162
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Targeted Ultrasound Nanobubbles Therapy for Prostate Cancer via Immuno-Sonodynamic Effect

, , , , , , & show all
Pages 2793-2806 | Received 05 Dec 2023, Accepted 07 Mar 2024, Published online: 18 Mar 2024

References

  • Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149:778–789. doi:10.1002/ijc.33588
  • Martel CL, Gumerlock PH, Meyers FJ, Lara PN. Current strategies in the management of hormone refractory prostate cancer. Cancer Treat Rev. 2003;29(3):171–187. doi:10.1016/S0305-7372(02)00090-7
  • Tannock IF, Wit RD, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351:1502–1512. doi:10.1056/NEJMoa040720
  • Clarke NW, Ali A, Ingleby FC, Hoyle A, James ND. Addition of docetaxel to hormonal therapy in low-and high-burden metastatic hormone sensitive prostate cancer: long-term survival results from the stampede trial. Ann Oncol. 2019;30(12):1992–2003. doi:10.1016/j.annonc.2020.01.002
  • Gravis G, Audenet F, Irani J, Timsit M, Barthelemy P. Chemotherapy in hormone-sensitive metastatic prostate cancer: evidences and uncertainties from the literature. Cance Treat Rev. 2017;55:211–217. doi:10.1016/J.CTRV.2016.09.008
  • Ioannides CG, Whiteside TL. T cell recognition of human tumors: implications for molecular immunotherapy of cancer. Clin Immunol Immunopathol. 1993;66(2):91–106. doi:10.1006/clin.1993.1012
  • Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–5074. doi:10.1158/1078-0432.CCR-13-3271
  • Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207–212. doi:10.1016/j.coi.2011.12.009
  • Darvin P, Toor SM, Nair VS, Elkord E. Affiliations expand immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11. doi:10.1038/s12276-018-0191-1
  • Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the society for immunotherapy of cancer(SITC) toxicity management working group. J Immunother Cancer. 2017;5(1):95–123. doi:10.1186/s40425-017-0300-z
  • Soularue E, Lepage P, Colombel JF, et al. Enterocolitis due to immune checkpoint inhibitors: a systematic review. Gut. 2018;67(11):2056–2067. doi:10.1136/gutjnl-2018-316948
  • Boissenot T, Bordat A, Fattal E, Tsapis N. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: from theoretical considerations to practical applications. J Control Release. 2016;241:144–163. doi:10.1016/j.jconrel.2016.09.026
  • Thakur SS, Chen YS, Houston ZH, et al. Ultrasound-responsive nanobubbles for enhanced intravitreal drug migration: an ex vivo evaluation. Eur J Biopharm. 2019;136:102–107. doi:10.1016/j.ejpb.2019.01.014
  • Prokhnevska N, Emerson DA, Kissick HT, Redmond WL. Immunological complexity of the prostate cancer microenvironment influences the response to immunotherapy. Adv Exp Med Biol. 2019;1210:121–147. doi:10.1007/978-3-030-32656-2_7
  • Trendowski M. The promise of sonodynamic therapy: using ultrasonic irradiation and chemotherapeutic agents as a treatment modality. J Cancer Sci Ther. 2014;6:10. doi:10.4172/1948-5956.S1.03
  • Chen H, Hwang JH. Ultrasound-targeted microbubble destruction for chemotherapeutic drug delivery to solid tumors. J Ther Ultr. 2013;1(1):10. doi:10.1186/2050-5736-1-10
  • Lin X, Song J, Chen X, Yang H. Ultrasound-activated sensitizers and applications. Angew Chem Int Ed. 2020;59(34):14212–14233. doi:10.1002/anie.201906823
  • Li D, Yang Y, Li D, Pan J, Chu C, Liu G. Organic sonosensitizers for sonodynamic therapy: from small molecules and nanoparticles toward clinical development. Small. 2021;17(42):e2101976. doi:10.1002/smll.202101976
  • Huang JS, Xiao ZC, An YC, et al. Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy. Biomaterials. 2021;269:120636. doi:10.1016/j.biomaterials.2020.120636
  • Chen W, Schilperoort M, Cao Y, Shi J, Tabas I, Tao W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol. 2022;19:228–249. doi:10.1038/s41569-021-00629-x
  • Ma Y, Li JL, Zhao Y, Hu B, Liu Y, Liu CQ. Nanobubble-mediated co-delivery of Ce6 and miR-195 for synergized sonodynamic and checkpoint blockade combination therapy with elicitation of robust immune response in hepatocellular carcinoma. Eur J Pharm Biopharm. 2022;181:36–48. doi:10.1016/j.ejpb.2022.10.017
  • Diamandis EP, Christopoulos TK. The biotin-(strept) avidin system: principles and applications in biotechnology. Clin Chem. 1991;37(5):625–636. doi:10.1016/0009-8981(91)90363-H
  • Perera RH, Leon DA, Wang X, et al. Real time ultrasound molecular imaging of prostate cancer with PSMA-targeted nanobubbles. Nanomedicine. 2020;28:102213. doi:10.1016/j.nano.2020.102213
  • Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175–196. doi:10.1038/s41573-018-0006-z
  • Bolat D, Haydarolu A. Immunotherapy in Prostate Cancer. Bull Urooncol. 2019;18(2):67–72. doi:10.4274/uob.galenos.2018.1142
  • Shiao SL, Chu CY, Chung LW. Regulation of prostate cancer progression by the tumor microenvironment. Cancer LettNE. 2016;380(1):340–348. doi:10.1016/j.canlet.2015.12.022
  • Graff JN, Alumkal JJ, Drake CG, Thomas GV, Beer TM. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget. 2016;12(33):52810–52817. doi:10.18632/oncotarget.10547
  • Son S, Kim JH, Wang X, et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev. 2020;49(11):3244–3261. doi:10.1039/C9CS00648F
  • Li P, Liu Y, Liu W, et al. IR-783 inhibits breast cancer cell proliferation and migration by inducing mitochondrial fission. Int J Oncol. 2019;55(2):415–424. doi:10.3892/ijo.2019.4821
  • Chen HJ, Zhou XB, Gao Y, Zheng BY, Tang FX, Huang JD. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today. 2014;19(4):502–509. doi:10.1016/j.drudis.2014.01.010
  • Zhao P, Deng Y, Xiang G, Liu Y. Nanoparticle-assisted sonosensitizers and their biomedical Applications. Int J Nanomedicine. 2021;16(6):4615–4630. doi:10.2147/IJN.S307885
  • Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug Des Devel Ther. 2013;7::375–388. doi:10.2147/DDDT.S31564
  • Tu J, Zhang H, Yu J, Liu FC, Chen Z. Ultrasound-mediated microbubble destruction: a new method in cancer immunotherapy. Oncol Targets Ther. 2018;11:5763–5775. doi:10.2147/OTT.S171019
  • Bilmin K, Kujawska T, Grieb P. Sonodynamic therapy for gliomas. perspectives and prospects of selective sonosensitization of glioma cells. Cells. 2019;8(11):1428. doi:10.3390/cells8111428
  • Yue W, Chen L, Yu L, et al. Checkpoint blockade and nanosonosensitizer-augmented Non-invasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat Commun. 2019;10(1):2025. doi:10.1038/s41467-019-09760-3
  • Cheng D, Wang X, Zhou X, Li J. Nanosonosensitizers with ultrasound-induced reactive oxygen species generation for cancer sonodynamic immunotherapy. Front Bioeng Biotechnol. 2021;30:761218. doi:10.3389/fbioe.2021.761218
  • Zhao H, Zhao B, Li L, et al. Biomimetic decoy inhibits tumor growth and lung metastasis by reversing the drawbacks of sonodynamic therapy. Adv Healthc Mater. 2020;9(1):e1901335. doi:10.1002/adhm.201901335
  • Li K, Tian H. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy. J Drug Target. 2019;27(3):244–256. doi:10.1080/1061186X.2018.1440400
  • Keir M, Butte M, Freeman G, Sharpe AH. Sharpe A.PD-1 and its ligands in tolerance and immunity. Annu Rev Immuno. 2008;26:677–704. doi:10.1146/annurev.immunol.26.021607.090331
  • Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomized dose-comparison cohort of a Phase 1 trial. Lancet. 2014;384(9948):1109–1117. doi:10.1016/S0140-6736(14)60958-2
  • Wheatley MA, Forsberg F, Dube N, Patel M, Oeffinger BE. Surfactant-stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging. Ultrasound Med Biol. 2006;32(1):83–93. doi:10.1016/j.ultrasmedbio.2005.08.009
  • Yang H, Cai W, Xu L, et al. Nanobubble-affibody: novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor. Biomaterials. 2015;37:279–288. doi:10.1016/j.biomaterials.2014.10.013
  • Jiang OY, Zhong MT, Nika F, et al. Ultrasound mediated therapy: recent progress and challenges in nanoscience. Nano Today. 2020;35:100949. doi:10.1016/j.nantod.2020.100949