100
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

PDADMAC/Alginate-Coated Gold Nanorod For Eradication of Staphylococcus Aureus Biofilms

, , , , , , ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 3697-3714 | Received 28 Nov 2023, Accepted 05 Apr 2024, Published online: 23 Apr 2024

References

  • Piechota M, Kot B, Frankowska-Maciejewska A, Grużewska A, Woźniak-Kosek A. Biofilm formation by methicillin-resistant and methicillin-sensitive Staphylococcus aureus strains from hospitalized patients in Poland. Biomed Res Int. 2018;2018:1.
  • Chen C-J, Huang Y-C. New epidemiology of Staphylococcus aureus infection in Asia. Clin Microbiol Infect. 2014;20(7):605–623. doi:10.1111/1469-0691.12705
  • Lebeaux D, Ghigo J-M, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510–543. doi:10.1128/MMBR.00013-14
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–193. doi:10.1128/CMR.15.2.167-193.2002
  • Macfarlane S, Dillon J. Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol. 2007;102(5):1187–1196. doi:10.1111/j.1365-2672.2007.03287.x
  • Wingender J, Flemming H-C. Biofilms in drinking water and their role as reservoir for pathogens. Internat J Hyg Enviro Health. 2011;214(6):417–423. doi:10.1016/j.ijheh.2011.05.009
  • Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–122. doi:10.1038/nrd1008
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–1322. doi:10.1126/science.284.5418.1318
  • Stewart PS, Davison WM, Steenbergen JN. Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 2009;53(8):3505–3507. doi:10.1128/AAC.01728-08
  • Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010;65(9):1955–1958. doi:10.1093/jac/dkq257
  • Doroshenko N, Tseng BS, Howlin RP, et al. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin. Antimicrob Agents Chemother. 2014;58(12):7273–7282. doi:10.1128/AAC.03132-14
  • Siala W, Mingeot-Leclercq M-P, Tulkens PM, Hallin M, Denis O, Van Bambeke F. Comparison of the antibiotic activities of daptomycin, vancomycin, and the investigational fluoroquinolone delafloxacin against biofilms from Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother. 2014;58(11):6385–6397. doi:10.1128/AAC.03482-14
  • Xie Z, Siddiqi N, Rubin EJ. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2005;49(11):4778–4780. doi:10.1128/AAC.49.11.4778-4780.2005
  • Mascio CT, Alder JD, Silverman JA. Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother. 2007;51(12):4255–4260. doi:10.1128/AAC.00824-07
  • Dörr T, Vulić M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 2010;8(2):e1000317. doi:10.1371/journal.pbio.1000317
  • Kwan BW, Valenta JA, Benedik MJ, Wood TK. Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother. 2013;57(3):1468–1473. doi:10.1128/AAC.02135-12
  • Hengzhuang W, Wu H, Ciofu O, Song Z, Høiby N. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother. 2012;56(5):2683–2690. doi:10.1128/AAC.06486-11
  • Marquès C, Tasse J, Pracros A, et al. Effects of antibiotics on biofilm and unattached cells of a clinical Staphylococcus aureus isolate from bone and joint infection. J Med Microbiol. 2015;64(9):1021–1026. doi:10.1099/jmm.0.000125
  • Kiedrowski MR, Horswill AR. New approaches for treating staphylococcal biofilm infections. Ann NY Acad Sci. 2011;1241(1):104–121. doi:10.1111/j.1749-6632.2011.06281.x
  • Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002;66(2):86.
  • Choo EJ, Chambers HF. Treatment of methicillin-resistant Staphylococcus aureus bacteremia. Infect Chemoth. 2016;48(4):267–273. doi:10.3947/ic.2016.48.4.267
  • Karimaei S, Aghamir SMK, Foroushani AR, Pourmand MR. Antibiotic tolerance in biofilm persister cells of Staphylococcus aureus and expression of toxin-antitoxin system genes. Microb Pathogenesis. 2021;159:105126. doi:10.1016/j.micpath.2021.105126
  • John A-K, Baldoni D, Haschke M, et al. Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother. 2009;53(7):2719–2724. doi:10.1128/AAC.00047-09
  • Tang H-J, Chen -C-C, Cheng K-C, et al. In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J Antimicrob Chemother. 2012;67(4):944–950. doi:10.1093/jac/dkr535
  • Tang H-J, Chen -C-C, Cheng K-C, et al. In vitro efficacies and resistance profiles of rifampin-based combination regimens for biofilm-embedded methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57(11):5717–5720. doi:10.1128/AAC.01236-13
  • Khan ST, Ahamed M, Al-Khedhairy A, Musarrat J. Biocidal effect of copper and zinc oxide nanoparticles on human oral microbiome and biofilm formation. Mater Lett. 2013;97:67–70. doi:10.1016/j.matlet.2013.01.085
  • Agarwala M, Choudhury B, Yadav R. Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Ind J Microbiol. 2014;54:365–368. doi:10.1007/s12088-014-0462-z
  • Shakerimoghaddam A, Ghaemi EA, Jamalli A. Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli. Iran J Basic Med Sci. 2017;20(4):451. doi:10.22038/IJBMS.2017.8589
  • Nguyen N-YT, Grelling N, Wetteland CL, Rosario R, Liu H. Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci Rep. 2018;8(1):16260. doi:10.1038/s41598-018-34567-5
  • Hayat S, Muzammil S, Rasool MH, et al. In vitro antibiofilm and anti‐adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria. Microbiol Immunol. 2018;62(4):211–220. doi:10.1111/1348-0421.12580
  • Rajkumari J, Magdalane CM, Siddhardha B, et al. Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. J Photochem Photobiol B Biol. 2019;201:111667. doi:10.1016/j.jphotobiol.2019.111667
  • Jayaseelan C, Rahuman AA, Roopan SM, et al. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectroch Acta Part A. 2013;107:82–89. doi:10.1016/j.saa.2012.12.083
  • Khan ST, Ahamed M, Musarrat J, Al‐Khedhairy AA. Anti‐biofilm and antibacterial activities of zinc oxide nanoparticles against the oral opportunistic pathogens R othia dentocariosa and R othia mucilaginosa. Europ J Oral Sci. 2014;122(6):397–403. doi:10.1111/eos.12152
  • Dhandapani P, Maruthamuthu S, Rajagopal G. Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. J Photochem Photobiol B Biol. 2012;110:43–49. doi:10.1016/j.jphotobiol.2012.03.003
  • Shah RR, Kaewgun S, Lee BI, Tzeng T-RJ. The antibacterial effects of biphasic brookite-anatase titanium dioxide nanoparticles on multiple-drug-resistant Staphylococcus aureus. J Biom Nanotechnol. 2008;4(3):339–348. doi:10.1166/jbn.2008.324
  • Yang Z, Xie C. Zn2+ release from zinc and zinc oxide particles in simulated uterine solution. Colloids Surf B. 2006;47(2):140–145. doi:10.1016/j.colsurfb.2005.12.007
  • Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci. 2009;106(20):8344–8349. doi:10.1073/pnas.0812808106
  • Lee M-S, Hussein HR, Chang S-W, et al. Nature-inspired surface structures design for antimicrobial applications. Int J Mol Sci. 2023;24(2):1348. doi:10.3390/ijms24021348
  • Kawabata N, Takagishi K, Nishiguchi M. Coagulation and sedimentation of microbial cells by soluble pyridinium-type polymers. Reactive Polymers. 1989;10(2–3):269–273. doi:10.1016/0923-1137(89)90033-X
  • Brown S, Santa Maria JP, Walker S. Wall teichoic acids of gram-positive bacteria. Ann Rev Microbiol. 2013;67:313–336. doi:10.1146/annurev-micro-092412-155620
  • Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15(10):1957–1962. doi:10.1021/cm020732l
  • Orendorff CJ, Murphy CJ. Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem A. 2006;110(9):3990–3994. doi:10.1021/jp0570972
  • Bello V, Mattei G, Mazzoldi P, et al. Transmission electron microscopy of lipid vesicles for drug delivery: comparison between positive and negative staining. Microsc Microanal. 2010;16(4):456–461. doi:10.1017/S1431927610093645
  • Stepanović S, Vuković D, Hola V, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis. 2007;115(8):891–899. doi:10.1111/j.1600-0463.2007.apm_630.x
  • Jones GL, Muller C, O’reilly M, Stickler D. Effect of triclosan on the development of bacterial biofilms by urinary tract pathogens on urinary catheters. J Antimicrob Chemother. 2006;57(2):266–272. doi:10.1093/jac/dki447
  • Gilbert P, McBain AJ. Literature-based evaluation of the potential risks associated with impregnation of medical devices and implants with triclosan. Surg Infect. 2002;3(S1):s55–s63. doi:10.1089/sur.2002.3.s1-55
  • Reisner A, Krogfelt KA, Klein BM, Zechner EL, Molin S. In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J Bacteriol. 2006;188(10):3572–3581. doi:10.1128/JB.188.10.3572-3581.2006
  • Beishenaliev A, Faruqu FN, Leo BF, et al. Facile synthesis of biocompatible sub-5 nm alginate-stabilised gold nanoparticles with sonosensitising properties. Colloids Surf A. 2021;627:127141. doi:10.1016/j.colsurfa.2021.127141
  • Kumar R, Binetti L, Nguyen TH, et al. Determination of the aspect-ratio distribution of gold nanorods in a colloidal solution using UV-visible absorption spectroscopy. Sci Rep. 2019;9(1):17469. doi:10.1038/s41598-019-53621-4
  • Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996;12(3):788–800. doi:10.1021/la9502711
  • Gittins DI, Caruso F. Tailoring the polyelectrolyte coating of metal nanoparticles. J Phys Chem A. 2001;105(29):6846–6852. doi:10.1021/jp0111665
  • Wijaya A, Hamad-Schifferli K. Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange. Langmuir. 2008;24(18):9966–9969. doi:10.1021/la8019205
  • Barbosa JA, Abdelsadig MS, Conway BR, Merchant HA. Using zeta potential to study the ionisation behaviour of polymers employed in modified-release dosage forms and estimating their pKa. Int J Pharm X. 2019;1:100024.
  • Qiao Z, Yao Y, Song S, et al. Gold nanorods with surface charge-switchable activities for enhanced photothermal killing of bacteria and eradication of biofilm. J Mat Chem B. 2020;8(15):3138–3149. doi:10.1039/D0TB00298D
  • Palo E, Zhang H, Lastusaari M, Salomäki M. Nanometer-thick ion-selective polyelectrolyte multilayer coatings to inhibit the disintegration of inorganic upconverting nanoparticles. ACS Appl Nano Mater. 2020;3(7):6892–6898. doi:10.1021/acsanm.0c01245
  • Al-Khatib O, Böttcher C, von Berlepsch H, et al. Adsorption of polyelectrolytes onto the oppositely charged surface of tubular J-aggregates of a cyanine dye. Colloid Polym Sci. 2019;297:729–739. doi:10.1007/s00396-019-04487-5
  • Senobar Tahaei SA, Stájer A, Barrak I, Ostorházi E, Szabó D, Gajdács M. Correlation between biofilm-formation and the antibiotic resistant phenotype in Staphylococcus aureus isolates: a laboratory-based study in Hungary and a review of the literature. Infect Drug Resist. 2021;1155–1168. doi:10.2147/IDR.S303992
  • El-Azizi M, Rao S, Kanchanapoom T, Khardori N. In vitro activity of vancomycin, quinupristin/dalfopristin, and linezolid against intact and disrupted biofilms of staphylococci. Ann Clinic Microbiol Antimicrob. 2005;4(1):1–9. doi:10.1186/1476-0711-4-2
  • Bhattacharyya P, Agarwal B, Goswami M, Maiti D, Baruah S, Tribedi P. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie Van Leeuwenhoek. 2018;111:89–99. doi:10.1007/s10482-017-0930-7
  • Guilbaud M, Piveteau P, Desvaux M, Brisse S, Briandet R. Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype. Appl Environ Microbiol. 2015;81(5):1813–1819. doi:10.1128/AEM.03173-14
  • Bridier A, Dubois-Brissonnet F, Boubetra A, Thomas V, Briandet R. The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods. 2010;82(1):64–70. doi:10.1016/j.mimet.2010.04.006
  • Akiyama H, Hamada T, Huh WK, et al. Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in skin lesions of bullous impetigo, atopic dermatitis and pemphigus foliaceus. Br J Dermatol. 2003;148(3):526–532. doi:10.1046/j.1365-2133.2003.05162.x
  • Buzón-Durán L, Alonso-Calleja C, Riesco-Peláez F, Capita R. Effect of sub-inhibitory concentrations of biocides on the architecture and viability of MRSA biofilms. Food Microbiol. 2017;65:294–301. doi:10.1016/j.fm.2017.01.003
  • Desroche N, Dropet C, Janod P, Guzzo J. Antibacterial properties and reduction of MRSA biofilm with a dressing combining polyabsorbent fibres and a silver matrix. J Wound Care. 2016;25(10):577–584. doi:10.12968/jowc.2016.25.10.577
  • Li J, Zhong W, Zhang K, Wang D, Hu J, Chan-Park MB. Biguanide-derived polymeric nanoparticles kill MRSA biofilm and suppress infection in vivo. ACS Appl Mater Interfaces. 2020;12(19):21231–21241. doi:10.1021/acsami.9b17747
  • Ansari M, Khan H, Khan A, Cameotra S, Alzohairy M. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol. 2015;33(1):101–109. doi:10.4103/0255-0857.148402
  • Zhang R, Yu J, Ma K, Ma Y, Wang Z. Synergistic chemo-photothermal antibacterial effects of polyelectrolyte-functionalized gold nanomaterials. ACS Appl Bio Mater. 2020;3(10):7168–7177. doi:10.1021/acsabm.0c00979
  • Hu D, Li H, Wang B, et al. Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus biofilm. ACS Nano. 2017;11(9):9330–9339. doi:10.1021/acsnano.7b04731
  • Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B. 2010;79(2):340–344. doi:10.1016/j.colsurfb.2010.04.014
  • Pajerski W, Ochonska D, Brzychczy-Wloch M, et al. Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges. J Nanopart Res. 2019;21:1–12. doi:10.1007/s11051-019-4617-z
  • Masurkar S, Chaudhari P, Shidore V, Kamble S. Effect of biologically synthesised silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. IET Nanobiotechnol. 2012;6(3):110–114. doi:10.1049/iet-nbt.2011.0061
  • Alavi M, Stojadinovic A, Zao M. An overview of biofilm and its detection in clinical samples. J Wound Care. 2012;21(8):376–383. doi:10.12968/jowc.2012.21.8.376
  • Giri K, Yepes LR, Duncan B, et al. Targeting bacterial biofilms via surface engineering of gold nanoparticles. RSC Adv. 2015;5(128):105551–105559. doi:10.1039/C5RA16305F
  • Pamukçu A, Erdoğan N, Şen Karaman D. Polyethylenimine‐grafted mesoporous silica nanocarriers markedly enhance the bactericidal effect of curcumin against Staphylococcus aureus biofilm. J Biomed Mater Res Part B. 2022;110(11):2506–2520. doi:10.1002/jbm.b.35108
  • Giordani B, Costantini PE, Fedi S, et al. Liposomes containing biosurfactants isolated from Lactobacillus gasseri exert antibiofilm activity against methicillin resistant Staphylococcus aureus strains. Eur J Pharm Biopharm. 2019;139:246–252. doi:10.1016/j.ejpb.2019.04.011
  • Al-Doori Z, Morrison D, Philpott-Howard J. Small colony variants and triclosan resistance in five international clones of methicillin resistant Staphylococcus aureus. J Mol Bio Res. 2017;7(1):112. doi:10.5539/jmbr.v7n1p112
  • Bamber A, Neal T. An assessment of triclosan susceptibility in methicillin-resistant and methicillin-sensitive Staphylococcus aureus. J Hosp Infect. 1999;41(2):107–109. doi:10.1016/S0195-6701(99)90047-6
  • Ciusa ML, Furi L, Knight D, et al. A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. Int J Antimicrob Agents. 2012;40(3):210–220. doi:10.1016/j.ijantimicag.2012.04.021
  • Forbes S, Latimer J, Bazaid A, McBain AJ. Altered competitive fitness, antimicrobial susceptibility, and cellular morphology in a triclosan-induced small-colony variant of Staphylococcus aureus. Antimicrob Agents Chemother. 2015;59(8):4809–4816. doi:10.1128/AAC.00352-15
  • Knetsch ML, Koole LH. New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers. 2011;3(1):340–366. doi:10.3390/polym3010340