249
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Nano-Drug Delivery Systems Targeting CAFs: A Promising Treatment for Pancreatic Cancer

, , , &
Pages 2823-2849 | Received 04 Dec 2023, Accepted 06 Mar 2024, Published online: 18 Mar 2024

References

  • Kalluri R, Zeisberg M. Fibroblasts in cancer. Nature Reviews Cancer. 2006;6(5):392–401. doi:10.1038/nrc1877
  • Giraldo NA, Sanchez-Salas R, Peske JD, et al. The clinical role of the TME in solid cancer. British Journal of Cancer. 2019;120(1):45–53. doi:10.1038/s41416-018-0327-z
  • Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Molecular Cancer. 2021;20(1):131. doi:10.1186/s12943-021-01428-1
  • Ozdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25(6):719–734. doi:10.1016/j.ccr.2014.04.005
  • Mura S, Nicolas J, Couvreur P Stimuli-responsive nanocarriers for drug delivery. Nature Materials. 2013;12(11):991–1003. doi:10.1038/nmat3776
  • Wei G, Wang Y, Yang G, Wang Y, Ju R Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics. 2021;11(13):6370–6392. doi:10.7150/thno.57828
  • Kalluri R The biology and function of fibroblasts in cancer. Nature Reviews Cancer. 2016;16(9):582–598. doi:10.1038/nrc.2016.73
  • Dominguez CX, Müller S, Keerthivasan S, et al. Single-Cell RNA sequencing reveals stromal evolution into LRRC15(+) myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discovery. 2020;10(2):232–253. doi:10.1158/2159-8290.Cd-19-0644
  • Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277–281. doi:10.1038/nature12783
  • Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nature Medicine. 2012;18(8):1262–1270. doi:10.1038/nm.2848
  • Rinkevich Y, Walmsley GG, Hu MS, et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science (New York, NY). 2015;348(6232):aaa2151. doi:10.1126/science.aaa2151
  • Shook BA, Wasko RR, Rivera-Gonzalez GC, et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science. 2018;362(6417)doi:10.1126/science.aar2971
  • Ohlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214(3):579–596. doi:10.1084/jem.20162024
  • Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9(8):1102–1123. doi:10.1158/2159-8290.CD-19-0094
  • Li Y, Wang J, Asahina K Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury. Proceed Nat Acad Sci Unit Stat Am. 2013;110(6):2324–2329. doi:10.1073/pnas.1214136110
  • Bartoschek M, Oskolkov N, Bocci M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nature Communic. 2018;9(1):5150. doi:10.1038/s41467-018-07582-3
  • Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33(3):463–479.e10. doi:10.1016/j.ccell.2018.01.011
  • Peng J, Sun BF, Chen CY, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019;29(9):725–738. doi:10.1038/s41422-019-0195-y
  • Bernard V, Semaan A, Huang J, et al. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Can Res. 2019;25(7):2194–2205. doi:10.1158/1078-0432.Ccr-18-1955
  • Sun X, He X, Zhang Y, et al. Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut. 2022;71(1):129–147. doi:10.1136/gutjnl-2020-322744
  • Garg B, Giri B, Modi S, et al. NFκB in pancreatic stellate cells reduces infiltration of tumors by cytotoxic T cells and killing of cancer cells, via up-regulation of CXCL12. Gastroenterology. 2018;155(3):880–891.e8. doi:10.1053/j.gastro.2018.05.051
  • Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol. 2010;10(8):554–567. doi:10.1038/nri2808
  • Flint TR, Janowitz T, Connell CM, et al. Tumor-Induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metabolism. 2016;24(5):672–684. doi:10.1016/j.cmet.2016.10.010
  • Biffi G, Oni TE, Spielman B, et al. IL1-Induced JAK/STAT signaling is antagonized by TGFβ to Shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discovery. 2019;9(2):282–301. doi:10.1158/2159-8290.Cd-18-0710
  • Bailey JM, Swanson BJ, Hamada T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Can Res. 2008;14(19):5995–6004. doi:10.1158/1078-0432.Ccr-08-0291
  • Liu H, Shi Y, Qian F Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts. Advan Dru Deliv Rev. 2021;172:37–51. doi:10.1016/j.addr.2021.02.012
  • Apte MV, Wilson JS, Lugea A, Pandol SJ A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 2013;144(6):1210–1219. doi:10.1053/j.gastro.2012.11.037
  • Shi Y, Gao W, Lytle NK, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569(7754):131–135. doi:10.1038/s41586-019-1130-6
  • Sleightholm RL, Neilsen BK, Li J, et al. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Therap. 2017;179:158–170. doi:10.1016/j.pharmthera.2017.05.012
  • Fearon DT The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol Res. 2014;2(3):187–193. doi:10.1158/2326-6066.CIR-14-0002
  • Looi CK, Chung FF, Leong CO, Wong SF, Rosli R, Mai CW Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J Exp Clin Cancer Res. 2019;38(1):162. doi:10.1186/s13046-019-1153-8
  • Miyai Y, Esaki N, Takahashi M, Enomoto A Cancer‐associated fibroblasts that restrain cancer progression: hypotheses and perspectives. Cancer Science. 2020;111(4):1047–1057. doi:10.1111/cas.14346
  • Djurec M, Graña O, Lee A, et al. Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. Proceed Nat Acad Sci. 2018;115(6):E1147–E1156. doi:10.1073/pnas.1717802115
  • Bhowmick NA, Chytil A, Plieth D, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303(5659):848–51. doi:10.1126/science.1090922
  • Shimura T, Sasatani M, Kawai H, et al. Radiation-induced myofibroblasts promote tumor growth via mitochondrial ROS-Activated TGFβ Signaling. Molec Can Res. 2018;16(11):1676–1686. doi:10.1158/1541-7786.Mcr-18-0321
  • Baulida J Epithelial-to-mesenchymal transition transcription factors in cancer-associated fibroblasts. Molec Oncol. 2017;11(7):847–859. doi:10.1002/1878-0261.12080
  • Eck SM, Côté AL, Winkelman WD, Brinckerhoff CE CXCR4 and matrix metalloproteinase-1 are elevated in breast carcinoma-associated fibroblasts and in normal mammary fibroblasts exposed to factors secreted by breast cancer cells. Molec Can Res. 2009;7(7):1033–1044. doi:10.1158/1541-7786.Mcr-09-0015
  • Zhu X, Wang K, Zhang K, et al. Galectin-1 knockdown in carcinoma-associated fibroblasts inhibits migration and invasion of human MDA-MB-231 breast cancer cells by modulating MMP-9 expression. Acta Biochim Et Biophy Sin. 2016;48(5):462–467. doi:10.1093/abbs/gmw019
  • Molina-Infante J, Romano M, Fernandez-Bermejo M, et al. Optimized nonbismuth quadruple therapies cure most patients with Helicobacter pylori infection in populations with high rates of antibiotic resistance. Gastroenterology. 2013;145(1):121–128.e1. doi:10.1053/j.gastro.2013.03.050
  • Lee HO, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E, Cheng JD FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer. 2011;11:245. doi:10.1186/1471-2407-11-245
  • Kawase T, Yasui Y, Nishina S, et al. Fibroblast activation protein-α-expressing fibroblasts promote the progression of pancreatic ductal adenocarcinoma. BMC Gastroenterol. 2015;15:109. doi:10.1186/s12876-015-0340-0
  • McAndrews KM, Chen Y, Darpolor JK, et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer. Cancer Discovery. 2022;12(6):1580–1597. doi:10.1158/2159-8290.Cd-20-1484
  • Knudsen ES, Balaji U, Freinkman E, McCue P, Witkiewicz AK Unique metabolic features of pancreatic cancer stroma: relevance to the tumor compartment, prognosis, and invasive potential. Oncotarget. 2016;7(48):78396–78411. doi:10.18632/oncotarget.11893
  • Zhao H, Yang L, Baddour J, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife. 2016;5:e10250. doi:10.7554/eLife.10250
  • Auciello FR, Bulusu V, Oon C, et al. A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discovery. 2019;9(5):617–627. doi:10.1158/2159-8290.Cd-18-1212
  • Morrison AH, Byrne KT, Vonderheide RH Immunotherapy and prevention of pancreatic cancer. Trends in Cancer. 2018;4(6):418–428. doi:10.1016/j.trecan.2018.04.001
  • Gupta VK, Sharma NS, Durden B, et al. Hypoxia-driven oncometabolite L-2HG maintains stemness-differentiation balance and facilitates immune evasion in pancreatic cancer. Cancer Research. 2021;81(15):4001–4013. doi:10.1158/0008-5472.Can-20-2562
  • Kim EJ, Sahai V, Abel EV, et al. Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin Can Res. 2014;20(23):5937–5945. doi:10.1158/1078-0432.Ccr-14-1269
  • Lee JJ, Perera RM, Wang H, et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proceed Nat Acad Sci United States Am. 2014;111(30):E3091–100. doi:10.1073/pnas.1411679111
  • Fitzgerald AA, Weiner LM The role of fibroblast activation protein in health and malignancy. Can Metast Rev. 2020;39(3):783–803. doi:10.1007/s10555-020-09909-3
  • Mizutani Y, Kobayashi H, Iida T, et al. Meflin-positive cancer-associated fibroblasts inhibit pancreatic carcinogenesis. Cancer Res. 2019;79(20):5367–5381. doi:10.1158/0008-5472.Can-19-0454
  • Hu G, Wang S, Xu F, et al. Tumor-infiltrating podoplanin+ fibroblasts predict worse outcome in solid tumors. Cellular Physiol Biochem. 2018;51(3):1041–1050. doi:10.1159/000495484
  • DuFort CC, DelGiorno KE, Carlson MA, et al. Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase. Bioph J. 2016;110(9):2106–2119. doi:10.1016/j.bpj.2016.03.040
  • Cheng XB, Sato N, Kohi S, Yamaguchi K Prognostic impact of hyaluronan and its regulators in pancreatic ductal adenocarcinoma. PLoS One. 2013;8(11):e80765. doi:10.1371/journal.pone.0080765
  • Amrutkar M, Aasrum M, Verbeke CS, Gladhaug IP Secretion of fibronectin by human pancreatic stellate cells promotes chemoresistance to gemcitabine in pancreatic cancer cells. BMC Can. 2019;19(1):596. doi:10.1186/s12885-019-5803-1
  • Ireland L, Santos A, Ahmed MS, et al. Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors. Can Res. 2016;76(23):6851–6863. doi:10.1158/0008-5472.Can-16-1201
  • Zhang H, Wu H, Guan J, et al. Paracrine SDF-1α signaling mediates the effects of PSCs on GEM chemoresistance through an IL-6 autocrine loop in pancreatic cancer cells. Oncotarget. 2015;6(5):3085–3097. doi:10.18632/oncotarget.3099
  • Singh S, Srivastava SK, Bhardwaj A, Owen LB, Singh AP CXCL12-CXCR4 signalling axis confers gemcitabine resistance to pancreatic cancer cells: a novel target for therapy. Br J Can. 2010;103(11):1671–1679. doi:10.1038/sj.bjc.6605968
  • Vennin C, Mélénec P, Rouet R, et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat Communic. 2019;10(1):3637. doi:10.1038/s41467-019-10968-6
  • Huanwen W, Zhiyong L, Xiaohua S, Xinyu R, Kai W, Tonghua L Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Molec Can. 2009;8:125. doi:10.1186/1476-4598-8-125
  • Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE, Hill R Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 2017;36(13):1770–1778. doi:10.1038/onc.2016.353
  • Toste PA, Nguyen AH, Kadera BE, et al. Chemotherapy-induced inflammatory gene signature and protumorigenic phenotype in pancreatic CAFs via stress-associated MAPK. Molec Can Res. 2016;14(5):437–447. doi:10.1158/1541-7786.Mcr-15-0348
  • Fang Y, Zhou W, Rong Y, et al. Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer. Experim Cell Res. 2019;383(1):111543. doi:10.1016/j.yexcr.2019.111543
  • Takikawa T, Masamune A, Yoshida N, Hamada S, Kogure T, Shimosegawa T Exosomes derived from pancreatic stellate cells: microRNA signature and effects on pancreatic cancer cells. Pancreas. 2017;46(1):19–27. doi:10.1097/mpa.0000000000000722
  • van Jaarsveld MT, Helleman J, Berns EM, Wiemer EA MicroRNAs in ovarian cancer biology and therapy resistance. Internat J Biochem Cell Biol. 2010;42(8):1282–1290. doi:10.1016/j.biocel.2010.01.014
  • Ohuchida K, Mizumoto K, Murakami M, et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Can Res. 2004;64(9):3215–3222. doi:10.1158/0008-5472.can-03-2464
  • Li D, Qu C, Ning Z, et al. Radiation promotes epithelial-to-mesenchymal transition and invasion of pancreatic cancer cell by activating carcinoma-associated fibroblasts. Am J Can Res. 2016;6(10):2192–2206.
  • Zhang H, Xie C, Yue J, et al. Cancer-associated fibroblasts mediated chemoresistance by a FOXO1/TGFβ1 signaling loop in esophageal squamous cell carcinoma. Molec Carcinog 2017;56(3):1150–1163. doi:10.1002/mc.22581
  • Mantoni TS, Lunardi S, Al-Assar O, Masamune A, Brunner TB Pancreatic stellate cells radioprotect pancreatic cancer cells through β1-integrin signaling. Can Res. 2011;71(10):3453–3458. doi:10.1158/0008-5472.Can-10-1633
  • Horsman MR, Overgaard J The impact of hypoxia and its modification of the outcome of radiotherapy. J Rad Res. 2016;57(Suppl 1):i90–i98. doi:10.1093/jrr/rrw007
  • Wang Y, Gan G, Wang B, et al. Cancer-associated fibroblasts promote irradiated cancer cell recovery through autophagy. EBioMed. 2017;17:45–56. doi:10.1016/j.ebiom.2017.02.019
  • Harper J, Sainson RC Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Sem Can Biol 2014;25:69–77. doi:10.1016/j.semcancer.2013.12.005
  • Liu T, Han C, Wang S, et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol. 2019;12(1):86. doi:10.1186/s13045-019-0770-1
  • Kim R, Emi M, Tanabe K Cancer immunosuppression and autoimmune disease: beyond immunosuppressive networks for tumour immunity. Immunology. 2006;119(2):254–264. doi:10.1111/j.1365-2567.2006.02430.x
  • Ziani L, Chouaib S, Thiery J Alteration of the antitumor immune response by cancer-associated fibroblasts. Frontiers in immunology. 2018;9:414. doi:10.3389/fimmu.2018.00414
  • Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers. 2015;7(4):2443–2458. doi:10.3390/cancers7040902
  • Sun Q, Zhang B, Hu Q, et al. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics. 2018;8(18):5072–5087. doi:10.7150/thno.26546
  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M The chemokine system in diverse forms of macrophage activation and polarization. Tren Immunol. 2004;25(12):677–686. doi:10.1016/j.it.2004.09.015
  • Yugawa K, Itoh S, Yoshizumi T, et al. CMTM6 Stabilizes PD-L1 expression and is a new prognostic impact factor in hepatocellular carcinoma. Hepatol Communic. 2021;5(2):334–348. doi:10.1002/hep4.1643
  • Hu B, Wang Z, Zeng H, et al. Blockade of DC-SIGN(+) tumor-associated macrophages reactivates antitumor immunity and improves immunotherapy in muscle-invasive bladder cancer. Can Res. 2020;80(8):1707–1719. doi:10.1158/0008-5472.Can-19-2254
  • Herrera M, Herrera A, Domínguez G, et al. Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Can Sci 2013;104(4):437–444. doi:10.1111/cas.12096
  • Coffelt SB, Wellenstein MD, de Visser KE Neutrophils in cancer: neutral no more. Nat Rev Can. 2016;16(7):431–446. doi:10.1038/nrc.2016.52
  • Wu L, Saxena S, Awaji M, Singh RK Tumor-associated neutrophils in cancer: going pro. Cancers. 2019;11:4. doi:10.3390/cancers11040564
  • Song M, He J, Pan QZ, et al. Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology. 2021;73(5):1717–1735. doi:10.1002/hep.31792
  • Cheng Y, Li H, Deng Y, et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Dea Dis. 2018;9(4):422. doi:10.1038/s41419-018-0458-4
  • Dalton DK, Noelle RJ The roles of mast cells in anticancer immunity. Can Immunol. 2012;61(9):1511–1520. doi:10.1007/s00262-012-1246-0
  • Liu J, Zhang Y, Zhao J, et al. Mast cell: insight into remodeling a tumor microenvironment. Can Metast Rev. 2011;30(2):177–184. doi:10.1007/s10555-011-9276-1
  • Yang FC, Chen S, Clegg T, et al. Nf1± mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Human Molec Genet. 2006;15(16):2421–2437. doi:10.1093/hmg/ddl165
  • Chiossone L, Dumas PY, Vienne M, Vivier E Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671–688. doi:10.1038/s41577-018-0061-z
  • Turley SJ, Cremasco V, Astarita JL Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15(11):669–682. doi:10.1038/nri3902
  • Chen X, Song E Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115. doi:10.1038/s41573-018-0004-1
  • Rahma OE, Hodi FS The intersection between tumor angiogenesis and immune suppression. Clin Can Res. 2019;25(18):5449–5457. doi:10.1158/1078-0432.Ccr-18-1543
  • Kumar BV, Connors TJ, Farber DL Human T cell development, localization, and function throughout life. Immunity. 2018;48(2):202–213. doi:10.1016/j.immuni.2018.01.007
  • Tanaka A, Sakaguchi S Regulatory T cells in cancer immunotherapy. Cell Research. 2017;27(1):109–118. doi:10.1038/cr.2016.151
  • Kinoshita T, Ishii G, Hiraoka N, et al. Forkhead box P3 regulatory T cells coexisting with cancer associated fibroblasts are correlated with a poor outcome in lung adenocarcinoma. Can Sci 2013;104(4):409–415. doi:10.1111/cas.12099
  • Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One. 2009;4(11):e7965. doi:10.1371/journal.pone.0007965
  • Freeman P, Mielgo A Cancer-associated fibroblast mediated inhibition of CD8+ Cytotoxic T cell accumulation in tumours: mechanisms and therapeutic opportunities. Cancers. 2020;12(9)2687 doi:10.3390/cancers12092687
  • Thommen DS, Schumacher TN T cell dysfunction in cancer. Cancer Cell. 2018;33(4):547–562. doi:10.1016/j.ccell.2018.03.012
  • Lakins MA, Ghorani E, Munir H, Martins CP, Shields JD Cancer-associated fibroblasts induce antigen-specific deletion of CD8 (+) T Cells to protect tumour cells. Nat Communic 2018;9(1):948. doi:10.1038/s41467-018-03347-0
  • Gorchs L, Fernández Moro C, Bankhead P, et al. Human pancreatic carcinoma-associated fibroblasts promote expression of co-inhibitory markers on CD4(+) and CD8(+) T-Cells. Front Immunol. 2019;10:847. doi:10.3389/fimmu.2019.00847
  • Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906. doi:10.1016/j.cell.2009.10.027
  • Liu T, Zhou L, Li D, Andl T, Zhang Y Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Devel Biol. 2019;7:60. doi:10.3389/fcell.2019.00060
  • Murphy G, Nagase H Progress in matrix metalloproteinase research. Molec Asp Med 2008;29(5):290–308. doi:10.1016/j.mam.2008.05.002
  • Truffi M, Sorrentino L, Corsi F Fibroblasts in the tumor microenvironment. Adv Experim MedBiol. 2020;1234:15–29. doi:10.1007/978-3-030-37184-5_2
  • Sorokin L The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010;10(10):712–723. doi:10.1038/nri2852
  • Varol C Tumorigenic interplay between macrophages and collagenous matrix in the tumor microenvironment. Meth Molec Biol. 2019;1944:203–220. doi:10.1007/978-1-4939-9095-5_15
  • Tran E, Chinnasamy D, Yu Z, et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 2013;210(6):1125–1135. doi:10.1084/jem.20130110
  • Truffi M, Mazzucchelli S, Bonizzi A, et al. Nano-strategies to target breast cancer-associated fibroblasts: rearranging the tumor microenvironment to achieve antitumor efficacy. Int J Mol Sci. 2019;20(6)doi:10.3390/ijms20061263 1263
  • Yang Z, Zhang L, Zhu H, et al. Nanoparticle formulation of mycophenolate mofetil achieves enhanced efficacy against hepatocellular carcinoma by targeting tumour-associated fibroblast. J Cell Mol Med 2021;25(7):3511–3523. doi:10.1111/jcmm.16434
  • Long KB, Tooker G, Tooker E, et al. IL6 receptor blockade enhances chemotherapy efficacy in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2017;16(9):1898–1908. doi:10.1158/1535-7163.MCT-16-0899
  • Steele NG, Biffi G, Kemp SB, et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin Cancer Res. 2021;27(7):2023–2037. doi:10.1158/1078-0432.CCR-20-3715
  • Brunetto E, De Monte L, Balzano G, et al. The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer. J Immun Can. 2019;7(1):45. doi:10.1186/s40425-019-0521-4
  • Kojima Y, Acar A, Eaton EN, et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A. 2010;107(46):20009–20014. doi:10.1073/pnas.1013805107
  • Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–20217. doi:10.1073/pnas.1320318110
  • Hingorani SR, Zheng L, Bullock AJ, et al. HALO 202: randomized Phase II Study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J Clin Oncol. 2018;36(4):359–366. doi:10.1200/JCO.2017.74.9564
  • Mucciolo G, Araos Henriquez J, Jihad M, et al. EGFR-activated myofibroblasts promote metastasis of pancreatic cancer. Cancer Cell. 2024;42(1):101–118 e11. doi:10.1016/j.ccell.2023.12.002
  • Aggarwal S, Brennen WN, Kole TP, et al. Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites. Biochemistry. 2008;47(3):1076–1086. doi:10.1021/bi701921b
  • Yu Q, Qiu Y, Li J, et al. Targeting cancer-associated fibroblasts by dual-responsive lipid-albumin nanoparticles to enhance drug perfusion for pancreatic tumor therapy. J Cont Rel. 2020;321:564–575. doi:10.1016/j.jconrel.2020.02.040
  • Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–1461. doi:10.1126/science.1171362
  • Wei L, Ye H, Li G, et al. Correction: cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer. Cell Death Dis. 2021;12(3):232. doi:10.1038/s41419-021-03420-5
  • Chen W, Ayala-Orozco C, Biswal NC, et al. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine. 2014;9(8):1209–1222. doi:10.2217/nnm.13.84
  • David KI, Ravikumar TS, Sethuraman S, Krishnan UM Development and evaluation of a multi-functional organic-inorganic nanotheranostic hybrid for pancreatic cancer therapy. Biom Mat. 2021;16(5)055016 doi:10.1088/1748-605X/ac177c
  • Carofiglio M, Conte M, Racca L, Cauda V Synergistic phenomena between iron-doped ZnO nanoparticles and shock waves exploited against pancreatic cancer cells. ACS Appl Nano Mater. 2022;5(11):17212–17225. doi:10.1021/acsanm.2c04211
  • Khalifehzadeh R, Arami H Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci. 2020;279:102157. doi:10.1016/j.cis.2020.102157
  • Gao F, Wu J, Niu S, et al. Biodegradable, pH-sensitive hollow mesoporous organosilica nanoparticle (HMON) with controlled release of pirfenidone and ultrasound-target-microbubble-destruction (UTMD) for pancreatic cancer treatment. Theranostics. 2019;9(20):6002–6018. doi:10.7150/thno.36135
  • Vallet-Regi M, Colilla M, Izquierdo-Barba I, Manzano M Mesoporous silica nanoparticles for drug delivery: current insights. Molecules. 2017;23(1)47 doi:10.3390/molecules23010047
  • Alsaiari SK, Qutub SS, Sun S, et al. Sustained and targeted delivery of checkpoint inhibitors by metal-organic frameworks for cancer immunotherapy. Sci Adv. 2021;7(4)doi:10.1126/sciadv.abe7174
  • Xu Y, Hu B, Xu J, Wu J, Ye B Preparation of biodegradable polymeric nanocapsules for treatment of malignant tumor using coaxial capillary microfluidic device. Can Bio Radioph. 2020;35(8):570–580. doi:10.1089/cbr.2019.3412
  • Zhao W, Yang S, Li C, et al. Amphiphilic dendritic nanomicelle-mediated delivery of gemcitabine for enhancing the specificity and effectiveness. Int J Nanomedicine. 2022;17:3239–3249. doi:10.2147/IJN.S371775
  • Kim CE, Lim SK, Kim JS In vivo antitumor effect of cromolyn in PEGylated liposomes for pancreatic cancer. J Control Release. 2012;157(2):190–195. doi:10.1016/j.jconrel.2011.09.066
  • Tang Z, Niu Y, Xu Z, et al. Anti-tumor and anti-metastasis effects of berbamine-loaded lipid nanoparticles on pancreatic cancer. Anticancer Agents Med Chem. 2022;22(18):3097–3106. doi:10.2174/1871520622666220501161636
  • Moloney C, Roy chaudhuri T, Spernyak JA, Straubinger RM, Brougham DF Long-circulating magnetoliposomes as surrogates for assessing pancreatic tumour permeability and nanoparticle deposition. Acta Biomater. 2023;158:611–624. doi:10.1016/j.actbio.2022.12.057
  • Lu J, Liu X, Liao YP, et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat Commun. 2017;8(1):1811. doi:10.1038/s41467-017-01651-9
  • Lu L, Jie L, Zhou Y, et al. Preparation and characterization of PLGA-based magnetic polymer nanoparticles for targeting pancreatic adenocarcinoma. Curr Pharm Des. 2023;29(9):686–696. doi:10.2174/1381612829666230324091555
  • Tomitaka A, Takemura Y, Huang Z, Roy U, Nair M Magnetoliposomes in controlled-release drug delivery systems. Crit Rev Biomed Engin. 2019;47(6):495–505. doi:10.1615/CritRevBiomedEng.2020033002
  • Rommasi F, Esfandiari N. Liposomal nanomedicine: applications for drug delivery in cancer therapy. Nanos Res Lett. 2021;16(1):95. doi:10.1186/s11671-021-03553-8
  • Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA Nanomedicine review: clinical developments in liposomal applications. Can Nanotech. 2019;10(1) doi:10.1186/s12645-019-0055-y
  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advan Drug Deliv Rev. 2016;99(Pt A):28–51. doi:10.1016/j.addr.2015.09.012
  • Ndemazie NB, Bulusu R, Zhu XY, et al. Evaluation of anticancer activity of Zhubech, a New 5-FU analog liposomal formulation, against pancreatic cancer. Internat J Molec Sci. 2023;24(5)4288 doi:10.3390/ijms24054288
  • Shang L, Xie Q, Yang C, Kong L, Zhang Z Extracellular vesicles facilitate the transportation of nanoparticles within and between cells for enhanced tumor therapy. ACS Appl Mater Interf. 2023;15(36):42378–42394. doi:10.1021/acsami.3c10237
  • Shimada S, Yamaguchi K, Takahashi M, Ogawa M Pancreatic elastase IIIA and its variants are expressed in pancreatic carcinoma cells. Internat J Molec Med. 2002;10(5):599–603.
  • Wang XQ, Zhang Q pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs. Europ J Pharma Biopharm. 2012;82(2):219–229. doi:10.1016/j.ejpb.2012.07.014
  • Du J, Lane LA, Nie S Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Cont Rel. 2015;219:205–214. doi:10.1016/j.jconrel.2015.08.050
  • Tagami T, Foltz WD, Ernsting MJ, et al. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials. 2011;32(27):6570–6578. doi:10.1016/j.biomaterials.2011.05.029
  • Pereira BA, Vennin C, Papanicolaou M, et al. CAF subpopulations: a new reservoir of stromal targets in pancreatic cancer. Trend Can. 2019;5(11):724–741. doi:10.1016/j.trecan.2019.09.010
  • Linares J, Marín-Jiménez JA, Badia-Ramentol J, Calon A Determinants and functions of cafs secretome during cancer progression and therapy. Front Cell Develop Biol. 2020;8:621070. doi:10.3389/fcell.2020.621070
  • Wang M, Li Y, Wang M, et al. Synergistic interventional photothermal therapy and immunotherapy using an iron oxide nanoplatform for the treatment of pancreatic cancer. Acta Biomater. 2022;138:453–462. doi:10.1016/j.actbio.2021.10.048
  • Lakiotaki E, Sakellariou S, Evangelou K, Liapis G, Patsouris E, Delladetsima I Vascular and ductal elastotic changes in pancreatic cancer. APMIS. 2016;124(3):181–187. doi:10.1111/apm.12482
  • Chen Q, Liu G, Liu S, et al. Remodeling the tumor microenvironment with emerging nanotherapeutics. Trend Pharmacol Sci. 2018;39(1):59–74. doi:10.1016/j.tips.2017.10.009
  • Feng J, Xu M, Wang J, et al. Sequential delivery of nanoformulated α-mangostin and triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer. Biomaterials. 2020;241:119907. doi:10.1016/j.biomaterials.2020.119907
  • Kunz-Schughart LA, Knuechel R Tumor-associated fibroblasts (part II): functional impact on tumor tissue. Histol Histopathol 2002;17(2):623–637. doi:10.14670/hh-17.623
  • Alili L, Sack M, Karakoti AS, et al. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials. 2011;32(11):2918–2929. doi:10.1016/j.biomaterials.2010.12.056
  • Mardhian DF, Storm G, Bansal R, Prakash J Nano-targeted relaxin impairs fibrosis and tumor growth in pancreatic cancer and improves the efficacy of gemcitabine in vivo. Journal of Controlled Release. 2018;290:1–10. doi:10.1016/j.jconrel.2018.09.031
  • Hu C, Liu X, Ran W, et al. Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials. 2017;144:60–72. doi:10.1016/j.biomaterials.2017.08.009
  • Chen X, Zhou W, Liang C, et al. Codelivery nanosystem targeting the deep microenvironment of pancreatic cancer. Nano Letters. 2019;19(6):3527–3534. doi:10.1021/acs.nanolett.9b00374
  • Kim DJ, Dunleavey JM, Xiao L, et al. Suppression of TGFβ-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo)fibroblasts via HDAC inhibition. British Journal of Cancer. 2018;118(10):1359–1368. doi:10.1038/s41416-018-0072-3
  • Albrengues J, Bertero T, Grasset E, et al. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nature Communications. 2015;6:10204. doi:10.1038/ncomms10204
  • Eckert MA, Coscia F, Chryplewicz A, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;569(7758):723–728. doi:10.1038/s41586-019-1173-8
  • Gabasa M, Ikemori R, Hilberg F, Reguart N, Alcaraz J Nintedanib selectively inhibits the activation and tumour-promoting effects of fibroblasts from lung adenocarcinoma patients. Br J Can. 2017;117(8):1128–1138. doi:10.1038/bjc.2017.270
  • Borriello L, Nakata R, Sheard MA, et al. Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells. Can Res. 2017;77(18):5142–5157. doi:10.1158/0008-5472.Can-16-2586
  • Ford K, Hanley CJ, Mellone M, et al. NOX4 inhibition potentiates immunotherapy by overcoming cancer-associated fibroblast-mediated CD8 T-cell exclusion from tumors. Can Res. 2020;80(9):1846–1860. doi:10.1158/0008-5472.Can-19-3158
  • Miao L, Liu Q, Lin CM, et al. Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Can Res. 2017;77(3):719–731. doi:10.1158/0008-5472.Can-16-0866
  • Han X, Li Y, Xu Y, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nat Communic. 2018;9(1):3390. doi:10.1038/s41467-018-05906-x
  • Duan H, Li L, He S Advances and Prospects in the Treatment of Pancreatic Cancer. Internat J Nanomed. 2023;18:3973–3988. doi:10.2147/ijn.S413496
  • Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018;15(6):333–348. doi:10.1038/s41575-018-0005-x
  • Muller M, Haghnejad V, Schaefer M, et al. The immune landscape of human pancreatic ductal carcinoma: key players, clinical implications, and challenges. Cancers. 2022;14:4.
  • Siegel RL, Miller KD, Fuchs HE, Jemal A Cancer statistics, 2022. CA. 2022;72(1):7–33. doi:10.3322/caac.21708
  • Raj S, Khurana S, Choudhari R, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Can Biol. 2021;69:166–177. doi:10.1016/j.semcancer.2019.11.002
  • Ernsting MJ, Hoang B, Lohse I, et al. Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulose-docetaxel nanoparticle. J Control Release. 2015;206:122–130. doi:10.1016/j.jconrel.2015.03.023
  • Wang L, Liu X, Zhou Q, et al. Terminating the criminal collaboration in pancreatic cancer: nanoparticle-based synergistic therapy for overcoming fibroblast-induced drug resistance. Biomaterials. 2017;144:105–118. doi:10.1016/j.biomaterials.2017.08.002
  • Zhao J, Wang H, Hsiao CH, et al. Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy. Biomaterials. 2018;159:215–228. doi:10.1016/j.biomaterials.2018.01.014
  • Cun X, Chen J, Li M, et al. Tumor-associated fibroblast-targeted regulation and deep tumor delivery of chemotherapeutic drugs with a multifunctional size-switchable nanoparticle. ACS Appl Mater Interf. 2019;11(43):39545–39559. doi:10.1021/acsami.9b13957
  • Schnittert J, Kuninty PR, Bystry TF, Brock R, Storm G, Prakash J Anti-microRNA targeting using peptide-based nanocomplexes to inhibit differentiation of human pancreatic stellate cells. Nanomedicine. 2017;12(12):1369–1384. doi:10.2217/nnm-2017-0054
  • Shi Y, Luo Z, You J Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. Wiley Interdiscip Rev Nanom Nanob. 2022;14(5):e1803. doi:10.1002/wnan.1803
  • Qiao L, Yan S, Dou X, et al. Biogenic selenium nanoparticles alleviate intestinal epithelial barrier damage through regulating endoplasmic reticulum stress-mediated mitophagy. Oxid Med Cell Longev. 2022;2022:3982613. doi:10.1155/2022/3982613
  • Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci. 2018;39(1):24–48. doi:10.1016/j.tips.2017.11.003
  • Chi A, Chen H, Wen S, Yan H, Liao Z Comparison of particle beam therapy and stereotactic body radiotherapy for early stage non-small cell lung cancer: a systematic review and hypothesis-generating meta-analysis. Radiother Oncol. 2017;123(3):346–354. doi:10.1016/j.radonc.2017.05.007
  • Chen Q, Chen J, Yang Z, et al. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv Mater. 2019;31(10):e1802228. doi:10.1002/adma.201802228
  • Jin J, Zhao Q Engineering nanoparticles to reprogram radiotherapy and immunotherapy: recent advances and future challenges. J Nanobiotechnology. 2020;18(1):75. doi:10.1186/s12951-020-00629-y
  • Gao J, Wang Z, Guo Q, et al. Mitochondrion-targeted supramolecular ”nano-boat” simultaneously inhibiting dual energy metabolism for tumor selective and synergistic chemo-radiotherapy. Theranostics. 2022;12(3):1286–1302. doi:10.7150/thno.67543
  • Inamdar S, Pushpavanam K, Lentz JM, Bues M, Anand A, Rege K Hydrogel nanosensors for colorimetric detection and dosimetry in proton beam radiotherapy. ACS Appl Mater Interfaces. 2018;10(4):3274–3281. doi:10.1021/acsami.7b15127
  • Zhao Z, Zheng L, Chen W, Weng W, Song J, Ji J Delivery strategies of cancer immunotherapy: recent advances and future perspectives. J Hematol Oncol. 2019;12(1):126. doi:10.1186/s13045-019-0817-3
  • van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T Smart cancer nanomedicine. Nat Nanotechnol. 2019;14(11):1007–1017. doi:10.1038/s41565-019-0567-y
  • Kitamura T, Qian BZ, Pollard JW Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86. doi:10.1038/nri3789
  • Raman D, Baugher PJ, Thu YM, Richmond A Role of chemokines in tumor growth. Cancer Lett. 2007;256(2):137–165. doi:10.1016/j.canlet.2007.05.013
  • Cheng K, Ding Y, Zhao Y, et al. Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy. Nano Lett. 2018;18(5):3250–3258. doi:10.1021/acs.nanolett.8b01071
  • Suto A, Kudo D, Yoshida E, et al. Increase of tumor infiltrating gammadelta T-cells in pancreatic ductal adenocarcinoma through remodeling of the extracellular matrix by a hyaluronan synthesis suppressor, 4-methylumbelliferone. Pancreas. 2019;48(2):292–298. doi:10.1097/MPA.0000000000001211
  • Zhang Y, Han X, Wang K, et al. Co-delivery nanomicelles for potentiating TNBC immunotherapy by synergetically reshaping CAFs-mediated tumor stroma and reprogramming immunosuppressive microenvironment. Int J Nanomedicine. 2023;18:4329–4346. doi:10.2147/IJN.S418100
  • Zhang H, Chen L, Zhao Y, et al. Relaxin-encapsulated polymeric metformin nanoparticles remodel tumor immune microenvironment by reducing CAFs for efficient triple-negative breast cancer immunotherapy. Asian J Pharm Sci. 2023;18(2):100796. doi:10.1016/j.ajps.2023.100796
  • Hwang WL, Pike LRG, Royce TJ, Mahal BA, Loeffler JS Safety of combining radiotherapy with immune-checkpoint inhibition. Nat Rev Clin Oncol. 2018;15(8):477–494. doi:10.1038/s41571-018-0046-7
  • Guan X, Sun L, Shen Y, et al. Nanoparticle-enhanced radiotherapy synergizes with PD-L1 blockade to limit post-surgical cancer recurrence and metastasis. Nat Commun. 2022;13(1):2834. doi:10.1038/s41467-022-30543-w
  • Li S, Kang Y, Zeng Y Targeting tumor and bone microenvironment: novel therapeutic opportunities for castration-resistant prostate cancer patients with bone metastasis. Biochim Biophys Acta Rev Cancer. 2024;1879(1):189033. doi:10.1016/j.bbcan.2023.189033
  • Au M, Emeto TI, Power J, Vangaveti VN, Lai HC Emerging therapeutic potential of nanoparticles in pancreatic cancer: a systematic review of clinical trials. Biomedicines. 2016;4(3)20 doi:10.3390/biomedicines4030020
  • Xu M, Li S Nano-drug delivery system targeting tumor microenvironment: a prospective strategy for melanoma treatment. Cancer Lett. 2023;574:216397. doi:10.1016/j.canlet.2023.216397
  • Galanis E, Carlson SK, Foster NR, et al. Phase I trial of a pathotropic retroviral vector expressing a cytocidal cyclin G1 construct (Rexin-G) in patients with advanced pancreatic cancer. Mol Ther. 2008;16(5):979–984. doi:10.1038/mt.2008.29
  • Guo X, Gao C, Yang DH, Li S Exosomal circular RNAs: a chief culprit in cancer chemotherapy resistance. Drug Resist Updat. 2023;67:100937. doi:10.1016/j.drup.2023.100937
  • Baigude H, Rana TM Delivery of therapeutic RNAi by nanovehicles. Chembiochem. 2009;10(15):2449–2454. doi:10.1002/cbic.200900252
  • Eriksson M, Taskinen M, Leppa S Mitogen activated protein kinase-dependent activation of c-Jun and c-Fos is required for neuronal differentiation but not for growth and stress response in PC12 cells. J Cell Physiol. 2007;210(2):538–548. doi:10.1002/jcp.20907
  • Rana TM Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007;8(1):23–36. doi:10.1038/nrm2085
  • Davis ME, Zuckerman JE, Choi CH, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464(7291):1067–1070. doi:10.1038/nature08956
  • Schroeder A, Levins CG, Cortez C, Langer R, Anderson DG Lipid-based nanotherapeutics for siRNA delivery. J Intern Med. 2010;267(1):9–21. doi:10.1111/j.1365-2796.2009.02189.x
  • Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441:111–4. doi:10.1038/nature04688
  • Jindal A, Sarkar S, Alam A Nanomaterials-mediated immunomodulation for cancer therapeutics. Front Chem. 2021;9:629635. doi:10.3389/fchem.2021.629635
  • Liu L, Kshirsagar PG, Gautam SK, et al. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics. 2022;12(3):1030–1060. doi:10.7150/thno.64805