103
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

AMP-Coated TiO2 Doped ZnO Nanomaterials Enhanced Antimicrobial Activity and Efficacy in Otitis Media Treatment by Elevating Hydroxyl Radical Levels

, , , , , , , & show all
Pages 2995-3007 | Received 14 Nov 2023, Accepted 06 Mar 2024, Published online: 26 Mar 2024

References

  • Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, et al. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics. 2023;12(2):274. doi:10.3390/antibiotics12020274
  • Rizzo A, Piccinno M, Lillo E, Carbonari A, Jirillo F, Sciorsci RL. Antimicrobial Resistance and Current Alternatives in Veterinary Practice: a Review. Curr Pharm Des. 2003;29(5):312–322.
  • Shen Z, Guo Z, Zhou L, et al. Biomembrane induced in situ self-assembly of peptide with enhanced antimicrobial activity. Biomater Sci. 2020;8(7):2031–2039. doi:10.1039/C9BM01785B
  • Ghosh S, Mukherjee R, Mukherjee S, Barman S, Haldar J. Engineering Antimicrobial Polymer Nanocomposites: in Situ Synthesis, Disruption of Polymicrobial Biofilms, and In Vivo Activity. ACS Appl Mater Interfaces. 2022;14(30):34527–34537. doi:10.1021/acsami.2c11466
  • Naheed S, Din IU, Qamar MU, et al. Synthesis, Anti-Bacterial and Molecular Docking Studies of Arylated Butyl 2-Bromoisonicotinate Against Clinical Isolates of ESBL-Producing Escherichia coli ST405 and Methicillin-Resistant Staphylococcus aureus. IDR. 2023;16:5295–5308. doi:10.2147/IDR.S407891
  • Tambs K, Hoffman HJ, Borchgrevink HM, Holmen J, Samuelsen SO. Hearing loss induced by noise, ear infections, and head injuries: results from the Nord-Trøndelag Hearing Loss Study: hipoacusia inducida por ruido, infecciones de oído y lesiones cefálicas: resultados del estudio Nord-Trøndelag sobre pérdidas auditivas. Int J Audiol. 2003;42(2):89–105. doi:10.3109/14992020309078340
  • Monroy GL, Pande P, Shelton RL, et al. Non-invasive optical assessment of viscosity of middle ear effusions in otitis media. J Biophotonics. 2017;10(3):394–403. doi:10.1002/jbio.201500313
  • Dettori S, Portunato F, Vena A, Giacobbe DR, Bassetti M. Severe infections caused by difficult-to-treat Gram-negative bacteria. Current Opinion in Critical Care. 2023;29(5):438. doi:10.1097/MCC.0000000000001074
  • Prasad A, Hasan SMA, Gartia MR. Optical Identification of Middle Ear Infection. Molecules. 2020;25(9):2239. doi:10.3390/molecules25092239
  • Smirnov NA, Kudryashov SI, Nastulyavichus AA, et al. Antibacterial properties of silicon nanoparticles. Laser Phys Lett. 2018;15(10):105602. doi:10.1088/1612-202X/aad853
  • Colino CI, Lanao JM, Gutierrez-Millan C. Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. Mater Sci Eng C. 2021;121:111843. doi:10.1016/j.msec.2020.111843
  • Gold K, Slay B, Knackstedt M, Gaharwar AK. Antimicrobial Activity of Metal and Metal-Oxide Based Nanoparticles. Adv Ther. 2018;1(3):1700033. doi:10.1002/adtp.201700033
  • Mitjans M, Marics L, Bilbao M, Maddaleno AS, Piñero JJ, Vinardell MP. Size Matters? A Comprehensive In Vitro Study of the Impact of Particle Size on the Toxicity of ZnO. Nanomaterials. 2023;13(11):1800. doi:10.3390/nano13111800
  • Matusoiu F, Negrea A, Nemes NS, et al. Antimicrobial Perspectives of Active SiO2FexOy/ZnO Composites. Pharmaceutics. 2022;14(10):2063. doi:10.3390/pharmaceutics14102063
  • Ding Y, Yang IS, Li Z, et al. Nanoporous TiO2 spheres with tailored textural properties: controllable synthesis, formation mechanism, and photochemical applications. Pro Mater Sci. 2020;109:100620. doi:10.1016/j.pmatsci.2019.100620
  • Amri F, Septiani NLW, Rezki M, et al. Mesoporous TiO2-based architectures as promising sensing materials towards next-generation biosensing applications. J Mater Chem B. 2021;9(5):1189–1207. doi:10.1039/D0TB02292F
  • Querebillo CJ. A Review on Nano Ti-Based Oxides for Dark and Photocatalysis: from Photoinduced Processes to Bioimplant Applications. Nanomaterials. 2023;13(6):982. doi:10.3390/nano13060982
  • Wang J, Wang Z, Wang W, et al. Synthesis, modification and application of titanium dioxide nanoparticles: a review. Nanoscale. 2022;14(18):6709–6734. doi:10.1039/D1NR08349J
  • Hou J, Zhao H, Zhang Z, Yu L, Yan X. The antifouling tris-(8-hydroxyquinoline) aluminum: titanium dioxide coatings under visible light. Surf Coat Technol. 2023;468:129743. doi:10.1016/j.surfcoat.2023.129743
  • Park S, Keum Y, Park J. Ti-Based porous materials for reactive oxygen species-mediated photocatalytic reactions. Chem Commun. 2022;58(5):607–618. doi:10.1039/D1CC04858A
  • Schutte-Smith M, Erasmus E, Mogale R, Marogoa N, Jayiya A, Visser HG. Using visible light to activate antiviral and antimicrobial properties of TiO2 nanoparticles in paints and coatings: focus on new developments for frequent-touch surfaces in hospitals. J Coat Technol Res. 2023;20(3):789–817. doi:10.1007/s11998-022-00733-8
  • Ghorashi MS, Madaah Hosseini HR, Mohajerani E, Pedroni M, Taheri Ghahrizjani R. Enhanced TiO2 Broadband Photocatalytic Activity Based on Very Small Upconversion Nanosystems. J Phys Chem C. 2021;125(25):13788–13801. doi:10.1021/acs.jpcc.1c01403
  • Žerjav G, Teržan J, Djinović P, et al. TiO2-β-Bi2O3 junction as a leverage for the visible-light activity of TiO2 based catalyst used for environmental applications. Catal. Today. 2021;361:165–175. doi:10.1016/j.cattod.2020.03.053
  • Shin J, Naskar A, Ko D, Kim S, sun KK. Bioconjugated Thymol-Zinc Oxide Nanocomposite as a Selective and Biocompatible Antibacterial Agent against Staphylococcus Species. Int J Mol Sci. 2022;23(12):6770. doi:10.3390/ijms23126770
  • Dai S, Jiang L, Liu L, et al. Photofunctionalized and Drug-Loaded TiO2 Nanotubes with Improved Vascular Biocompatibility as a Potential Material for Polymer-Free Drug-Eluting Stents. ACS Biomater Sci Eng. 2020;6(4):2038–2049. doi:10.1021/acsbiomaterials.0c00041
  • Luo Y, Song Y. Mechanism of Antimicrobial Peptides: antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int J Mol Sci. 2021;22(21):11401. doi:10.3390/ijms222111401
  • Huang X, Li G. Antimicrobial Peptides and Cell-Penetrating Peptides: non-Antibiotic Membrane-Targeting Strategies Against Bacterial Infections. Infect Drug Resistance. 2023;16:1203–1219. doi:10.2147/IDR.S396566
  • Ganesan N, Mishra B, Felix L, Mylonakis E. Antimicrobial Peptides and Small Molecules Targeting the Cell Membrane of Staphylococcus aureus. Microbiol Mol Biol Rev. 2023;87(2):e00037–22. doi:10.1128/mmbr.00037-22
  • Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug-resistant bacterial pathogens. Pept Sci. 2022;114(2):e24246. doi:10.1002/pep2.24246
  • Bai X, Li L, Liu H, Tan L, Liu T, Meng X. Solvothermal Synthesis of ZnO Nanoparticles and Anti-Infection Application in Vivo. ACS Appl Mater Interfaces. 2015;7(2):1308–1317. doi:10.1021/am507532p
  • González-Campo A, Orchard KL, Sato N, Shaffer MSP, Williams CK. One-pot, in situ synthesis of ZnO-carbon nanotube–epoxy resin hybrid nanocomposites. Chem Commun. 2009;1(27):4034. doi:10.1039/b905353k
  • Hou Z, Lu J, Fang C, et al. Underlying Mechanism of In vivo and In vitro Activity of C-terminal–amidated Thanatin Against Clinical Isolates of Extended-Spectrum β-lactamase–Producing Escherichia coli. J Infect Dis. 2011;203(2):273–282. doi:10.1093/infdis/jiq029
  • Sabirov A, Metzger DW. Mouse models for the study of mucosal vaccination against otitis media. Vaccine. 2008;26(12):1501–1524. doi:10.1016/j.vaccine.2008.01.029
  • Mittal R, Sanchez-Luege SV, Wagner SM, Yan D, Liu XZ. Recent Perspectives on Gene-Microbe Interactions Determining Predisposition to Otitis Media. Front Genetics. 2019;10. doi:10.3389/fgene.2019.01230
  • Kono M, Umar NK, Takeda S, et al. Novel Antimicrobial Treatment Strategy Based on Drug Delivery Systems for Acute Otitis Media. Front Pharmacol. 2021:12. doi:10.3389/fphar.2021.640514
  • Kasza K, Gurnani P, Hardie KR, Cámara M, Alexander C. Challenges and solutions in polymer drug delivery for bacterial biofilm treatment: a tissue-by-tissue account. Adv. Drug Delivery Rev. 2021;178:113973. doi:10.1016/j.addr.2021.113973
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian J Chem. 2019;12(7):908–931. doi:10.1016/j.arabjc.2017.05.011
  • Ruddaraju LK, Pammi SVN, Guntuku GS, Padavala VS, Kolapalli VRM. A review on anti-bacterials to combat resistance: from ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian J. Pharm. Sci. 2020;15(1):42–59. doi:10.1016/j.ajps.2019.03.002
  • Chen Q, Zhu W, Ni Y, Yuan H. The Properties of the CH3NH3PbI3/TiO2 Composite Layer Prepared from PbO-TiO2 Mesoporous Layer under Air Ambience. Coatings. 2023;13(4):669. doi:10.3390/coatings13040669
  • Smijs TG, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. NSA. 2011;4:95–112. doi:10.2147/NSA.S19419
  • Pant B, Ojha GP, Kuk YS, Kwon OH, Park YW, Park M. Synthesis and Characterization of ZnO-TiO2/Carbon Fiber Composite with Enhanced Photocatalytic Properties. Nanomaterials. 2020;10(10):1960. doi:10.3390/nano10101960
  • Zhou T, Wang J, Chen S, et al. Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Appl Catal B. 2020;267:118599. doi:10.1016/j.apcatb.2020.118599
  • Najibi Ilkhechi N, Mozammel M, Yari Khosroushahi A. Antifungal effects of ZnO, TiO2 and ZnO-TiO2 nanostructures on Aspergillus flavus. Pesticide Biochemistry Physiol. 2021;176:104869. doi:10.1016/j.pestbp.2021.104869
  • Wang P, Jiang S, Li Y, et al. Virus-like mesoporous silica-coated plasmonic Ag nanocube with strong bacteria adhesion for diabetic wound ulcer healing. Nanomed Nanotechnol Biol Med. 2021;34:102381. doi:10.1016/j.nano.2021.102381
  • Park SW, Lee D, Choi YS, et al. Mesoporous TiO2 implants for loading high dosage of antibacterial agent. Appl. Surf. Sci. 2014;303:140–146. doi:10.1016/j.apsusc.2014.02.111
  • Yang L, Kuang H, Liu Y, et al. Mechanism of enhanced antibacterial activity of ultra-fine ZnO in phosphate buffer solution with various organic acids. Environ Pollut. 2016;218:863–869. doi:10.1016/j.envpol.2016.08.015
  • Shi LE, Li ZH, Zheng W, Zhao YF, Jin YF, Tang ZX. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Additives and Contaminants: Part A. 2014;31(2):173–186. doi:10.1080/19440049.2013.865147
  • Hou Y, Feng J, Wang Y, Li L. Enhanced antibacterial activity of Ag-doped ZnO/polyaniline nanocomposites. J Mater Sci Mater Electron. 2016;27(7):6615–6622. doi:10.1007/s10854-016-4669-0
  • Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Front Phys. 2021;9. doi:10.3389/fphy.2021.641481
  • Sá AS, De lima IS, Honório LM, et al. ROS-mediated antibacterial response of ZnO and ZnO containing cerium under light. Chem Pap. 2022;76(11):7051–7060. doi:10.1007/s11696-022-02390-y
  • Nicolas P. Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J. 2009;276(22):6483–6496. doi:10.1111/j.1742-4658.2009.07359.x
  • Huang Y, Huang J, Chen Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein and Cell. 2010;1(2):143–152. doi:10.1007/s13238-010-0004-3
  • He B, Ma S, Peng G, He D. TAT-modified self-assembled cationic peptide nanoparticles as an efficient antibacterial agent. Nanomed Nanotechnol Biol Med. 2018;14(2):365–372. doi:10.1016/j.nano.2017.11.002
  • Xuan J, Feng W, Wang J, et al. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updates. 2023;68:100954. doi:10.1016/j.drup.2023.100954
  • Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol. 2006;4(7):529–536. doi:10.1038/nrmicro1441
  • Li X, Liu W, Sun L, et al. Effects of physicochemical properties of nanomaterials on their toxicity. J Biomed Mater Res Part A. 2015;103(7):2499–2507. doi:10.1002/jbm.a.35384
  • Kim KM, Song JH, Kim MK, et al. Physicochemical analysis methods for nanomaterials considering their toxicological evaluations. Mol Cell Toxicol. 2014;10(4):347–360. doi:10.1007/s13273-014-0039-2
  • Wang X, Cui X, Zhao Y, Chen C. Nano-bio interactions: the implication of size-dependent biological effects of nanomaterials. Sci China-Life Sci. 2020;63(8):1168–1182. doi:10.1007/s11427-020-1725-0