107
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Acidic Environment-Responsive Metal Organic Framework-Mediated Dihydroartemisinin Delivery for Triggering Production of Reactive Oxygen Species in Drug-Resistant Lung Cancer

, , , , , & show all
Pages 3847-3859 | Received 21 Nov 2023, Accepted 04 Apr 2024, Published online: 29 Apr 2024

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca a Cancer J Clinicians. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Jiang D, Shi Y, Qiu Y, et al. A multidimensional biosensor system to guide LUAD individualized treatment. J Mat Chem B. 2021;9(38):7991–8002. doi:10.1039/D1TB00731A
  • Shi J, Shiraishi K, Choi J, et al. Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population. Nat Commun. 2023;14(1):3043. doi:10.1038/s41467-023-38196-z
  • Kaur R, Bhardwaj A, Gupta S. Cancer treatment therapies: traditional to modern approaches to combat cancers. Molecular Biology Reports. 2023;50(11):9663–9676. doi:10.1007/s11033-023-08809-3
  • Duan C, Yu M, Xu J, Li B-Y, Zhao Y, Kankala RK. Overcoming cancer multi-drug resistance (MDR): reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother. 2023;162:114643. doi:10.1016/j.biopha.2023.114643
  • Liu C, Han Y, Kankala R, Wang S, Chen A. Subcellular Performance of Nanoparticles in Cancer Therapy. Int j Nanomed. 2020;15:675–704. doi:10.2147/IJN.S226186
  • Kankala RK, Liu C-G, Yang D-Y, Wang S-B, Chen A-Z. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. Chem Eng J. 2020;383:123138. doi:10.1016/j.cej.2019.123138
  • Ma S, Liu J, Li W, et al. Machine learning in TCM with natural products and molecules: current status and future perspectives. ChinMed. 2023;18(1):43. doi:10.1186/s13020-023-00741-9
  • Wei D, Yang H, Zhang Y, et al. Nano-traditional Chinese medicine: a promising strategy and its recent advances. J Mat Chem B. 2022;10(16):2973–2994. doi:10.1039/D2TB00225F
  • Xu F, Li M, Que Z, et al. Combined chemo-immuno-photothermal therapy based on ursolic acid/astragaloside IV-loaded hyaluronic acid-modified polydopamine nanomedicine inhibiting the growth and metastasis of non-small cell lung cancer. J Mat Chem B. 2023;11(15):3453–3472. doi:10.1039/D2TB02328H
  • Sun K, Deng T, Sun J, et al. Ratiometric fluorescence detection of artemisinin based on photoluminescent Zn-MOF combined with hemin as catalyst. Spectrochim Acta A Mol Biomol Spectrosc. 2023;289:122253. doi:10.1016/j.saa.2022.122253
  • Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Med. 2011;17(10):1217–1220. doi:10.1038/nm.2471
  • Tu Y. Artemisinin-A gift from traditional Chinese medicine to the world (Nobel Lecture). Angewand Chem. 2016;55(35):10210–10226. doi:10.1002/anie.201601967
  • Augustin Y, Staines HM, Krishna S. Artemisinins as a novel anti-cancer therapy: targeting a global cancer pandemic through drug repurposing. Pharmacol Ther. 2020;216:107706. doi:10.1016/j.pharmthera.2020.107706
  • Wang Y, Yuan X, Ren M, Wang Z. Ferroptosis: a new research direction of Artemisinin and its derivatives in anti-cancer treatment. Am J Chin Med. 2024;2024:1–21.
  • Li Y, Zhou X, Liu J, et al. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling. Life Sci. 2020;248:117454. doi:10.1016/j.lfs.2020.117454
  • Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021;601:120571. doi:10.1016/j.ijpharm.2021.120571
  • Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27:4.
  • Zhang L, Wang P, Feng Q, et al. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. PG Asia Materials. 2017;9(10):e441. doi:10.1038/am.2017.185
  • Liu S, Zhou D, Yang J, Zhou H, Chen J, Guo T. Bioreducible Zinc(II)-coordinative polyethylenimine with low molecular weight for robust gene delivery of primary and stem cells. J Am Chem Soc. 2017;139(14):5102–5109. doi:10.1021/jacs.6b13337
  • Samal SK, Dash M, Van Vlierberghe S, et al. Cationic polymers and their therapeutic potential. Chem Soc Rev. 2012;41(21):7147–7194. doi:10.1039/c2cs35094g
  • Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res. 2020;24:12. doi:10.1186/s40824-020-00190-7
  • Liang C, Zhang X, Wang Z, Wang W, Yang M, Dong X. Organic/inorganic nanohybrids rejuvenate photodynamic cancer therapy. J Mater Chem B. 2020;8(22):4748–4763. doi:10.1039/D0TB00098A
  • Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265–280. doi:10.1038/s41576-021-00439-4
  • Zhang L, Li Y, Yu JC. Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B. 2014;2(5):452–470. doi:10.1039/C3TB21196G
  • Zhang L, Yang X, Li Y, Zheng W, Jiang XJC. Hollow carbon nanospheres as a versatile platform for co-delivery of siRNA and chemotherapeutics. Carbon. 2017;121:S0008622317305420. doi:10.1016/j.carbon.2017.05.084
  • Shen Y, Ma X, Zhang B, et al. Degradable dual pH‐and temperature‐responsive photoluminescent dendrimers. Chemistry. 2011;17(19):5319–5326. doi:10.1002/chem.201003495
  • Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Mater. 2010;9(2):172–178. doi:10.1038/nmat2608
  • Li HL, Eddaoudi MM, O’Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. nature. 1999;402(6759):276–279. doi:10.1038/46248
  • Wu MX, Yang YW. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater. 2017;29(23). doi:10.1002/adma.201606134
  • Yang L, Lin Y, Zhang J, et al. Biomimetic metal-organic frameworks navigated biological bombs for efficient lung cancer therapy. J Colloid Interface Sci. 2022;625:532–543. doi:10.1016/j.jcis.2022.06.008
  • Gao P, Chen Y, Pan W, Li N, Liu Z, Tang B. Antitumor agents based on metal–organic frameworks. Angew Chem. 2021;133(31):16901–16914. doi:10.1002/ange.202102574
  • Saeb MR, Rabiee N, Mozafari M, Verpoort F, Voskressensky LG, Luque R. Metal–organic frameworks (MOFs) for cancer therapy. Materials. 2021;14(23):7277. doi:10.3390/ma14237277
  • L-G L, Yang -X-X, H-Z X, et al. A dihydroartemisinin-loaded nanoreactor motivates anti-cancer immunotherapy by synergy-induced ferroptosis to activate Cgas/STING for reprogramming of macrophage. Adv Healthcare Mater. 2023;12(28):2301561. doi:10.1002/adhm.202301561
  • Wan X, Zhong H, Pan W, et al. Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal-organic framework. Angew Chem Int Ed. 2019;58(40):14134–14139. doi:10.1002/anie.201907388
  • Yan Y, Yang X, Han N, et al. Metal-organic framework-encapsulated dihydroartemisinin nanoparticles induces apoptotic cell death in ovarian cancer by blocking ROMO1-mediated ROS production. J Nanobiotechnol. 2023;21(1):204. doi:10.1186/s12951-023-01959-3
  • Chen Y, Wang B, Chen W, et al. Co-delivery of dihydroartemisinin and indocyanine green by metal-organic framework-based vehicles for combination treatment of hepatic carcinoma. Pharmaceutics. 2022;14(10):2047. doi:10.3390/pharmaceutics14102047
  • Sun Y, Zheng L, Yang Y, et al. Metal-organic framework nanocarriers for drug delivery in biomedical. Nano-Micro Lett. 2020;12:103. doi:10.1007/s40820-020-00423-3
  • Jiang X, Zhao Y, Sun S, et al. Research development of porphyrin-based metal-organic frameworks: targeting modalities and cancer therapeutic applications. J Mat Chem B. 2023;11(27):6172–6200. doi:10.1039/D3TB00632H
  • Hou Q, Wang L, Xiao F, et al. Dual targeting nanoparticles for epilepsy therapy. Chem Sci. 2022;13(43):12913–12920. doi:10.1039/D2SC03298H
  • Bahar E, Kim JY, Kim HS, et al. Establishment of acquired cisplatin resistance in ovarian cancer cell lines characterized by enriched metastatic properties with increased twist expression. Int J Mol Sci. 2020;21(20):7613. doi:10.3390/ijms21207613
  • Xu K, Ma J, Hall SRR, Peng RW, Yang H, Yao F. Battles against aberrant KEAP1-NRF2 signaling in lung cancer: intertwined metabolic and immune networks. Theranostics. 2023;13(2):704–723. doi:10.7150/thno.80184
  • ArulJothi KN, Kumaran K, Senthil S, et al. Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions. Med Oncol. 2022;40(1):43. doi:10.1007/s12032-022-01900-y
  • Arslanbaeva LR, Santoro MM. Adaptive redox homeostasis in cutaneous melanoma. Redox Biol. 2020;37:101753. doi:10.1016/j.redox.2020.101753
  • Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules. 2020;10(2):320. doi:10.3390/biom10020320
  • Carmody RJ, Cotter TG. Signalling apoptosis: a radical approach. Redox Rep. 2001;6(2):77–90. doi:10.1179/135100001101536085
  • Wang Y, Guo S-H, Shang X-J, et al. Triptolide induces Sertoli cell apoptosis in mice via ROS/JNK-dependent activation of the mitochondrial pathway and inhibition of Nrf2-mediated antioxidant response. Acta Pharmacol Sin. 2018;39(2):311–327. doi:10.1038/aps.2017.95
  • Kwak A-W, Kim W-K, Lee S-O, et al. Licochalcone B induces ROS-dependent apoptosis in oxaliplatin-resistant colorectal cancer cells via p38/JNK MAPK signaling. Antioxidants. 2023;12(3):656. doi:10.3390/antiox12030656