447
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Donepezil-Loaded Nanocarriers for the Treatment of Alzheimer’s Disease: Superior Efficacy of Extracellular Vesicles Over Polymeric Nanoparticles

ORCID Icon, , ORCID Icon, , , , & show all
Pages 1077-1096 | Received 24 Nov 2023, Accepted 07 Jan 2024, Published online: 31 Jan 2024

References

  • Gauthier S, Rosa-Neto P, Morais J, Webster C. World Alzheimer report 2021: journey through the diagnosis of dementia. Alzheimer’s Dis Int. 2021;2021:30.
  • S. Schneider L. A critical review of cholinesterase inhibitors as a treatment modality in Alzheimer’s disease. Dial Clin Neurosci. 2000;2(2):111–128. doi:10.31887/DCNS.2000.2.2/lschneider
  • Hampel H, Mesulam MM, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Research Support, Non-U.S. Gov’t. Review. Brain. 2018;141(7):1917–1933. doi:10.1093/brain/awy132
  • Massoud F, Gauthier S. Update on the pharmacological treatment of Alzheimer’s disease. Curr Neuropharmacol. 2010;8(1):69–80. doi:10.2174/157015910790909520
  • Perneczky R, Jessen F, Grimmer T, et al. Anti-amyloid antibody therapies in Alzheimer’s disease. Brain. 2023;146(3):842–849. doi:10.1093/brain/awad005
  • Richard E, den Brok MG, van Gool WA. Bayes analysis supports null hypothesis of anti‐amyloid beta therapy in Alzheimer’s disease. Alzheimer’s Dementia. 2021;17(6):1051–1055. doi:10.1002/alz.12379
  • Wilkinson DG. The pharmacology of donepezil: a new treatment for Alzheimer’s disease. Expert Opinion Pharmacother. 1999;1(1):121–135. doi:10.1517/14656566.1.1.121
  • Eissa KI, Kamel MM, Mohamed LW, Kassab AE. Development of new Alzheimer’s disease drug candidates using donepezil as a key model. Arch Pharm. 2022;356(1):e2200398. doi:10.1002/ardp.202200398
  • Kim SH, Kandiah N, Hsu JL, Suthisisang C, Udommongkol C, Dash A. Beyond symptomatic effects: potential of donepezil as a neuroprotective agent and disease modifier in Alzheimer’s disease. Br. J. Pharmacol. 2017;174(23):4224–4232. doi:10.1111/bph.14030
  • Noh MY, Koh SH, Kim SM, Maurice T, Ku SK, Kim SH. Neuroprotective effects of donepezil against A β42‐induced neuronal toxicity are mediated through not only enhancing PP 2 A activity but also regulating GSK‐3β and n AChR s activity. J Neurochem. 2013;127(4):562–574. doi:10.1111/jnc.12319
  • Asiri YA, Mostafa GA. Donepezil. In: Profiles of Drug Substances, Excipients and Related Methodology. Elsevier; 2010:117–150.
  • Shin CY, Kim H-S, Cha K-H, et al. The effects of donepezil, an acetylcholinesterase inhibitor, on impaired learning and memory in rodents. Biomolecules Ther. 2018;26(3):274. doi:10.4062/biomolther.2017.189
  • Marcantonio ER, Palihnich K, Appleton P, Davis RB. Pilot randomized trial of donepezil hydrochloride for delirium after Hip fracture. J Am Geriatr Soc. 2011;59:S282–S288.
  • Wilkinson D, Doody R, Helme R, et al. Donepezil in vascular dementia: a randomized, placebo-controlled study. Neurology. 2003;61(4):479–486. doi:10.1212/01.WNL.0000078943.50032.FC
  • Carrasco MM, Agüera L, Gil P, Moríñigo A, Leon T. Safety and effectiveness of donepezil on behavioral symptoms in patients with Alzheimer disease. Alzheimer Dis Associated Disord. 2011;25(4):333–340. doi:10.1097/WAD.0b013e318212ab7a
  • Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett. 2019;17(2):849–865. doi:10.1007/s10311-018-00841-1
  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6(4):715–728. doi:10.2217/nnm.11.19
  • Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed. 2001;40(22):4128–4158. doi:10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
  • Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8(2):147–166. doi:10.1016/j.nano.2011.05.016
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnol. 2015;33(9):941–951. doi:10.1038/nbt.3330
  • Li G, Zhao M, Xu F, et al. Synthesis and biological application of polylactic acid. Review. Molecules. 2020;25(21):5023. doi:10.3390/molecules25215023
  • Rabanel JM, Faivre J, Paka GD, Ramassamy C, Hildgen P, Banquy X. Effect of polymer architecture on curcumin encapsulation and release from PEGylated polymer nanoparticles: toward a drug delivery nano-platform to the CNS. Comparative Study. Research support, Non-U.S. Gov’t. Eur J Pharm Biopharm. 2015;96:409–420. doi:10.1016/j.ejpb.2015.09.004
  • Dong Y, Feng SS. Nanoparticles of poly (D, L‐lactide)/methoxy poly (ethylene glycol)‐poly (D, L‐lactide) blends for controlled release of paclitaxel. J Biomed Mater Res Part A. 2006;78(1):12–19. doi:10.1002/jbm.a.30684
  • Rabanel J-M, Piec P-A, Landri S, Patten SA, Ramassamy C. Transport of PEGylated-PLA nanoparticles across a blood brain barrier model, entry into neuronal cells and in vivo brain bioavailability. J Control Release. 2020;328:679–695. doi:10.1016/j.jconrel.2020.09.042
  • Huang F-YJ, Chen W-J, Lee W-Y, S-T L, Lee T-W, J-M L. In vitro and in vivo evaluation of lactoferrin-conjugated liposomes as a novel carrier to improve the brain delivery. Int J Mol Sci. 2013;14(2):2862–2874. doi:10.3390/ijms14022862
  • Loureiro JA, Gomes B, Coelho MA, Carmo Pereira M, Rocha S. Targeting nanoparticles across the blood–brain barrier with monoclonal antibodies. Nanomedicine. 2014;9(5):709–722. doi:10.2217/nnm.14.27
  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Delivery Rev. 2016;99(Pt A):28–51. doi:10.1016/j.addr.2015.09.012
  • Tehrani SF, Bernard-Patrzynski F, Puscas I, Leclair G, Hildgen P, Roullin VG. Length of surface PEG modulates nanocarrier transcytosis across brain vascular endothelial cells. Nanomedicine. 2019;16:185–194. doi:10.1016/j.nano.2018.11.016
  • Andaloussi SE, Lakhal S, Mäger I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Delivery Rev. 2013;65(3):391–397. doi:10.1016/j.addr.2012.08.008
  • Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Research support, Non-U.S. Gov’t Review. Cells. 2019;8(7):727. doi:10.3390/cells8070727
  • Pegtel DM, Gould SJ. Exosomes. Annu. Rev. Biochem. 2019;88(1):487–514. doi:10.1146/annurev-biochem-013118-111902
  • Lai RC, Yeo RW, Tan KH, Lim SK. Exosomes for drug delivery - a novel application for the mesenchymal stem cell. Review. Biotechnol. Adv. 2013;31(5):543–551. doi:10.1016/j.biotechadv.2012.08.008
  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Research support, Non-U.S. Gov’t. Review. Nat Rev Mol Cell Biol. 2018;19(4):213–228. doi:10.1038/nrm.2017.125
  • Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879–887. doi:10.1093/intimm/dxh267
  • Kang JY, Park H, Kim H, et al. Human peripheral blood‑derived exosomes for microRNA delivery. IntJ Mol Med. 2019;43(6):2319–2328. doi:10.3892/ijmm.2019.4150
  • Van den Boorn JG, Schlee M, Coch C, Hartmann G. SiRNA delivery with exosome nanoparticles. Nature Biotechnol. 2011;29(4):325–326. doi:10.1038/nbt.1830
  • Piffoux M, Nicolás-Boluda A, Mulens-Arias V, et al. Extracellular vesicles for personalized medicine: the input of physically triggered production, loading and theranostic properties. Adv Drug Delivery Rev. 2019;138:247–258. doi:10.1016/j.addr.2018.12.009
  • Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: preparation and applications. J Transl Med. 2022;20(1):1–16. doi:10.1186/s12967-022-03325-7
  • Qu M, Lin Q, Huang L, et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J Control Release. 2018;287:156–166. doi:10.1016/j.jconrel.2018.08.035
  • Ellman GL, Courtney KD, Andres JV, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7(2):88–95. doi:10.1016/0006-2952(61)90145-9
  • Rabanel J-M, Faivre J, Zaouter C, Patten SA, Banquy X, Ramassamy C. Nanoparticle shell structural cues drive in vitro transport properties, tissue distribution and brain accessibility in zebrafish. Biomaterials. 2021;277:121085. doi:10.1016/j.biomaterials.2021.121085
  • Koto T, Takubo K, Ishida S, et al. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol. 2007;170(4):1389–1397. doi:10.2353/ajpath.2007.060693
  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Research Support, U.S. Gov’t, P.H.S. Dev. Dyn. 1995;203(3):253–310. doi:10.1002/aja.1002030302
  • Cheng J, Gu Y-J, Wang Y, Cheng SH, Wong W-T. Nanotherapeutics in angiogenesis: synthesis and in vivo assessment of drug efficacy and biocompatibility in zebrafish embryos. Int j Nanomed. 2011;2007–2021. doi:10.2147/IJN.S20145
  • Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 2002;248(2):307–318. doi:10.1006/dbio.2002.0711
  • Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9(7):676–682. doi:10.1038/nmeth.2019
  • Sutthapitaksakul L, Dass CR, Sriamornsak P. Donepezil—An updated review of challenges in dosage form design. J Drug Delivery Sci Technol. 2021;63:102549. doi:10.1016/j.jddst.2021.102549
  • van der Meel R, Fens MH, Vader P, Van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release. 2014;195:72–85. doi:10.1016/j.jconrel.2014.07.049
  • Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327. doi:10.1016/j.ijpharm.2008.04.042
  • Jayaraj RL, Tamilselvam K, Manivasagam T, Elangovan N. Neuroprotective effect of CNB-001, a novel pyrazole derivative of curcumin on biochemical and apoptotic markers against rotenone-induced SK-N-SH cellular model of Parkinson’s disease. J Mol Neurosci. 2013;51(3):863–870. doi:10.1007/s12031-013-0075-8
  • Chuo ST-Y, Chien JC-Y, Lai CP-K. Imaging extracellular vesicles: current and emerging methods. J Biomed Sci. 2018;25(1):1–10. doi:10.1186/s12929-018-0494-5
  • Tong R, Coyle VJ, Tang L, Barger AM, Fan TM, Cheng J. Polylactide nanoparticles containing stably incorporated cyanine dyes for in vitro and in vivo imaging applications. Microsc Res Tech. 2010;73(9):901–909. doi:10.1002/jemt.20824
  • Zhu L, Li R, Jiao S, et al. Blood-brain barrier permeable chitosan oligosaccharides interfere with β-Amyloid aggregation and alleviate β-amyloid protein mediated neurotoxicity and neuroinflammation in a dose-and degree of polymerization-dependent manner. Mar Drugs. 2020;18(10):488. doi:10.3390/md18100488
  • Campbell F, Bos FL, Sieber S, et al. Directing nanoparticle biodistribution through evasion and exploitation of Stab2-dependent nanoparticle uptake. ACS nano. 2018;12(3):2138–2150. doi:10.1021/acsnano.7b06995
  • Beccaria K, Canney M, Bouchoux G, Puget S, Grill J, Carpentier A. Blood-brain barrier disruption with low-intensity pulsed ultrasound for the treatment of pediatric brain tumors: a review and perspectives. Neurosurg Focus. 2020;48(1):E10. doi:10.3171/2019.10.FOCUS19726
  • Almutairi M, Gong C, Xu YG, Chang Y, Shi H. Factors controlling permeability of the blood–brain barrier. Cell. Mol. Life Sci. 2016;73(1):57–77. doi:10.1007/s00018-015-2050-8
  • Rempe R, Cramer S, Qiao R, Galla H-J. Strategies to overcome the barrier: use of nanoparticles as carriers and modulators of barrier properties. Cell Tissue Res. 2014;355(3):717–726. doi:10.1007/s00441-014-1819-7
  • Tian T, Zhang H-X, C-P H, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–149. doi:10.1016/j.biomaterials.2017.10.012
  • Li AJ, Zheng YH, Liu GD, Liu WS, Cao PC, Bu ZF. Efficient delivery of docetaxel for the treatment of brain tumors by cyclic RGD-tagged polymeric micelles. Mol Med Rep. 2015;11(4):3078–3086. doi:10.3892/mmr.2014.3017
  • Zhou R, Zhu L, Zeng Z, et al. Targeted brain delivery of RVG29‐modified rifampicin‐loaded nanoparticles for Alzheimer’s disease treatment and diagnosis. Bioeng Transl Med 2022;7(3):e10395. doi:10.1002/btm2.10395
  • Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nature Nanotechnol. 2021;16(7):748–759. doi:10.1038/s41565-021-00931-2
  • Xu J, Chen Y, Jiang X, Gui Z, Zhang L. Development of hydrophilic drug encapsulation and controlled release using a modified nanoprecipitation method. Processes. 2019;7(6):331. doi:10.3390/pr7060331
  • Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30. doi:10.1016/j.jconrel.2015.03.033
  • Al-Jipouri A, Almurisi SH, Al-Japairai K, Bakar LM, Doolaanea AA. Liposomes or Extracellular Vesicles: a Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers. 2023;15(2):318. doi:10.3390/polym15020318
  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–223. doi:10.1016/j.yexmp.2008.12.004
  • Heurtault B, Saulnier P, Pech B, Proust J-E, Benoit J-P. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24(23):4283–4300. doi:10.1016/S0142-9612(03)00331-4
  • Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Targeting. 2004;12(9–10):635–641. doi:10.1080/10611860400015936
  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release. 2012;161(2):264–273. doi:10.1016/j.jconrel.2011.08.017
  • Goldblum D, Gygax M, Böhnke M, Garweg JG. In vitro toxicity of rivastigmine and donepezil in cells of epithelial origin. Ophthal Res. 2002;34(2):97–103. doi:10.1159/000048336
  • Das JR, Tizabi Y. Additive protective effects of donepezil and nicotine against salsolinol-induced cytotoxicity in SH-SY5Y cells. Neurotox Res. 2009;16(3):194–204. doi:10.1007/s12640-009-9040-2
  • Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci. 2013;8(1):1–10. doi:10.1016/j.ajps.2013.07.001
  • Yamamoto T, Kosaka N, Ochiya T. Latest advances in extracellular vesicles: from bench to bedside. Sci Technol Adv Mater. 2019;20(1):746–757. doi:10.1080/14686996.2019.1629835
  • Lee M, Ban -J-J, Yang S, Im W, Kim M. The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimer’s disease. Brain Res. 2018;1691:87–93. doi:10.1016/j.brainres.2018.03.034
  • Bonafede R, Scambi I, Peroni D, et al. Exosome derived from murine adipose-derived stromal cells: neuroprotective effect on in vitro model of amyotrophic lateral sclerosis. Exp Cell Res 2016;340(1):150–158. doi:10.1016/j.yexcr.2015.12.009
  • Sun T, Ding Z-X, Luo X, Liu Q-S, Cheng Y, Hassanzadeh K. Blood exosomes have neuroprotective effects in a mouse model of Parkinson’s disease. Oxid Med Cell Longev. 2020;2020:1–14. doi:10.1155/2020/3807476
  • Feng D, Zhao WL, Ye YY, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic. 2010;11(5):675–687. doi:10.1111/j.1600-0854.2010.01041.x
  • Tehrani SF, Rabanel J-M, Legeay S, et al. Tailoring PEGylated nanoparticle surface modulates inflammatory response in vascular endothelial cells. Eur. J. Pharm. Biopharm. 2022;174:155–166. doi:10.1016/j.ejpb.2022.04.003
  • Morad G, Carman CV, Hagedorn EJ, et al. Tumor-derived extracellular vesicles breach the intact blood–brain barrier via transcytosis. ACS nano. 2019;13(12):13853–13865. doi:10.1021/acsnano.9b04397
  • Yuan D, Zhao Y, Banks WA, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials. 2017;142:1–12. doi:10.1016/j.biomaterials.2017.07.011
  • Kur I-M, Prouvot P-H, Fu T, et al. Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo. PLoS biol. 2020;18(3):e3000643. doi:10.1371/journal.pbio.3000643
  • Cascallar M, Alijas S, Pensado-López A, et al. What zebrafish and nanotechnology can offer for cancer treatments in the age of personalized medicine. Cancers. 2022;14(9):2238. doi:10.3390/cancers14092238
  • Matsuda A, Moirangthem A, Angom RS, et al. Safety of bovine milk derived extracellular vesicles used for delivery of RNA therapeutics in zebrafish and mice. J Appl Toxicol. 2020;40(5):706–718. doi:10.1002/jat.3938
  • Gritsman K, Talbot WS, Schier AF. Nodal signaling patterns the organizer. Development. 2000;127(5):921–932. doi:10.1242/dev.127.5.921
  • Trikić MZ, Monk P, Roehl H, Partridge LJ, Kanellopoulos J. Regulation of zebrafish hatching by tetraspanin cd63. PLoS One. 2011;6(5):e19683. doi:10.1371/journal.pone.0019683
  • Best JD, Berghmans S, Hunt JJ, et al. Non-associative learning in larval zebrafish. Neuropsychopharmacology. 2008;33(5):1206–1215. doi:10.1038/sj.npp.1301489
  • Svoboda KR, Vijayaraghavan S, Tanguay RL. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J Neurosci. 2002;22(24):10731–10741. doi:10.1523/JNEUROSCI.22-24-10731.2002
  • Fitch WM. Distinguishing homologous from analogous proteins. Syst Zool. 1970;19(2):99–113. doi:10.2307/2412448
  • Ibach B, Haen E. Acetylcholinesterase inhibition in Alzheimer’s Disease. Curr Pharm Des. 2004;10(3):231–251. doi:10.2174/1381612043386509
  • Li Y, Chen T, Miao X, et al. Zebrafish: a promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacol Res. 2017;125:246–257. doi:10.1016/j.phrs.2017.08.017
  • Jeong J-Y, Kwon H-B, Ahn J-C, et al. Functional and developmental analysis of the blood–brain barrier in zebrafish. Brain Res Bull. 2008;75(5):619–628. doi:10.1016/j.brainresbull.2007.10.043
  • Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release. 2007;118(1):38–53. doi:10.1016/j.jconrel.2006.11.015
  • Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003–2014. doi:10.1007/s11095-014-1593-y
  • Qi Y, Guo L, Jiang Y, Shi Y, Sui H, Zhao L. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Delivery. 2020;27(1):745–755. doi:10.1080/10717544.2020.1762262
  • Nakano M, Nagaishi K, Konari N, et al. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci Rep. 2016;6(1):24805. doi:10.1038/srep24805
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein Corona with possible implications for biological impacts. Proc Natl Acad Sci. 2008;105(38):14265–14270. doi:10.1073/pnas.0805135105
  • Moghimi SM, Hunter A, Andresen T. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol. 2012;52(1):481–503. doi:10.1146/annurev-pharmtox-010611-134623
  • Grenier P, de Oliveira Viana IM, Lima EM, Bertrand N. Anti-polyethylene glycol antibodies alter the protein Corona deposited on nanoparticles and the physiological pathways regulating their fate in vivo. J Control Release. 2018;287:121–131. doi:10.1016/j.jconrel.2018.08.022
  • Saadati R, Dadashzadeh S, Abbasian Z, Soleimanjahi H. Accelerated blood clearance of PEGylated PLGA nanoparticles following repeated injections: effects of polymer dose, PEG coating, and encapsulated anticancer drug. Pharm Res. 2013;30(4):985–995. doi:10.1007/s11095-012-0934-y
  • Verhoef JJ, Carpenter JF, Anchordoquy TJ, Schellekens H. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discovery Today. 2014;19(12):1945–1952. doi:10.1016/j.drudis.2014.08.015
  • Yang Q, Lai SK. Anti‐PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev. 2015;7(5):655–677. doi:10.1002/wnan.1339
  • Wang Z, Zhang S, Tong Z, Li L, Wang G, Fugmann SD. Maternal transfer and protective role of the alternative complement components in zebrafish Danio rerio. PLoS One. 2009;4(2):e4498. doi:10.1371/journal.pone.0004498