110
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Exosomes Derived from Human Palatal Mesenchymal Cells Mediate Intercellular Communication During Palatal Fusion by Promoting Oral Epithelial Cell Migration

, , , &
Pages 3109-3121 | Received 23 Nov 2023, Accepted 22 Mar 2024, Published online: 29 Mar 2024

References

  • Won HJ, Kim JW, Won HS, Shin JO. Gene regulatory networks and signaling pathways in palatogenesis and cleft palate: a comprehensive review. Cells. 2023;12(15). doi:10.3390/cells12151954
  • Hammond NL, Dixon MJ. Revisiting the embryogenesis of lip and palate development. Oral Dis. 2022;28(5):1306–1326. doi:10.1111/odi.14174
  • Ray HJ, Niswander L. Mechanisms of tissue fusion during development. Development. 2012;139(10):1701–1711. doi:10.1242/dev.068338
  • Iwaya C, Suzuki A, Iwata J. MicroRNAs and gene regulatory networks related to cleft lip and palate. Int J Mol Sci. 2023;24:4.
  • Lan Y, Jiang R. Sonic hedgehog signaling regulates reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth. Development. 2009;136(8):1387–1396. doi:10.1242/dev.028167
  • Smith TM, Lozanoff S, Iyyanar PP, Nazarali AJ. Molecular signaling along the anterior-posterior axis of early palate development. Front Physiol. 2012;3:488. doi:10.3389/fphys.2012.00488
  • Van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022;23(5):369–382. doi:10.1038/s41580-022-00460-3
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:6478. doi:10.1126/science.aau6977
  • Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17. doi:10.1038/s41556-018-0250-9
  • Jiang N, Xiang L, He L, et al. Exosomes mediate epithelium-mesenchyme crosstalk in organ development. ACS Nano. 2017;11(8):7736–7746. doi:10.1021/acsnano.7b01087
  • Hayashi T, Lombaert IM, Hauser BR, Patel VN, Hoffman MP. Exosomal MicroRNA transport from salivary mesenchyme regulates epithelial progenitor expansion during organogenesis. Dev Cell. 2017;40(1):95–103. doi:10.1016/j.devcel.2016.12.001
  • Yue C, Cao J, Wong A, et al. Human bone marrow stromal cell exosomes ameliorate periodontitis. J Dent Res. 2022;101(9):1110–1118. doi:10.1177/00220345221084975
  • Khan NZ, Cao T, He J, et al. Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential. Brain Behav Immun. 2021;92:165–183. doi:10.1016/j.bbi.2020.12.007
  • Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688–692. doi:10.1016/j.jmb.2015.09.019
  • Fonseka P, Pathan M, Chitti SV, Kang T, Mathivanan S. FunRich enables enrichment analysis of OMICs datasets. J Mol Biol. 2021;433(11):166747. doi:10.1016/j.jmb.2020.166747
  • Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19(1):47. doi:10.1186/s12964-021-00730-1
  • Krause M, Rak-Raszewska A, Naillat F, et al. Exosomes as secondary inductive signals involved in kidney organogenesis. J Extracell Vesicles. 2018;7(1):1422675. doi:10.1080/20013078.2017.1422675
  • Sharma P, Mesci P, Carromeu C, et al. Exosomes regulate neurogenesis and circuit assembly. Proc Natl Acad Sci U S A. 2019;116(32):16086–16094. doi:10.1073/pnas.1902513116
  • Nakajima A, Gulka AOD, Hanai JI. TGF-β signaling and the epithelial-mesenchymal transition during palatal fusion. Int J Mol Sci. 2018;19:11.
  • Cuervo R, Covarrubias L. Death is the major fate of medial edge epithelial cells and the cause of basal lamina degradation during palatogenesis. Development. 2004;131(1):15–24. doi:10.1242/dev.00907
  • Iseki S. Disintegration of the medial epithelial seam: is cell death important in palatogenesis? Dev Growth Differ. 2011;53(2):259–268. doi:10.1111/j.1440-169X.2010.01245.x
  • Teng T, Teng CS, Kaartinen V, Bush JO. A unique form of collective epithelial migration is crucial for tissue fusion in the secondary palate and can overcome loss of epithelial apoptosis. Development. 2022;2:149.
  • Jia S, Zhang Q, Wang Y, et al. PIWI-interacting RNA sequencing profiles in maternal plasma-derived exosomes reveal novel non-invasive prenatal biomarkers for the early diagnosis of nonsyndromic cleft lip and palate. EBioMedicine. 2021;65:103253. doi:10.1016/j.ebiom.2021.103253
  • Jia S, Zhang Q, Wang Y, et al. Identification by RNA-Seq of let-7 clusters as prenatal biomarkers for nonsyndromic cleft lip with palate. Ann N Y Acad Sci. 2022;1516(1):234–246. doi:10.1111/nyas.14868
  • Torrente Y, Bella P, Tripodi L, Villa C, Farini A. Role of insulin-like growth factor receptor 2 across muscle homeostasis: implications for treating muscular dystrophy. Cells. 2020;9:2.
  • Wen B, Xu LY, Li EM. LOXL2 in cancer: regulation, downstream effectors and novel roles. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188435. doi:10.1016/j.bbcan.2020.188435
  • Zhang Y, Liu Z, Yang X, et al. H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts. Theranostics. 2021;11(3):1473–1492. doi:10.7150/thno.51245
  • Mesini N, Fiorcari S, Atene CG, et al. Role of Notch2 pathway in mature B cell malignancies. Front Oncol. 2022;12:1073672. doi:10.3389/fonc.2022.1073672
  • Massimino AM, Colella FE, Bottazzi B, Inforzato A. Structural insights into the biological functions of the long pentraxin PTX3. Front Immunol. 2023;14:1274634. doi:10.3389/fimmu.2023.1274634
  • Kaur S, Roberts DD. Why do humans need thrombospondin-1? J Cell Commun Signal. 2023;17(3):485–493. doi:10.1007/s12079-023-00722-5
  • Gu C, Xue H, Yang X, Nie Y, Qian X. Role of follistatin-like protein 1 in liver diseases. Exp Biol Med. 2023;248(3):193–200. doi:10.1177/15353702221142604
  • Elenbaas JS, Jung IH, Coler-Reilly A, Lee PC, Alisio A, Stitziel NO. The emerging Janus face of SVEP1 in development and disease. Trends Mol Med. 2023;29(11):939–950. doi:10.1016/j.molmed.2023.08.002
  • Cheng G, Shi R. Mammalian peroxidasin (PXDN): from physiology to pathology. Free Radic Biol Med. 2022;182:100–107. doi:10.1016/j.freeradbiomed.2022.02.026
  • Balbi C, Milano G, Fertig TE, et al. An exosomal-carried short periostin isoform induces cardiomyocyte proliferation. Theranostics. 2021;11(12):5634–5649. doi:10.7150/thno.57243
  • Xiao M, Zhang J, Chen W, Chen W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J Exp Clin Cancer Res. 2018;37(1):143. doi:10.1186/s13046-018-0815-2
  • Patwardhan S, Mahadik P, Shetty O, Sen S. ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1. Biomaterials. 2021;279:121185. doi:10.1016/j.biomaterials.2021.121185
  • Liao F, Liao Z, Zhang T, et al. ECFC-derived exosomal THBS1 mediates angiogenesis and osteogenesis in distraction osteogenesis via the PI3K/AKT/ERK pathway. J Orthop Translat. 2022;37:12–22. doi:10.1016/j.jot.2022.08.004
  • Wang PH, Huang BS, Horng HC, Yeh CC, Chen YJ. Wound healing. J Chin Med Assoc. 2018;81(2):94–101. doi:10.1016/j.jcma.2017.11.002
  • Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev. 2019;146:97–125. doi:10.1016/j.addr.2018.09.010
  • Luo R, Dai J, Zhang J, Li Z. Accelerated skin wound healing by electrical stimulation. Adv Healthc Mater. 2021;10(16):e2100557. doi:10.1002/adhm.202100557
  • Freedman BR, Hwang C, Talbot S, Hibler B, Matoori S, Mooney DJ. Breakthrough treatments for accelerated wound healing. Sci Adv. 2023;9(20):eade7007. doi:10.1126/sciadv.ade7007
  • Zhou C, Zhang B, Yang Y, et al. Stem cell-derived exosomes: emerging therapeutic opportunities for wound healing. Stem Cell Res Ther. 2023;14(1):107. doi:10.1186/s13287-023-03345-0