167
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Green Synthesis and Characterization of Silver Nanoparticles Using Moringa Peregrina and Their Toxicity on MCF-7 and Caco-2 Human Cancer Cells

, , , , , , , , , & ORCID Icon show all
Pages 3891-3905 | Received 07 Dec 2023, Accepted 01 Apr 2024, Published online: 01 May 2024

References

  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules. 2019;25(1):112. doi:10.3390/molecules25010112
  • Jo HJ, Choi JW, Lee SH, Hong SW. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: The importance of their dissolved fraction varying with preparation methods. J Hazard Mater. 2012;227-228:301–308. doi:10.1016/j.jhazmat.2012.05.066
  • Selim YA, Azb MA, Ragab I, Abd El-Azim M HM. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci Rep. 2020;10(1):3445. doi:10.1038/s41598-020-60541-1
  • Hou T, Guo Y, Han W, et al. Exploring the biomedical applications of biosynthesized silver nanoparticles using Perilla frutescens flavonoid extract: antibacterial, antioxidant, and cell toxicity properties against colon cancer cells. Molecules. 2023;28(17):6431. doi:10.3390/molecules28176431
  • Stafford S, Serrano Garcia R, Gun’ko YK. Multimodal magnetic-plasmonic nanoparticles for biomedical applications. Applied Sci. 2018;8(1):97. doi:10.3390/app8010097
  • Idrees H, Zaidi SZJ, Sabir A, Khan RU, Zhang X, Hassan SU. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials. 2020;10(10):1970. doi:10.3390/nano10101970
  • Sreekanth TVM, Pandurangan M, Kim DH, Le YR. Green synthesis: In-vitro anticancer activity of silver nanoparticles on human cervical cancer cells. J Clust Sci. 2016;27:671–681. doi:10.1007/s10876-015-0964-9
  • Ranjitham AM, Suja R, Carolling G, Tiwari S. In vitro evaluation of antioxidant antimicrobial, anticancer activities and characterization of Brassica oleracea Var. botrytis L synthesized silver nanoparticles. Intl J Pharma Biosci. 2013;5(4):239–251.
  • Sukanya SL, Sudisha J, Niranjana SR, Prakash HP, Fathima SK. Antimicrobial activity of leaf extract of India medicinal plants against clinical and phytopathogenic bacteria. Afr J Biotechnol. 2009;8(23):6677–6682.
  • Hernández HH, Benavides-Mendoza A, Ortega-Ortiz H, Hernández-Fuentes AD, Juárez-Maldonado A. Cu nanoparticles in chitosan-PVA hydrogels as promoters of growth, productivity and fruit quality in tomato. Emir J Food Agric. 2017;29(8):573–580. doi:10.9755/ejfa.2016-08-1127
  • Siva PK, Sathish M, Parvathi T, Kamaraj M, Bhuvaneswari R, Arumugam M. Green synthesis of silver nanoparticles using Indigofera cordifolia leaf extract and their pharmacological potential. J Phytol. 2021;13:48–54. doi:10.25081/jp.2021.v13.7048
  • Kar P, Banerjee S, Chhetri A, Sen A. Synthesis, physicochemical characterization and biological activity of synthesized Silver and Rajat Bhasma nanoparticles using Clerodendrum inerme. J Phytol. 2021;1:64–71. doi:10.25081/jp.2021.v13.7026
  • Salayová A, Bedlovičová Z, Daneu N, et al. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials. 2021;11(4):1005. doi:10.3390/nano11041005
  • Olson ME. Combining data from DNA sequences and morphology for a phylogeny of moringaceae (brassicales). Syst Bot. 2002;27(1):55–73. doi:10.1043/0363-6445-27.1.55
  • Salaheldeen M, Aroua MK, Mariod AA, Cheng SF, Abdelrahman MA. An evaluation of Moringa peregrina seeds as a source for bio-fuel. Ind Crops Prod. 2014;61:49–61. doi:10.1016/j.indcrop.2014.06.027
  • Senthilkumar A, Karuvantevida N, Rastrelli L, Kurup SS, Cheruth AJ. Traditional uses, pharmacological efficacy, and phytochemistry of Moringa peregrina (forssk.) fiori-A Review. Front Pharmacol. 2018;9:465. doi:10.3389/fphar.2018.00465
  • Mahadevan S, Vijayakumar S, Arulmozhi P. Green synthesis of silver nano particles from Atalantia monophylla (L) Correa leaf extract, their antimicrobial activity and sensing capability of H2O2. Microb Pathog. 2017;113:445–450. doi:10.1016/j.micpath.2017.11.029
  • Wolfenden BS, Willson RL. Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: pulse radiolysis studies of 2, 2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J Chem Soc, Perkin Trans. 1982;27:805–812. doi:10.1039/P29820000805
  • Brand-Williams W, Cuvelier ME, Berset C. Use of free radical method to evaluate the antioxidant activity. LWT - Food Sci Technol. 1995;28:25–30. doi:10.1016/S0023-6438(95)80008-5
  • Halliwell B, Gutteridge JM, Aruoma OI. The deoxyribose method: a simple ”test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem. 1987;165(1):215–219. doi:10.1016/0003-2697(87)90222-3
  • Nishikimi M, Appaji N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46(2):849–854. doi:10.1016/s0006-291x(72)80218-3
  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982;126(1):131–138. doi:10.1016/0003-2697(82)90118-x
  • Oyaizu M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese J Nutr Diet. 1986;44:307–315. doi:10.5264/eiyogakuzashi.44.307
  • Del Peso L, González-García M, Page C, Herrera R, Nuñez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase akt. Science. 1997;278(5338):687–689. doi:10.1126/science.278.5338.687
  • Skóra B, Szychowski KA, Gmiński J. A concise review of metallic nanoparticles encapsulation methods and their potential use in anticancer therapy and medicine. Eur J Pharm Biopharm. 2020;154:153–165. doi:10.1016/j.ejpb.2020.07.002
  • Vaid P, Raizada P, Saini AK, Saini RV. Biogenic silver, gold and copper nanoparticles - A sustainable green chemistry approach for cancer therapy. Sustain Chem Pharm. 2020;16:100–247. doi:10.1016/j.scp.2020.100247
  • Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996;12(3):788–800. doi:10.1021/la9502711
  • Ahmad N, Sharma S, Alam MK, et al. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B. 2010;81(1):81–86. doi:10.1016/j.colsurfb.2010.06.029
  • Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496–502. doi:10.1016/j.jcis.2004.03.003
  • Govindappa M, Hemashekhar B, Arthikala MK, Rai VR, Ramachandra YL. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Res Physics. 2018;9:400–408. doi:10.1016/j.rinp.2018.02.049
  • Jalilian F, Chahardoli A, Sadrjavadi K, Fattahi A, Shokoohinia Y. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv Powder Tech. 2020;31(3):1323–1332. doi:10.1016/j.apt.2020.01.011
  • Govindaraju K, Krishnamoorthy K, Alsagaby SA, Singaravelu G, Premanathan M. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol. 2015;9(6):325–330. doi:10.1049/iet-nbt.2015.0001
  • Vijayan R, Joseph S, Mathew B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif Cells Nano Biotech. 2018;46(4):861–871. doi:10.1080/21691401.2017.1345930
  • Kanagalakshmi K, Premanathan M, Priyanka R, Hemalatha B, Vanangamudi A. Synthesis, anticancer and antioxidant activities of 7-methoxyisoflavanone and 2,3-diarylchromanones. Eur J Med Chem. 2010;45(6):2447–2452. doi:10.1016/j.ejmech.2010.02.028
  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine. 2011;7(2):184–192. doi:10.1016/j.nano.2010.10.001
  • Veeraapandian S, Sawant SN, Doble M. Antibacterial and antioxidant activity of protein capped silver and gold nanoparticles synthesized with Escherichia coli. J Biomed Nanotechnol. 2012;8(1):140–148. doi:10.1166/jbn.2012.1356
  • Mohanta YK, Panda SK, Biswas K, et al. Biogenic synthesis of silver nanoparticles from Cassia fistula (Linn.): In vitro assessment of their antioxidant, antimicrobial and cytotoxic activities. IET Nanobiotechnol. 2016;10(6):438–444. doi:10.1049/iet-nbt.2015.0104
  • Singh H, Du J, Singh P, Yi TH. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif Cells Nanomed Biotechnol. 2018;46(6):1163–1170. doi:10.1080/21691401.2017.1362417
  • Velpurisiva P, Gad A, Piel B, Jadia R, Rai P. Nanoparticle design strategies for effective cancer immunotherapy. J Biomed. 2017;2(2):64–77. doi:10.7150/jbm.18877
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3(1):95–101. doi:10.1016/j.nano.2006.12.001
  • Kim CG, Castro-Aceituno V, Abbai R, et al. Caspase-3/MAPK pathways as main regulators of the apoptotic effect of the phyto-mediated synthesized silver nanoparticle from dried stem of Eleutherococcus senticosus in human cancer cells. Biomed Pharmacother. 2018;99:128–133. doi:10.1016/j.biopha.2018.01.050
  • Vasanth K, Ilango K, MohanKumar R, Agrawal A, Dubey GP. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Coll Surf B Biointerfaces. 2014;117:354–359. doi:10.1016/j.colsurfb.2014.02.052
  • Venugopal K, Rather HA, Rajagopal K, et al. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J Photochem Photobiol B. 2017;167:282–289. doi:10.1016/j.jphotobiol.2016.12.013
  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol. 2010;40(4):328–346. doi:10.3109/10408440903453074
  • Yuan YG, Zhang S, Hwang JY, Kong IK. Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxid Med Cell Longev. 2018;6121328. doi:10.1155/2018/6121328
  • Mohamed AF, Nasr M, Amer ME, et al. Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations. Vitro Study Infect Agent Canc. 2022;17(1):4. doi:10.1186/s13027-022-00416-4
  • Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000;45(3):528–537. doi:10.1016/s0008-6363(99)00384-3
  • Noorbazargan H, Amintehrani S, Dolatabadi A, et al. Anti-cancer & anti-metastasis properties of bioorganic-capped silver nanoparticles fabricated from Juniperus chinensis extract against lung cancer cells. AMB Express. 2021;11(1):61. doi:10.1186/s13568-021-01216-6
  • Kitimu SR, Kirira P, Abdille AA, et al. Anti-angiogenic and anti-metastatic effects of biogenic silver nanoparticles synthesized using Azadirachta indica. Adv Biosci Biotechnol. 2022;13:188–206. doi:10.4236/abb.2022.134010