89
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Scaffold Adhering to Peptide-Based Biomimetic Extracellular Matrix Composite Nanobioglass Promotes the Proliferation and Migration of Skin Fibroblasts Through the GSK-3β/β-Catenin Signaling Axis

, ORCID Icon, , , , & show all
Pages 2957-2972 | Received 11 Nov 2023, Accepted 12 Mar 2024, Published online: 27 Mar 2024

References

  • Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):200223. doi:10.1098/rsob.200223
  • Martin-Rodriguez O, Gauthier T, Bonnefoy F, et al. Pro-resolving factors released by macrophages after efferocytosis promote mucosal wound healing in inflammatory bowel disease. Front Immunol. 2021;12:754475. doi:10.3389/fimmu.2021.754475
  • Li B, Wang JH. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability. 2011;20(4):108–120. doi:10.1016/j.jtv.2009.11.004
  • Cialdai F, Risaliti C, Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol. 2022;10:958381. doi:10.3389/fbioe.2022.958381
  • Liddane AG, McNamara CA, Campbell MC, Mercier I, Holaska JM. Defects in emerin-nucleoskeleton binding disrupt nuclear structure and promote breast cancer cell motility and metastasis. Mol Cancer Res. 2021;19(7):1196–1207. doi:10.1158/1541-7786.MCR-20-0413
  • Mathew-Steiner SS, Roy S, Sen CK. Collagen in Wound Healing. Bioengineering. 2021;8(5):63. doi:10.3390/bioengineering8050063
  • Sharma S, Rai VK, Narang RK, Markandeywar TS. Collagen-based formulations for wound healing: a literature review [published correction appears in Life Sci. 2022 May 15;297:120436]. Life Sci. 2022;290:120096. doi:10.1016/j.lfs.2021.120096
  • Mistry K, Van Der Steen B, Vanhoecke B, et al. 791 Promoting cutaneous wound healing with nutraceutical porcine type I collagen peptides. J Invest Dermatol. 2020;140(7):S104–S104.
  • Heras‐Parets A, Ginebra MP, Manero JM, Guillem‐Marti J. Guiding Fibroblast Activation Using an RGD-Mutated Heparin Binding II Fragment of Fibronectin for Gingival Titanium Integration. Adv Healthcare Mater. 2023;12(21):2203307. doi:10.1002/adhm.202203307
  • Koh RH, Kim J, Kim SHL, Hwang NS. RGD-incorporated biomimetic cryogels for hyaline cartilage regeneration. Biomed Mater. 2022;17(2):024106. doi:10.1088/1748-605X/ac51b7
  • Li J, Zhang Y, Zhou X. Enzymatically functionalized RGD-gelatin scaffolds that recruit host mesenchymal stem cells in vivo and promote bone regeneration. J Colloid Interface Sci. 2022;612:377–391. doi:10.1016/j.jcis.2021.12.091
  • Chen B, Wu P, Liang L. Inhibited effect of an RGD peptide hydrogel on the expression of β1-integrin, FAK, and Akt in Tenon’s capsule fibroblasts. J Biomed Mater Res Part B. 2021;109(11):1857–1865. doi:10.1002/jbm.b.34847
  • Yakovlev S, Mikhailenko I, Tsurupa G, Belkin AM, Medved L. Polymerisation of fibrin αC-domains promotes endothelial cell migration and proliferation. Thromb Haemost. 2014;112(6):1244–1251. doi:10.1160/th14-01-0079
  • Zhang M, Yao A, Ai F, et al. Cobalt-containing borate bioactive glass fibers for treatment of diabetic wound. J Mater Sci Mater Med. 2023;34(8):42. doi:10.1007/s10856-023-06741-3
  • Kronick P, Maleeff B, Carroll R. The locations of collagens with different thermal stabilities in fibrils of bovine reticular dermis. Connect Tissue Res. 1988;18(2):123–134. doi:10.3109/03008208809008064
  • Song X, Li X, Wang F-Y, et al. Bioinspired Protein/Peptide Loaded 3D Printed PLGA Scaffold Promotes Bone Regeneration. Front Bioeng Biotechnol. 2022;10. doi:10.3389/fbioe.2022.832727
  • Yamada Y, Onda T, Hagiuda A, et al. RGDX 1 X 2 motif regulates integrin αvβ5 binding for pluripotent stem cell adhesion. FASEB J. 2022;36(7). doi:10.1096/fj.202200317R
  • Hiratsuka T, Ogura I, Okamura A, et al. Bioresorbable bone graft composed of an RGD-enriched recombinant human collagen polypeptide induced neovascularization and regeneration of mature bone tissue. ACS Appl Bio Mater. 2020;3(12):8592–8602. doi:10.1021/acsabm.0c00986
  • Yang L, Yaseen M, Zhao X, et al. Gelatin modified ultrathin silk fibroin films for enhanced proliferation of cells. Biomed Mater. 2015;10(2):025003. doi:10.1088/1748-6041/10/2/025003
  • Huang CC, Yu M, Li H, et al. Research progress of bioactive glass and its application in orthopedics. Adv Mater Interfaces. 2021;8(22):2100606. doi:10.1002/admi.202100606
  • Azad Alam M, Hamed Asoushe M, Pourhakkak P, Gritsch L, Alipour A, Mohammadi S. Preparation of bioactive polymer-based composite by different techniques and application in tissue engineering: a review. J Composit Comp. 2021;3(3):194–205. doi:10.52547/jcc.3.3.7
  • Xiao J, Wei Q, Xue J, et al. Mesoporous bioactive glass/bacterial cellulose composite scaffolds for bone support materials. Colloids Surf A. 2022;642:128693. doi:10.1016/j.colsurfa.2022.128693
  • Maureira M, Cuadra F, Cádiz M, et al. Preparation and osteogenic properties of nanocomposite hydrogel beads loaded with nanometric bioactive glass particles. Biomed Mater. 2021;16(4):045043. doi:10.1088/1748-605X/ac0764
  • Huang S-M, Cheng Chen W, Chengchen W, et al. Synergistic effect of drug/antibiotic-impregnated micro/nanohybrid mesoporous bioactive glass/calcium phosphate composite bone cement on antibacterial and osteoconductive activities. Biomater Adv. 2023;152:213524. doi:10.1016/j.bioadv.2023.213524
  • Shan Z, Xie L, Liu H, et al. “Gingival Soft Tissue Integrative” lithium disilicate glass-ceramics with high mechanical properties and sustained-release lithium ions. ACS Appl Mater Interfaces. 2022;14(49):54572–54586. doi:10.1021/acsami.2c17033
  • Wang Z, Cao K, Yan D, et al. A study of the role of multiple layer-by-layer assembled bionic extracellular matrix in promoting wound healing via activation of the Wnt signaling pathway. J Biomed Mater Res B Appl Biomater. 2023;111(6):1159–1170. doi:10.1002/jbm.b.35222
  • Zhou N, Xiaoe M, Wusheng H, et al. Effect of RGD content in poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-alt-maleic acid) hydrogels on the expansion of ovarian cancer stem-like cells. Mater Sci Eng C. 2021;118:111477. doi:10.1016/j.msec.2020.111477
  • Pond KW, Doubrovinski K, Thorne CA. Wnt/β-catenin signaling in tissue self-organization. Genes. 2020;11(8):939. doi:10.3390/genes11080939
  • Davis GE. Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun. 1992;182(3):1025–1031. doi:10.1016/0006-291X(92)91834-D
  • Taubenberger AV, Woodruff MA, Bai H, Muller DJ, Hutmacher DW. The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation. Biomaterials. 2010;31(10):2827–2835. doi:10.1016/j.biomaterials.2009.12.051
  • Pan G, Shinde S, Yeung SY, et al. An epitope-imprinted biointerface with dynamic bioactivity for modulating cell-biomaterial interactions. Angew Chem Int Ed Engl. 2017;56(50):15959–15963. doi:10.1002/anie.201708635
  • Wang S, Huang G, Dong Y. Directional migration and odontogenic differentiation of bone marrow stem cells induced by dentin coated with nanobioactive glass. J Endod. 2020;46(2):216–223. doi:10.1016/j.joen.2019.11.004
  • Kumari S. Multifunctional organic and inorganic hybrid bionanocomposite of chitosan/poly(vinyl alcohol)/nanobioactive glass/nanocellulose for bone tissue engineering. J Mech Behav Biomed Mater. 2022;135:105427. doi:10.1016/j.jmbbm.2022.105427
  • Lee MJ, Kim MJ, Mangal U, Seo JY, Kwon JS, Choi SH. Zinc-modified phosphate-based glass micro-filler improves Candida albicans resistance of auto-polymerized acrylic resin without altering mechanical performance. Sci Rep. 2022;12(1):19456. doi:10.1038/s41598-022-24172-y
  • El-Okaily MS, El-Rafei AM, Basha M, et al. Efficient drug delivery vehicles of environmentally benign nano-fibers comprising bioactive glass/chitosan/polyvinyl alcohol composites. Int J Biol Macromol. 2021;182:1582–1589. doi:10.1016/j.ijbiomac.2021.05.079
  • Cheng Y, Li Y, Huang S, et al. Hybrid freeze-dried dressings composed of epidermal growth factor and recombinant human-like collagen enhance cutaneous wound healing in rats. Front Bioeng Biotechnol. 2020;8:742. doi:10.3389/fbioe.2020.00742
  • Pajic-Lijakovic I, Milivojevic M, Clark AG. Collective cell migration on collagen-I networks: the impact of matrix viscoelasticity. Front Cell Dev Biol. 2022;10:901026. doi:10.3389/fcell.2022.901026
  • Yamada Y, Onda T, Wada Y, Hamada K, Kikkawa Y, Nomizu M. Structure-activity relationships of RGD-containing peptides in integrin αvβ5-mediated cell adhesion. ACS Omega. 2023;8(5):4687–4693. doi:10.1021/acsomega.2c06540
  • Andrés-Sánchez N, Fisher D, Krasinska L. Physiological functions and roles in cancer of the proliferation marker Ki-67. J Cell Sci. 2022;135(11):jcs258932. doi:10.1242/jcs.258932
  • Wang Y, He J, Zhang J, Zhang N, Zhou Y, Wu F. Cell migration induces apoptosis in osteosarcoma cell via inhibition of Wnt-β-catenin signaling pathway. Colloids Surf B Biointerfaces. 2023;223:113142. doi:10.1016/j.colsurfb.2023.113142
  • Gao S, Wang S, Zhao Z, et al. TUBB4A interacts with MYH9 to protect the nucleus during cell migration and promotes prostate cancer via GSK3β/β-catenin signalling. Nat Commun. 2022;13(1):2792. doi:10.1038/s41467-022-30409-1
  • Liu M, Huang X, Tian Y, et al. Phosphorylated GSK-3β protects stress‑induced apoptosis of myoblasts via the PI3K/Akt signaling pathway. Mol Med Rep. 2020;22(1):317–327. doi:10.3892/mmr.2020.11105
  • Wei D, Zhu X, Li S, et al. Tideglusib suppresses stem-cell-like features and progression of osteosarcoma by inhibiting GSK-3β/NOTCH1 signaling. Biochem Biophys Res Commun. 2021;554:206–213. doi:10.1016/j.bbrc.2020.12.055
  • Ren C, Chen X, Du N, et al. Low-intensity pulsed ultrasound promotes Schwann cell viability and proliferation via the GSK-3β/β-catenin signaling pathway. Int J Biol Sci. 2018;14(5):497–507. doi:10.7150/ijbs.22409
  • Chen B, Li X, Wu L, et al. Quercetin suppresses human glioblastoma migration and invasion via GSK3β/β-catenin/ZEB1 signaling pathway. Front Pharmacol. 2022;13:963614. doi:10.3389/fphar.2022.963614
  • He J, Wang M, Yang L, et al. Astragaloside IV alleviates intestinal barrier dysfunction via the AKT-GSK3β-β-catenin pathway in peritoneal dialysis. Front Pharmacol. 2022;13:873150. doi:10.3389/fphar.2022.873150
  • Ma R, Su Y, Cao R, Wang K, Yang P. Enhanced osteogenic activity and bone repair ability of PLGA/MBG scaffolds doped with ZIF-8 nanoparticles loaded with BMP-2. Int J Nanomed. 2023;18:5055–5072. doi:10.2147/IJN.S423985
  • Wu W, Jia S, Xu H, et al. Supramolecular hydrogel microspheres of platelet-derived growth factor mimetic peptide promote recovery from spinal cord injury. ACS Nano. 2023;17(4):3818–3837. doi:10.1021/acsnano.2c12017