189
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Regulating Tumor-Associated Macrophage Polarization by Cyclodextrin-Modified PLGA Nanoparticles Loaded with R848 for Treating Colon Cancer

, , , , , , ORCID Icon, , , , , & show all
Pages 3589-3605 | Received 08 Dec 2023, Accepted 10 Apr 2024, Published online: 16 Apr 2024

References

  • Sung H, Ferlay J, Siegel RL. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020;8(2):e191–e203. doi:10.1016/S2214-109X(19)30482-6
  • Dai Z, Yu X, Hong J, Liu X, Sun J, Sun X. Development of a novel CsA-PLGA drug delivery system based on a glaucoma drainage device for the prevention of postoperative fibrosis. Mater Sci Eng C. 2016;66:206–214. doi:10.1016/j.msec.2016.04.077
  • Vanamee ÉS, Faustman DL. TNFR2: a novel target for cancer immunotherapy. Trends Mol Med. 2017;23(11):1037–1046. doi:10.1016/j.molmed.2017.09.007
  • Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Med. 2018;24(5):541–550. doi:10.1038/s41591-018-0014-x
  • Shamdani S, Uzan G, Naserian S. TNFα-TNFR2 signaling pathway in control of the neural stem/progenitor cell immunosuppressive effect: different experimental approaches to assess this hypothetical mechanism behind their immunological function. Stem Cell Res Ther. 2020;11(1):307. doi:10.1186/s13287-020-01816-2
  • Da Silva CG, Camps MGM, Tmwy L, et al. Effective chemoimmunotherapy by co-delivery of doxorubicin and immune adjuvants in biodegradable nanoparticles. Theranostics. 2019;9(22):6485–6500. doi:10.7150/thno.34429
  • Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17(12):887–904. doi:10.1038/nrd.2018.169
  • Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084. doi:10.3389/fimmu.2020.583084
  • Rong L, Zhang Y, Li W-S, Su Z, Fadhil JI, Zhang C. Iron chelated melanin-like nanoparticles for tumor-associated macrophage repolarization and cancer therapy. Biomaterials. 2019;225:119515. doi:10.1016/j.biomaterials.2019.119515
  • Deng R-H, Zou M-Z, Zheng D, et al. Nanoparticles from cuttlefish ink inhibit tumor growth by synergizing immunotherapy and photothermal therapy. ACS nano. 2019;13(8):8618–8629. doi:10.1021/acsnano.9b02993
  • Jiang M, Liu J, Yang D, et al. A TNFR2 antibody by countering immunosuppression cooperates with HMGN1 and R848 immune stimulants to inhibit murine colon cancer. Int Immunopharmacol. 2021 101;108345 doi:10.1016/j.intimp.2021.108345
  • Smith M, García-Martínez E, Pitter MR, et al. Trial watch: toll-like receptor agonists in cancer immunotherapy. OncoImmunology. 2018;7(12):e1526250. doi:10.1080/2162402X.2018.1526250
  • Dietsch GN, Lu H, Yang Y, et al. Coordinated activation of toll-like receptor8 (TLR8) and NLRP3 by the TLR8 agonist, VTX-2337, ignites tumoricidal natural killer cell activity. PLoS One. 2016;11(2):e0148764. doi:10.1371/journal.pone.0148764
  • Rook AH, Gelfand JM, Wysocka M, et al. Topical resiquimod can induce disease regression, eradicate malignant T cells and enhance T cell effector functions in cutaneous T cell lymphoma. Blood. 2015. doi:10.1182/blood-2015-02-630335
  • Engel AL, Holt GE, Lu H. The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system. Expert Rev Clin Pharmacol. 2011;4(2):275–289. doi:10.1586/ecp.11.5
  • Varshney D, Qiu SY, Graf TP, McHugh KJ. Employing drug delivery strategies to overcome challenges using TLR7/8 agonists for cancer immunotherapy. AAPS J. 2021;23(4):90. doi:10.1208/s12248-021-00620-x
  • Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Delivery. 2020;27(1):1248–1262. doi:10.1080/10717544.2020.1809559
  • Qodratnama R, Serino LP, Cox HC, Qutachi O, White LJ. Formulations for modulation of protein release from large-size PLGA microparticles for tissue engineering. Mater Sci Eng C. 2015;47:230–236. doi:10.1016/j.msec.2014.11.003
  • Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–1397. doi:10.3390/polym3031377
  • Santos AC, Costa D, Ferreira L, et al. Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Delivery Transl Res. 2021;11(1):49–71. doi:10.1007/s13346-020-00778-5
  • Zheng K, Huang Z, Huang J, et al. Effect of a 2-HP-β-cyclodextrin formulation on the biological transport and delivery of chemotherapeutic PLGA nanoparticles. Drug Des Devel Ther. 2021;15:2605–2618. doi:10.2147/DDDT.S314361
  • Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2018;2(8):578–588. doi:10.1038/s41551-018-0236-8
  • Ren B, Jiang B, Hu R, et al. HP-β-cyclodextrin as an inhibitor of amyloid-β aggregation and toxicity. Phys Chem Chem Phys. 2016;18(30):20476–20485. doi:10.1039/C6CP03582E
  • Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 2012;72(9):2162–2171. doi:10.1158/0008-5472.CAN-11-3687
  • Fonseca C, Simões S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release. 2002;83(2):273–286. doi:10.1016/S0168-3659(02)00212-2
  • Perveen K, Husain FM, Qais FA, et al. Microwave-assisted rapid green synthesis of gold nanoparticles using seed extract of trachyspermum ammi: ROS mediated biofilm inhibition and anticancer activity. Biomolecules. 2021;11(2):197. doi:10.3390/biom11020197
  • Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian J. Pharm. Sci. 2017;12(6):532–541. doi:10.1016/j.ajps.2017.07.002
  • Gong X, Zheng Y, He G, Chen K, Zeng X, Chen Z. Multifunctional nanoplatform based on star-shaped copolymer for liver cancer targeting therapy. Drug Deliv. 2019;26(1):595–603. doi:10.1080/10717544.2019.1625467
  • Yao J, Li Y, Sun X, Dahmani FZ, Liu H, Zhou J. Nanoparticle delivery and combination therapy of gambogic acid and all-trans retinoic acid. Int J Nanomed. 2014;9:3313–3324. doi:10.2147/IJN.S62793
  • Ding W, Guo L. Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. Int J Nanomed. 2013;8:4631–4639. doi:10.2147/IJN.S51745
  • Xie X, Li S, Liu Y, et al. Based on functional materials and PLGA for the florfenicol controlled release system and its antibacterial properties. React Funct Polym. 2022;178:105331. doi:10.1016/j.reactfunctpolym.2022.105331
  • Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482–1492. doi:10.1093/annonc/mdw168
  • Wang NX, von Recum HA. Affinity-based drug delivery. Macromol biosci. 2011;11(3):321–332. doi:10.1002/mabi.201000206
  • Han S, Wang W, Wang S, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics. 2021;11(6):2892–2916. doi:10.7150/thno.50928
  • Hayashi T, Crain B, Corr M, et al. Intravesical Toll-like receptor 7 agonist R-837: optimization of its formulation in an orthotopic mouse model of bladder cancer. International Journal of Urology: Official Journal of the Japanese Urological Association. 2010;17(5):483–490. doi:10.1111/j.1442-2042.2010.02503.x
  • Lipkowitz KB. Applications of Computational Chemistry to the Study of Cyclodextrins. Chem Rev. 1998;98(5):1829–1874. doi:10.1021/cr9700179
  • Anfray C, Mainini F, Digifico E, et al. Intratumoral combination therapy with poly(I:C) and resiquimod synergistically triggers tumor-associated macrophages for effective systemic antitumoral immunity. Journal for ImmunoTherapy of Cancer. 2021;9(9):e002408. doi:10.1136/jitc-2021-002408
  • Zhu L, Zhang X, Chen X, et al. Anti-TNFR2 enhanced the antitumor activity of a new HMGN1/3M-052 stimulated dendritic cell vaccine in a mouse model of colon cancer. Biochem Biophys Res Commun 2023;653:106–114. doi:10.1016/j.bbrc.2023.02.039
  • Combes F, Meyer E, Sanders NN. Immune cells as tumor drug delivery vehicles. J Control Release. 2020;327:70–87. doi:10.1016/j.jconrel.2020.07.043
  • Pandit S, Dutta D, Nie S. Active transcytosis and new opportunities for cancer nanomedicine. Nature Mater. 2020;19(5):478–480. doi:10.1038/s41563-020-0672-1