54
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Biosynthesis of Nanoparticles with Green Tea for Inhibition of β-Amyloid Fibrillation Coupled with Ligands Analysis

ORCID Icon, , , , &
Pages 4299-4317 | Received 04 Dec 2023, Accepted 17 Apr 2024, Published online: 14 May 2024

References

  • Weidner WS, Barbarino P. P4-443: the state of the art of dementia research: new frontiers. Alzheimers Dement. 2019;15(7S_Part_28):1473. doi:10.1016/j.jalz.2019.06.4115
  • Eisenberg D, Jucker M. The amyloid state of proteins in human diseases. Cell. 2012;148(6):1188–1203. doi:10.1016/j.cell.2012.02.022
  • Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7(1):33. doi:10.1038/s41572-021-00269-y
  • Liang CQ, Li YM. Peptides for disrupting and degrading amyloids. Curr Opin Chem Biol. 2021;64:124–130. doi:10.1016/j.cbpa.2021.05.011
  • Mittal S, Prajapati KP, Ansari M, et al. Autooxidation of curcumin in physiological buffer causes an enhanced synergistic anti-amyloid effect. Int J Biol Macromol. 2023;235:123629. doi:10.1016/j.ijbiomac.2023.123629
  • Alam D, Naaz F, Islam A, et al. Role of sugar osmolytes and their nano-counterparts as inhibitors in protein fibrillation. J Mol Liq. 2023;386:122479. doi:10.1016/j.molliq.2023.122479
  • Borah P, Mattaparthi VSK. Insights into resveratrol as an inhibitor against Aβ1-42 peptide aggregation: a molecular dynamics simulation study. Curr Chem Biol. 2023;17(1):67–78. doi:10.2174/2212796817666221221151713
  • Jimenez-Aliaga K, Bermejo-Bescos P, Benedi J, et al. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011;89(25–26):939–945. doi:10.1016/j.lfs.2011.09.023
  • Fang M, Zhang Q, Guan P, et al. Insights into molecular mechanisms of EGCG and apigenin on disrupting amyloid-beta protofibrils based on molecular dynamics simulations. J Phys Chem B. 2022;126(41):8155–8165. doi:10.1021/acs.jpcb.2c04230
  • Ehrnhoefer DE, Bieschke J, Boeddrich A, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol. 2008;15(6):558–566. doi:10.1038/nsmb.1437
  • Ahmed R, VanSchouwen B, Jafari N, et al. Molecular mechanism for the (-)-epigallocatechin gallate-induced toxic to nontoxic remodeling of Abeta oligomers. J Am Chem Soc. 2017;139(39):13720–13734. doi:10.1021/jacs.7b05012
  • Hyung SJ, DeToma AS, Brender JR, et al. Insights into antiamyloidogenic properties of the green tea extract (-)-epigallocatechin-3-gallate toward metal-associated amyloid-beta species. Proc Natl Acad Sci U S A. 2013;110(10):3743–3748. doi:10.1073/pnas.1220326110
  • Acharya A, Stockmann J, Beyer L, et al. The effect of (-)-epigallocatechin-3-gallate on the amyloid-beta secondary structure. Biophys J. 2020;119(2):349–359. doi:10.1016/j.bpj.2020.05.033
  • Palhano FL, Lee J, Grimster NP, et al. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J Am Chem Soc. 2013;135(20):7503–7510. doi:10.1021/ja3115696
  • Valverde-Salazar V, Ruiz-Gabarre D, Garcia-Escudero V. Alzheimer’s disease and green tea: epigallocatechin-3-gallate as a modulator of inflammation and oxidative stress. Antioxidants. 2023;12(7):1460. doi:10.3390/antiox12071460
  • Liu M, Chen F, Lin T, et al. (-)-Epigallocatechin-3-gallate ameliorates learning and memory impairments by attenuating peroxidation in APP/PS1 transgenic mice. Mol Neurodegener. 2012;7(S1):S29. doi:10.1186/1750-1326-7-s1-s29
  • Chan S, Kantham S, Rao VM, et al. Metal chelation, radical scavenging and inhibition of Aβ42 fibrillation by food constituents in relation to Alzheimer’s disease. Food Chem. 2016;199:185–194. doi:10.1016/j.foodchem.2015.11.118
  • Seidler PM, Murray KA, Boyer DR, et al. Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro. Nat Commun. 2022;13(1):5451. doi:10.1038/s41467-022-32951-4
  • Sahadevan R, Singh S, Binoy A, et al. Chemico-biological aspects of (-)-epigallocatechin-3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: current status and future prospects. Crit Rev Food Sci Nutr. 2022:1–30. doi:10.1080/10408398.2022.2068500
  • Lambert JD, Lee MJ, Lu H, et al. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr. 2003;133(12):4172–4177. doi:10.1093/jn/133.12.4172
  • Yang QQ, Wei XL, Fang YP, et al. Nanochemoprevention with therapeutic benefits: an updated review focused on epigallocatechin gallate delivery. Crit Rev Food Sci Nutr. 2020;60(8):1243–1264. doi:10.1080/10408398.2019.1565490
  • Aggarwal V, Tuli HS, Tania M, et al. Molecular mechanisms of action of epigallocatechin gallate in cancer: recent trends and advancement. Semin Cancer Biol. 2022;80:256–275. doi:10.1016/j.semcancer.2020.05.011
  • Dai W, Ruan C, Zhang Y, et al. Bioavailability enhancement of EGCG by structural modification and nano-delivery: a review. J Funct Foods. 2020;65:103732. doi:10.1016/j.jff.2019.103732
  • Lin X, Liu W, Dong X, et al. Epigallocatechin gallate-derived carbonized polymer dots: a multifunctional scavenger targeting Alzheimer’s beta-amyloid plaques. Acta Biomater. 2023;157:524–537. doi:10.1016/j.actbio.2022.11.063
  • Yan C, Wang C, Shao X, et al. Dual-targeted carbon-dot-drugs nanoassemblies for modulating Alzheimer’s related amyloid-beta aggregation and inhibiting fungal infection. Mater Today Bio. 2021;12:100167. doi:10.1016/j.mtbio.2021.100167
  • Istenic K, Cerc Korosec R, Poklar Ulrih N. Encapsulation of (-)-epigallocatechin gallate into liposomes and into alginate or chitosan microparticles reinforced with liposomes. J Sci Food Agric. 2016;96(13):4623–4632. doi:10.1002/jsfa.7691
  • Debnath K, Shekhar S, Kumar V, et al. Efficient inhibition of protein aggregation, disintegration of aggregates, and lowering of cytotoxicity by green tea polyphenol-based self-assembled polymer nanoparticles. ACS Appl Mater Interfaces. 2016;8(31):20309–20318. doi:10.1021/acsami.6b06853
  • John T, Adler J, Elsner C, et al. Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation. J Colloid Interface Sci. 2022;622:804–818. doi:10.1016/j.jcis.2022.04.134
  • Gao G, Zhang M, Gong D, et al. The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-beta fibrillation. Nanoscale. 2017;9(12):4107–4113. doi:10.1039/c7nr00699c
  • Tapia-Arellano A, Gallardo-Toledo E, Celis F, et al. The curvature of gold nanoparticles influences the exposure of amyloid-beta and modulates its aggregation process. Mater Sci Eng C Mater Biol Appl. 2021;128:112269. doi:10.1016/j.msec.2021.112269
  • Kim Y, Park JH, Lee H, et al. How do the size, charge and shape of nanoparticles affect amyloid beta aggregation on brain lipid bilayer? Sci Rep. 2016;6:19548. doi:10.1038/srep19548
  • Sukhanova A, Poly S, Bozrova S, et al. Nanoparticles with a specific size and surface charge promote disruption of the secondary structure and amyloid-like fibrillation of human insulin under physiological conditions. Front Chem. 2019;7:480. doi:10.3389/fchem.2019.00480
  • Liao YH, Chang YJ, Yoshiike Y, et al. Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-beta fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small. 2012;8(23):3631–3639. doi:10.1002/smll.201201068
  • Linse S, Cabaleiro-Lago C, Xue WF, et al. Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci U S A. 2007;104(21):8691–8696. doi:10.1073/pnas.0701250104
  • Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, et al. Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. J Am Chem Soc. 2008;130(46):15437–15443. doi:10.1021/ja8041806
  • Vicente-Zurdo D, Rosales-Conrado N, Leon-Gonzalez ME. Unravelling the in vitro and in vivo potential of selenium nanoparticles in Alzheimer’s disease: a bioanalytical review. Talanta. 2024;269:125519. doi:10.1016/j.talanta.2023.125519
  • Aili M, Zhou K, Zhan J, et al. Anti-inflammatory role of gold nanoparticles in the prevention and treatment of Alzheimer’s disease. J Mater Chem B. 2023;11(36):8605–8621. doi:10.1039/d3tb01023f
  • Sela H, Cohen H, Elia P, et al. Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J Nanobiotechnology. 2015;13:71. doi:10.1186/s12951-015-0133-1
  • Sanchis-Gual R, Coronado-Puchau M, Mallah T, et al. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: chemistry, physics and applications in biomedicine, catalysis and magnetism. Coord Chem Rev. 2023;480:215025. doi:10.1016/j.ccr.2023.215025
  • Rai A, Seena S, Gagliardi T, et al. Advances in the design of amino acid and peptide synthesized gold nanoparticles for their applications. Adv Colloid Interface Sci. 2023;318:102951. doi:10.1016/j.cis.2023.102951
  • Hou K, Zhao J, Wang H, et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat Commun. 2020;11(1):4790. doi:10.1038/s41467-020-18525-2
  • Deeths TM, Stanley RJ. Parametrial calcification in cervical carcinoma patients treated with radioactive gold. AJR Am J Roentgenol. 1976;127(3):511–513. doi:10.2214/ajr.127.3.511
  • Khoobchandani M, Katti K, Maxwell A, et al. Laminin receptor-avid nanotherapeutic EGCg-AuNPs as a potential alternative therapeutic approach to prevent restenosis. Int J Mol Sci. 2016;17(3):316. doi:10.3390/ijms17030316
  • Zhang J, Zhou X, Yu Q, et al. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-beta aggregation and cytotoxicity. ACS Appl Mater Interfaces. 2014;6(11):8475–8487. doi:10.1021/am501341u
  • Liu H, Yu L, Dong X, et al. Synergistic effects of negatively charged hydrophobic nanoparticles and (-)-epigallocatechin-3-gallate on inhibiting amyloid beta-protein aggregation. J Colloid Interface Sci. 2017;491:305–312. doi:10.1016/j.jcis.2016.12.038
  • Alle M, Lee SH, Kim JC. Ultrafast synthesis of gold nanoparticles on cellulose nanocrystals via microwave irradiation and their dyes-degradation catalytic activity. J Mater Sci Technol. 2020;41:168–177. doi:10.1016/j.jmst.2019.11.003
  • Liu F, Liu X, Astruc D, et al. Dendronized triazolyl-containing ferrocenyl polymers as stabilizers of gold nanoparticles for recyclable two-phase reduction of 4-nitrophenol. J Colloid Interface Sci. 2019;533:161–170. doi:10.1016/j.jcis.2018.08.062
  • Vijayan A, Nair LV, Sandhyarani N. Gold cluster incorporated Rhenium disulfide: an efficient catalyst towards electrochemical and photoelectrochemical hydrogen evolution reaction. Electrochim Acta. 2023;446:142073. doi:10.1016/j.electacta.2023.142073
  • Atia A, Abdel-Monem YK, Salama AH, et al. Green gold@chitosan nanocomposite via solid-state synthesis; a separable catalyst for reduction of Cr(IV). J Ind Eng Chem. 2023;117:342–351. doi:10.1016/j.jiec.2022.10.022
  • Lee KX, Shameli K, Yew YP, et al. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomed. 2020;15:275–300. doi:10.2147/IJN.S233789
  • Li F, Qasim S, Li D, et al. Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator. Semin Cancer Biol. 2022;83:335–352. doi:10.1016/j.semcancer.2020.11.018
  • Choi I, Wang M, Yoo S, et al. Autophagy enables microglia to engage amyloid plaques and prevents microglial senescence. Nat Cell Biol. 2023;25(7):963–974. doi:10.1038/s41556-023-01158-0
  • Sun D, Li N, Zhang W, et al. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf B Biointerfaces. 2016;148:116–129. doi:10.1016/j.colsurfb.2016.08.052
  • Fujiwara H, Yoshida J, Dibwe DF, et al. Orengedokuto and san’oshashinto improve memory deficits by inhibiting aging-dependent activation of glycogen synthase kinase-3beta. J Tradit Complement Med. 2019;9(4):328–335. doi:10.1016/j.jtcme.2018.12.001
  • Zheng J, Xie Y, Ren L, et al. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease. Mol Metab. 2021;47:101180. doi:10.1016/j.molmet.2021.101180
  • McLafferty FW. Tandem mass spectrometry. Science. 1981;214(4518):280–287. doi:10.1126/science.7280693
  • Zhang A, Sun H, Yan G, et al. Recent developments and emerging trends of mass spectrometry for herbal ingredients analysis. TRAC Trends in Analytical Chemistry. 2017;94:70–76. doi:10.1016/j.trac.2017.07.007
  • Guzzi C, Colombo L, Luigi A, et al. Flavonoids and their glycosides as anti-amyloidogenic compounds: abeta1-42 interaction studies to gain new insights into their potential for Alzheimer’s Disease prevention and therapy. Chem Asian J. 2017;12(1):67–75. doi:10.1002/asia.201601291
  • Ferreira de Freitas R, Schapira M. A systematic analysis of atomic protein-ligand interactions in the PDB. Medchemcomm. 2017;8(10):1970–1981. doi:10.1039/c7md00381a
  • Gupta S, Dasmahapatra AK. Destabilization potential of phenolics on Abeta fibrils: mechanistic insights from molecular dynamics simulation. Phys Chem Chem Phys. 2020;22(35):19643–19658. doi:10.1039/d0cp02459g
  • Li F, Zhan C, Dong X, et al. Molecular mechanisms of resveratrol and EGCG in the inhibition of Aβ42 aggregation and disruption of Aβ42 protofibril: similarities and differences. Phys Chem Chem Phys. 2021;23(34):18843–18854. doi:10.1039/d1cp01913a
  • Mukherjee A, Sarkar D, Sasmal S. A Review of green synthesis of metal nanoparticles using algae. Front Microbiol. 2021;12:693899. doi:10.3389/fmicb.2021.693899
  • Barabadi H, Mobaraki K, Jounaki K, et al. Exploring the biological application of Penicillium fimorum-derived silver nanoparticles: in vitro physicochemical, antifungal, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic performance. Heliyon. 2023;9(6):e16853. doi:10.1016/j.heliyon.2023.e16853
  • Hamida RS, Ali MA, Sharif FT, et al. Biofabrication of silver nanoparticles using Nostoc muscorum Lukesova 2/91: optimization, characterization, and biological applications. Int J Nanomed. 2023;18:5625–5649. doi:10.2147/IJN.S420312
  • Nelis M, Decraecker L, Boeckxstaens G, et al. Development of a HILIC-MS/MS method for the quantification of histamine and its main metabolites in human urine samples. Talanta. 2020;220:121328. doi:10.1016/j.talanta.2020.121328
  • Lv C, Li Q, Liu X, et al. Determination of catecholamines and their metabolites in rat urine by ultra-performance liquid chromatography-tandem mass spectrometry for the study of identifying potential markers for Alzheimer’s disease. J Mass Spectrom. 2015;50(2):354–363. doi:10.1002/jms.3536
  • Liu FF, Dong XY, He L, et al. Molecular insight into conformational transition of amyloid beta-peptide 42 inhibited by (-)-epigallocatechin-3-gallate probed by molecular simulations. J Phys Chem B. 2011;115(41):11879–11887. doi:10.1021/jp202640b
  • Warerkar OD, Mudliar NH, Momin MM, et al. Targeting amyloids with coated nanoparticles: a review on potential combinations of nanoparticles and bio-compatible coatings. Crit Rev Ther Drug Carrier Syst. 2024;41(2):85–119. doi:10.1615/CritRevTherDrugCarrierSyst.2023046209
  • Dourado NS, Souza CDS, de Almeida MMA, et al. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer’s disease. Front Aging Neurosci. 2020;12:119. doi:10.3389/fnagi.2020.00119
  • Shimazu R, Anada M, Miyaguchi A, et al. Evaluation of blood-brain barrier permeability of polyphenols, anthocyanins, and their metabolites. J Agric Food Chem. 2021;69(39):11676–11686. doi:10.1021/acs.jafc.1c02898
  • Ono K, Yoshiike Y, Takashima A, et al. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem. 2003;87(1):172–181. doi:10.1046/j.1471-4159.2003.01976.x
  • Paul PS, Patel T, Cho JY, et al. Native PLGA nanoparticles attenuate Abeta-seed induced tau aggregation under in vitro conditions: potential implication in Alzheimer’s disease pathology. Sci Rep. 2024;14(1):144. doi:10.1038/s41598-023-50465-x
  • Ozdal ZD, Sahmetlioglu E, Narin I, et al. Synthesis of gold and silver nanoparticles using flavonoid quercetin and their effects on lipopolysaccharide induced inflammatory response in microglial cells. 3 Biotech. 2019;9(6):212. doi:10.1007/s13205-019-1739-z
  • Bras NF, Ashirbaev SS, Zipse H. Combined in silico and in vitro approaches to uncover the oxidation and Schiff base reaction of baicalein as an inhibitor of amyloid protein aggregation. Chemistry. 2022;28(11):e202104240. doi:10.1002/chem.202104240
  • Li Y, Zhao J, Holscher C. Therapeutic potential of baicalein in Alzheimer’s disease and Parkinson’s disease. CNS Drugs. 2017;31(8):639–652. doi:10.1007/s40263-017-0451-y
  • Jalili S, Panji M, Mahdavimehr M, et al. Enhancing anti-amyloidogenic properties and antioxidant effects of Scutellaria baicalensis polyphenols through novel nanoparticle formation. Int J Biol Macromol. 2024;262(Pt 1):130003. doi:10.1016/j.ijbiomac.2024.130003
  • Simpson CA, Salleng KJ, Cliffel DE, et al. In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine. 2013;9(2):257–263. doi:10.1016/j.nano.2012.06.002
  • Kim HS, Lee SJ, Lee DY. Milk protein-shelled gold nanoparticles with gastrointestinally active absorption for aurotherapy to brain tumor. Bioact Mater. 2022;8:35–48. doi:10.1016/j.bioactmat.2021.06.026
  • Geldenhuys W, Mbimba T, Bui T, et al. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J Drug Target. 2011;19(9):837–845. doi:10.3109/1061186X.2011.589435
  • Jia H, Hou D, O’Connor D, et al. Exogenous phosphorus treatment facilitates chelation-mediated cadmium detoxification in perennial ryegrass (Lolium perenne L.). J Hazard Mater. 2020;389:121849. doi:10.1016/j.jhazmat.2019.121849
  • Srivastava AK, Pittman JM, Zerweck J, et al. β-Amyloid aggregation and heterogeneous nucleation. Protein Sci. 2019;28(9):1567–1581. doi:10.1002/pro.3674
  • Mirzaei-Behbahani B, Meratan AA, Moosakhani B, et al. Efficient inhibition of amyloid fibrillation and cytotoxicity of alpha-synuclein and human insulin using biosynthesized silver nanoparticles decorated by green tea polyphenols. Sci Rep. 2024;14(1):3907. doi:10.1038/s41598-024-54464-4
  • Gupta DK, Huang HG, Yang XE, et al. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater. 2010;177(1–3):437–444. doi:10.1016/j.jhazmat.2009.12.052
  • Pan Z, Xie R, Chen Z. One-step simultaneous biomass synthesis of iron nanoparticles using tea extracts for the removal of metal(loid)s in acid mine drainage. Chemosphere. 2023;337:139366. doi:10.1016/j.chemosphere.2023.139366