158
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Platelet Membrane Biomimetic Manganese Carbonate Nanoparticles Promote Breast Cancer Stem Cell Clearance for Sensitized Radiotherapy

ORCID Icon, , , , &
Pages 1699-1707 | Received 05 Dec 2023, Accepted 14 Feb 2024, Published online: 20 Feb 2024

References

  • Aminabee S, Rao AL, Alimunnisa S. Recent advances in cancer therapy. Int J Life Sci Pharma Res. 2020;2:144–146.
  • Korde LA, Somerfield MR, Hershman DL. Use of immune checkpoint inhibitor pembrolizumab in the treatment of high-risk, early-stage triple-negative breast cancer: ASCO guideline rapid recommendation update. J Clin Oncol. 2022;40(15):1696–1698. doi:10.1200/JCO.22.00503
  • De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Radiotherapy toxicity. Nat Rev Dis Prime. 2019;5(1):13. doi:10.1038/s41572-019-0064-5
  • Chen B, Xiao L, Wang W, et al. Bi2–xMnxO3 nanospheres engaged radiotherapy with amplifying DNA damage. ACS Appl Mater Interfaces. 2023;15(28):33903–33915. doi:10.1021/acsami.3c06838
  • Huang R-X, Zhou P-K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Sig Trans Target Ther. 2020;5(1):60. doi:10.1038/s41392-020-0150-x
  • Secchi V, Cova F, Villa I, et al. Energy partitioning in multicomponent nanoscintillators for enhanced localized radiotherapy. ACS Appl Mater Interfaces. 2023;15(20):24693–24700. doi:10.1021/acsami.3c00853
  • Jabir MS, Sulaiman GM, Taqi ZJ, Li D. Iraqi propolis increases degradation of IL-1beta and NLRC4 by autophagy following Pseudomonas aeruginosa infection. Microbes Infect. 2018;20(2):89–100. doi:10.1016/j.micinf.2017.10.007
  • Brand DH, Parker JI, Dearnaley DP, et al. Patterns of recurrence after prostate bed radiotherapy. Radiother Oncol. 2019;141:174–180. doi:10.1016/j.radonc.2019.09.007
  • Aponte PM, Caicedo A. Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells Int. 2017;3:5619472.
  • Intlekofer AM, Finley LWS. Metabolic signatures of cancer cells and stem cells. Nat Metab. 2019;1(2):177–188. doi:10.1038/s42255-019-0032-0
  • Zhang T, Pan Y, Suo M, et al. Photothermal‐triggered sulfur oxide gas therapy augments type I photodynamic therapy for potentiating cancer stem cell ablation and inhibiting radioresistant tumor recurrence, Advanced science; 2023.
  • Ning S, Zhang T, Lyu M, Lam JWY, Zhu D, Huang Q. Tang, A type I AIE photosensitiser-loaded biomimetic nanosystem allowing precise depletion of cancer stem cells and prevention of cancer recurrence after radiotherapy. Biomaterials. 2023;295:122034. doi:10.1016/j.biomaterials.2023.122034
  • Chen X, Liu B, Tong R, et al. Orchestration of biomimetic membrane coating and nanotherapeutics in personalized anticancer therapy. Biomater Sci. 2021;9(3):590–625.
  • Jadhav M, Prasad R, Gandhi M, Srivastava R. Erythrocyte nanovesicles as chemotherapeutic drug delivery platform for cancer therapy. J Drug Delivery Sci Technol. 2022;76:103738. doi:10.1016/j.jddst.2022.103738
  • Li JQ, Zhao RX, Yang FM, Qi XT, Ye PK, Xie M. An erythrocyte membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of breast cancer. J Mat Chem B. 2022;10(12):2047–2056. doi:10.1039/D1TB02522H
  • Shen J, Xiong K, Chen Y, Ji L, Chao H. Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy. Biomaterials. 2021;275:120979.
  • Qian G, Wang J, Yang L, et al. A pH-responsive CaO2@ZIF-67 system endows a scaffold with chemodynamic therapy properties. J Mater Sci. 2023;58(3):1214–1228. doi:10.1007/s10853-022-08103-w
  • Huang C, Ding S, Jiang W, Wang F-B. Glutathione-depleting nanoplatelets for enhanced sonodynamic cancer therapy. Nanoscale. 2021;13(8):4512–4518. doi:10.1039/D0NR08440A
  • Chen H, Luo X, Huang Q, et al. Platelet membrane fusion liposome loaded with type I AIE photosensitizer to induce chemoresistance cancer pyroptosis and immunogenic cell death for enhancing cancer immunotherapy. Chem Eng J. 2023;476:146276. doi:10.1016/j.cej.2023.146276
  • Chen H, Luo X, Cai W, et al. Biomimetic copper-doped polypyrrole nanoparticles for enhanced cancer low-temperature photothermal therapy. Int J Nanomed. 2023;18:7533–7541. doi:10.2147/IJN.S428344
  • Huang J, Liu M, Qiu Y, et al. Emerging sonodynamic therapy-based nanomedicines for cancer immunotherapy. Adv Sci. 2023;10(2):e2204365. doi:10.1002/advs.202204365
  • Malekmohammadi S, Hadadzadeh H, Rezakhani S, Amirghofran Z. Design and synthesis of gatekeeper coated dendritic silica/titania mesoporous nanoparticles with sustained and controlled drug release properties for targeted synergetic chemo-sonodynamic therapy. ACS Biomater Sci Eng. 2019;5(9):4405–4415. doi:10.1021/acsbiomaterials.9b00237
  • Zhang Z, Li B, Xie L, et al. Metal-phenolic network-enabled lactic acid consumption reverses immunosuppressive tumor microenvironment for sonodynamic therapy. ACS Nano. 2021;15(10):16934–16945. doi:10.1021/acsnano.1c08026
  • Xu T, Zhao S, Lin C, Zheng X, Lan M. Recent advances in nanomaterials for sonodynamic therapy. Nano Res. 2020;13(11):2898–2908.
  • Wang T, Huang C, Ning S, et al. Platelet membrane-coated C-TiO2 hollow nanospheres for combined sonodynamic and alkyl-radical cancer therapy. Nano Res. 2022;16:782–791.
  • Ning S, Dai X, Tang W, et al. Cancer cell membrane-coated C-TiO2 hollow nanoshells for combined sonodynamic and hypoxia-activated chemotherapy. Acta Biomater. 2022;152:562–574. doi:10.1016/j.actbio.2022.08.067
  • Zhang H, Pan X, Wu Q, Guo J, Wang C, Liu H. Manganese carbonate nanoparticles‐mediated mitochondrial dysfunction for enhanced sonodynamic therapy. Exploration. 2021;1(2). doi:10.1002/EXP.20210010
  • Kadhem HA, Ibraheem SA, Jabir MS, Kadhim AA, Taqi ZJ, Florin MD. Zinc oxide nanoparticles induces apoptosis in human breast cancer cells via Caspase-8 and P53 pathway. Nano Biomed Eng. 2019;11(1). doi:10.5101/nbe.v11i1.p35-43
  • Su J, Sun H, Meng Q, Zhang P, Yin Q, Li Y. Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics. 2017;7(3):523–537. doi:10.7150/thno.17259
  • Liu WL, Zou MZ, Qin SY, et al. Recent advances of cell membrane‐coated nanomaterials for biomedical applications. Adv Funct Mater. 2020;30(39):2003559.
  • Liu Y, Yang M, Luo J, Zhou H. Radiotherapy targeting cancer stem cells “awakens” them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci. 2020;12(1):19. doi:10.1038/s41368-020-00087-0
  • Huang C, Chen B, Jiang W, et al. Injectable Hydrogel for Cu(2+) controlled release and potent tumor therapy. Life. 2021;11:5.
  • Jabir MS, Nayef UM, Abdulkadhim WK, et al. Fe3O4 nanoparticles capped with PEG induce apoptosis in breast cancer AMJ13 cells via mitochondrial damage and reduction of NF-κB Translocation. J Inorg Organomet Polym Mater. 2020;31(3):1241–1259. doi:10.1007/s10904-020-01791-4
  • Liang S, Deng X, Chang Y, et al. Intelligent hollow Pt-CuS janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 2019;19(6):4134–4145. doi:10.1021/acs.nanolett.9b01595
  • Huang P, Qian X, Chen Y, et al. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc. 2017;139(3):1275–1284. doi:10.1021/jacs.6b11846