerve regeneration. Small Methods. 2023;7(2):e2200883. doi:10.1002/smtd.202200883
  • Chiono V, Tonda-Turo C, Ciardelli G, et al. In essays on peripheral nerve repair and regeneration. Artificial Scaffolds for Peripheral Nerve Reconstruction. 2009;87:173–198.
  • Mohammadi R, Masoumi-Verki M, Ahsan S, Khaleghjoo A, Amini K. Improvement of peripheral nerve defects using a silicone conduit filled with hepatocyte growth factor. Or Surg or Med or Pa. 2013;116(6):673–679. doi:10.1016/j.oooo.2013.07.006
  • Park HJ, Hong H, Thangam R, et al. Static and dynamic biomaterial engineering for cell modulation. Nanomaterials. 2022;12(8):1377. doi:10.3390/nano12081377
  • Shin SR, Li YC, Jang HL, et al. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev. 2016;105:255–274. doi:10.1016/j.addr.2016.03.007
  • Bai RG, Ninan N, Muthoosamy K, et al. Graphene: a versatile platform for nanotheranostics and tissue engineering. Prog Mater Sci. 2018;91:24–69.
  • Raslan A, Del Burgo LS, Ciriza J, Pedraz JL. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int J Pharmaceut. 2020;580:119226. doi:10.1016/j.ijpharm.2020.119226
  • Bellier N, Baipaywad P, Ryu N, et al. Recent biomedical advancements in graphene oxide-and reduced graphene oxide-based nanocomposite nanocarriers. Biomater Res. 2022;26(1):65. doi:10.1186/s40824-022-00313-2
  • Yao XY, Yan ZW, Wang X, Jiang HQ, Qian Y, Fan CY. The influence of reduced graphene oxide on stem cells: a perspective in peripheral nerve regeneration. Regen Biomater. 2021;8(4):rbab032. doi:10.1093/rb/rbab032
  • Li XP, Qu KY, Zhou B, et al. Electrical stimulation of neonatal rat cardiomyocytes using conductive polydopamine-reduced graphene oxide-hybrid hydrogels for constructing cardiac microtissues. Colloids Surf B Biointerfaces. 2021;205:111844. doi:10.1016/j.colsurfb.2021.111844
  • Zhang W, Fang LQC XX, Pi W, Han N. Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration. Neural Regen Res. 2023;18(1):200–206. doi:10.4103/1673-5374.343889
  • Wang QQ, Wang H, Ma Y, Cao XD, Gao HC. Effects of electroactive materials on nerve cell behaviors and applications in peripheral nerve repair. Biomater Sci. 2022;10(21):6061–6076. doi:10.1039/D2BM01216B
  • Wang J, Cheng Y, Chen L, et al. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomater. 2019;84:98–113. doi:10.1016/j.actbio.2018.11.032
  • Mao W, Lee E, Cho W, Kang BJ, Yoo HS. Cell-directed assembly of luminal nanofibril fillers in nerve conduits for peripheral nerve repair. Biomaterials. 2023;2023:301.
  • Liu R, Huang X, Wang X, et al. Electrical stimulation mediated the neurite outgrowth of PC-12 cells on the conductive polylactic acid/reduced graphene oxide/polypyrrole composite nanofibers. Appl Surf Sci. 2021;560:149965. doi:10.1016/j.apsusc.2021.149965
  • Zheng F, Li R, He Q, et al. The electrostimulation and scar inhibition effect of chitosan/oxidized hydroxyethyl cellulose/reduced graphene oxide/asiaticoside liposome based hydrogel on peripheral nerve regeneration in vitro. Mater Sci Eng C Mater Biol Appl. 2020;109:110560. doi:10.1016/j.msec.2019.110560
  • Huang Z, Sun M, Li Y, Guo Z, Li H. Reduced graphene oxide-coated electrospun fibre: effect of orientation, coverage and electrical stimulation on Schwann cells behavior. J Mater Chem B. 2021;9:2656–2665. doi:10.1039/D1TB00054C
  • Cheng H, Hu C, Zhao Y, Qu L. Graphene fiber: a new material platform for unique applications. NPG Asia Materials. 2014;6:e113-–e113
  • Wychowaniec JK, Litowczenko J, Tadyszak K. Fabricating versatile cell supports from nano- and micro-sized graphene oxide flakes. J Mech Behav Biomed. 2020;103:103594. doi:10.1016/j.jmbbm.2019.103594
  • González-Mayorga A, López-Dolado E, Gutiérrez MC, et al. Favorable biological responses of neural cells and tissue interacting with graphene oxide microfibers. ACS Omega. 2017;2:8253–8263. doi:10.1021/acsomega.7b01354
  • Wang X, Guo M, Liu Y, et al. reduced graphene oxide fibers for guidance growth of trigeminal sensory neurons. ACS APPL BIO MATER. 2021;4:4236–4243. doi:10.1021/acsabm.1c00058
  • Serrano MC, Feito MJ, Gonzalez-Mayorga A, et al. Response of macrophages and neural cells in contact with reduced graphene oxide microfibers. Biomater Sci UK. 2018;6:2987–2997. doi:10.1039/C8BM00902C
  • Guo W, Zhang X, Yu X, et al. self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene-poly(3,4-ethylenedioxythiophene) hybrid microfibers. Acs Nano. 2016;10(5):5086–5095. doi:10.1021/acsnano.6b00200
  • Dong X, Wu P, Yan L, et al. Oriented nanofibrous P(MMD-Co-LA)/deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization. Biomaterials. 2022;280:121288. doi:10.1016/j.biomaterials.2021.121288
  • Zhou C, Xu AT, Wang DD, Lin GF, Liu T, He FM. The effects of sr-incorporated micro/nano rough titanium surface on rBMSC migration and osteogenic differentiation for rapid osteointegration. Biomater Sci. 2018;6(7):1946–1961. doi:10.1039/C8BM00473K
  • Onode E, Uemura T, Takamatsu K, et al. Bioabsorbable nerve conduits three-dimensionally coated with human induced pluripotent stem cell-derived neural stem/progenitor cells promote peripheral nerve regeneration in rats. Sci Rep. 2021;11(1):4204. doi:10.1038/s41598-021-83385-9
  • Yang J, Hsu CC, Cao TT, Ye H, Chen J, Li YQ. A hyaluronic acid granular hydrogel nerve guidance conduit promotes regeneration and functional recovery of injured sciatic nerves in rats. Neural Regen Res. 2023;18(3):657–663. doi:10.4103/1673-5374.350212
  • Li J, Liu Y, Liu HQ, Chen L, Li RJ. Ketogenic diet potentiates electrical stimulation–induced peripheral nerve regeneration after sciatic nerve crush injury in rats. Mol Nutr Food Res. 2020;64(7):e1900535. doi:10.1002/mnfr.201900535
  • Wu P, Zhao YN, Chen FX, et al. Conductive hydroxyethyl cellulose/soy protein Isolate/polyaniline conduits for enhancing peripheral nerve regeneration via electrical stimulation. Front Bioeng Biotechnol. 2020;8:709. doi:10.3389/fbioe.2020.00709
  • Chen QQ, Liu QY, Wang P, et al. Potential application of let-7a antagomir in injured peripheral nerve regeneration. Neural Regen Res. 2023;18(7):1584–1590. doi:10.4103/1673-5374.357914
  • Qin HJ, Li H, Chen JZ, et al. Artificial nerve graft constructed by coculture of activated Schwann cells and human hair keratin for repair of peripheral nerve defects. Neural Regen Res. 2023;18(5):1118–1123. doi:10.4103/1673-5374.355817
  • Zhang XW, Zhang H, Zhang Y, et al. 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration. J Mater Chem B. 2023;11(6):1288–1301. doi:10.1039/D2TB01979E
  • Sydlik SA, Jhunjhunwala S, Webber MJ, et al. In vivo compatibility of graphene oxide with differing oxidation states. ACS Nano. 2015;9(4):3866–3874. doi:10.1021/acsnano.5b01290
  • Gómez-Navarro C, Meyer JC, Sundaram RS, et al. Atomic structure of reduced graphene oxide. Nano Lett. 2010;10(4):1144–1148. doi:10.1021/nl9031617
  • Wang SL, Liu XL, Kang ZC, Wang YS. Platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury. Neural Regen Res. 2023;18(2):375–381. doi:10.4103/1673-5374.346461
  • Behtaj S, St John JA, Ekberg JAK, Rybachuk M. Neuron-fibrous scaffold interfaces in the peripheral nervous system: a perspective on the structural requirements. Neural Regen Res. 2022;17(9):1893–1897. doi:10.4103/1673-5374.329003
  • Liu K, Yan L, Li RT, et al. 3D printed personalized nerve guide conduits for precision repair of peripheral nerve defects. Adv Sci (Weinh). 2022;9(12):e2103875. doi:10.1002/advs.202103875
  • Dong C, Qiao F, Hou W, et al. Graphene-based conductive fibrous scaffold boosts sciatic nerve regeneration and functional recovery upon electrical stimulation. Appl Mater Today. 2020;21:100870. doi:10.1016/j.apmt.2020.100870
  • Lu S, Chen W, Wang J, et al. Polydopamine-decorated plcl conduit to induce synergetic effect of electrical stimulation and topological morphology for peripheral nerve regeneration. Small Methods. 2023;7.
  • Chen X, Liu C, Huang Z, et al. Preparation of carboxylic graphene oxide-composited polypyrrole conduits and their effect on sciatic nerve repair under electrical stimulation. J Biomed Mater Res A. 2019;107(12):2784–2795. doi:10.1002/jbm.a.36781
  • Feng ZQ, Wang T, Zhao B, et al. Soft graphene nanofibers designed for the acceleration of nerve growth and development. Adv Mater. 2015;27:6462–6468. doi:10.1002/adma.201503319
  • Shoeibi S. Important signals regulating coronary artery angiogenesis. Microvasc Res. 2018. doi:10.1016/j.mvr.2017.12.002