112
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Melt Electrowriting Combined with Fused Deposition Modeling Printing for the Fabrication of Three-Dimensional Biomimetic Scaffolds for Osteotendinous Junction Regeneration

, , , &
Pages 3275-3293 | Received 15 Nov 2023, Accepted 28 Mar 2024, Published online: 05 Apr 2024

References

  • Briggs AM, Cross MJ, Hoy DG, et al. Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 World Health Organization world report on ageing and health. Gerontologist. 2016;56(Suppl 2):S243–55. doi:10.1093/geront/gnw002
  • Millar N, Silbernagel KG, Thorborg K, et al. Tendinopathy. Nature Reviews. Disease Primers. 2021;7(1):1. doi:10.1038/s41572-020-00234-1
  • Dang A, Davies M. Rotator cuff disease: treatment options and considerations. Sports Med Arthrosc Rev. 2018;26(3):129–133. doi:10.1097/JSA.0000000000000207
  • Vitale MA, Vitale MG, Zivin JG, et al. Rotator cuff repair: an analysis of utility scores and cost-effectiveness. J Shoulder Elbow Surg. 2007;16(2):181–187. doi:10.1016/j.jse.2006.06.013
  • Lu HH, Thomopoulos S. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng. 2013;15(1):201–226. doi:10.1146/annurev-bioeng-071910-124656
  • Shaw H, Benjamin M. Structure-function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports. 2007;17(4):303–315. doi:10.1111/j.1600-0838.2007.00689.x
  • Genin G, Kent A, Birman V, et al. Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J. 2009;97(4):976–985. doi:10.1016/j.bpj.2009.05.043
  • Derwin K, Galatz LM, Ratcliffe A, et al. Enthesis repair: challenges and opportunities for effective tendon-to-bone healing. J Bone Joint Surg Am. 2018;100(16):e109. doi:10.2106/JBJS.18.00200
  • Lu H, Chen C, Xie S, et al. Tendon healing in bone tunnel after human anterior cruciate ligament reconstruction: a systematic review of histological results. J Knee Surg. 2019;32(5):454–462. doi:10.1055/s-0038-1653964
  • Rodeo S, Arnoczky SP, Torzilli PA, et al. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am. 1993;75(12):1795–1803. doi:10.2106/00004623-199312000-00009
  • Kuang G, Yau WP, Lu WW, et al. Osteointegration of soft tissue grafts within the bone tunnels in anterior cruciate ligament reconstruction can be enhanced. Knee Surg Sports Traumatol Arthrosc. 2010;18(8):1038–1051. doi:10.1007/s00167-009-0910-1
  • Shojaee A, Parham A. Strategies of tenogenic differentiation of equine stem cells for tendon repair: current status and challenges. Stem Cell Res Ther. 2019;10(1):181. doi:10.1186/s13287-019-1291-0
  • Hanselman AE, Lalli TAJ, Santrock RD. Topical review: use of fetal tissue in foot and ankle surgery. Foot Ankle Spec. 2015;8(4):297–304. doi:10.1177/1938640015578513
  • Galatz L, Gerstenfeld L, Heber-Katz E, et al. Tendon regeneration and scar formation: the concept of scarless healing. J Orthop Res. 2015;33(6):823–831. doi:10.1002/jor.22853
  • Beredjiklian P, Favata M, Cartmell JS, et al. Regenerative versus reparative healing in tendon: a study of biomechanical and histological properties in fetal sheep. Ann Biomed Eng. 2003;31(10):1143–1152. doi:10.1114/1.1616931
  • Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther. 2003;3(5):705–713
  • Gui-Bo Y, You-Zhu Z, Shu-Dong W, et al. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. J Biomed Mater Res A. 2010;93(1):158–163. doi:10.1002/jbm.a.32496
  • Li X, Xie J, Lipner J, et al. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Letters. 2009;9(7):2763–2768. doi:10.1021/nl901582f
  • Lin Y, Zhang L, Liu NQ, et al. In vitro behavior of tendon stem/progenitor cells on bioactive electrospun nanofiber membranes for tendon-bone tissue engineering applications. Int J Nanomedicine. 2019;14:5831–5848. doi:10.2147/IJN.S210509
  • Zhu C, Pongkitwitoon S, Qiu J, et al. Design and fabrication of a hierarchically structured scaffold for tendon-to-bone repair. Adv Mater. 2018;30(16):e1707306. doi:10.1002/adma.201707306
  • Matsumoto T, Sato Y, Kobayashi T, et al. Adipose-derived stem cell sheets improve early biomechanical graft strength in rabbits after anterior cruciate ligament reconstruction. Am J Sports Med. 2021;49(13):3508–3518. doi:10.1177/03635465211041582
  • Madhurakkat Perikamana S, Lee J, Ahmad T, et al. Harnessing biochemical and structural cues for tenogenic differentiation of adipose derived stem cells (ADSCs) and development of an in vitro tissue interface mimicking tendon-bone insertion graft. Biomaterials. 2018;165:79–93. doi:10.1016/j.biomaterials.2018.02.046
  • Kade J, Dalton PD. Polymers for melt electrowriting. Adv Healthc Mater. 2021;10(1):e2001232. doi:10.1002/adhm.202001232
  • Orr S, Chainani A, Hippensteel KJ, et al. Aligned multilayered electrospun scaffolds for rotator cuff tendon tissue engineering. Acta biomaterialia. 2015;24:117–126. doi:10.1016/j.actbio.2015.06.010
  • Sun Y, Han F, Zhang P, et al. A synthetic bridging patch of modified co-electrospun dual nano-scaffolds for massive rotator cuff tear. J Mater Chem B. 2016;4(45):7259–7269. doi:10.1039/c6tb01674j
  • Zhao C, Wang X, Gao L, et al. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells. Acta biomaterialia. 2018;73:509–521. doi:10.1016/j.actbio.2018.04.030
  • LaCroix A, Duenwald-Kuehl SE, Lakes RS, et al. Relationship between tendon stiffness and failure: a metaanalysis. J Appl Physiol. 2013;115(1):43–51. doi:10.1152/japplphysiol.01449.2012
  • Jiang X, Wu S, Kuss M, et al. 3D printing of multilayered scaffolds for rotator cuff tendon regeneration. Bioactive Materials. 2020;5(3):636–643. doi:10.1016/j.bioactmat.2020.04.017
  • Liu W, Lipner J, Xie J, et al. Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl Mater Interfaces. 2014;6(4):2842–2849. doi:10.1021/am405418g
  • Zhang C, Yuan H, Liu H, et al. Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for achilles tendon regeneration. Biomaterials. 2015;53:716–730. doi:10.1016/j.biomaterials.2015.02.051
  • Tolbert J, French T, Kitson A, et al. Solvent-cast 3D printing with molecular weight polymer blends to decouple effects of scaffold architecture and mechanical properties on mesenchymal stromal cell fate. J Biomed Mater Res A. 2024. doi:10.1002/jbm.a.37674
  • Nathan A, Baker BM, Nerurkar NL, et al. Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta biomaterialia. 2011;7(1):57–66. doi:10.1016/j.actbio.2010.08.007
  • Sands R, Mooney DJ. Polymers to direct cell fate by controlling the microenvironment. Curr Opin Biotechnol. 2007;18(5):448–453. doi:10.1016/j.copbio.2007.10.004
  • Kim H, Jung G-Y, Yoon J-H, et al. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C. 2015;54:20–25. doi:10.1016/j.msec.2015.04.033
  • Screen H, Lee DA, Bader DL, et al. An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng H. 2004;218(2):109–119. doi:10.1243/095441104322984004
  • Zhou K, Yu P, Shi X, et al. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS nano. 2019;13(8):9595–9606. doi:10.1021/acsnano.9b04723