89
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Nanoformulation of the Broad-Spectrum Hydrophobic Antiviral Vacuolar ATPase Inhibitor Diphyllin in Human Recombinant H-ferritin

ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, , , ORCID Icon, , , , , ORCID Icon, & ORCID Icon show all
Pages 3907-3917 | Received 28 Nov 2023, Accepted 08 Apr 2024, Published online: 30 Apr 2024

References

  • Mathieu E, Ritchie H, Rodes-Guirao L, et al. Coronavirus Pandemic (COVID-19). OurWorldInData.org; 2020. Available from: https://ourworldindata.org/coronavirus. Accessed February 8, 2023.
  • De Clercq E, Li GD. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29(3):695–747. doi:10.1128/CMR.00102-15
  • Chen R, Wang TT, Song J, et al. Antiviral drug delivery system for enhanced bioactivity, better metabolism and pharmacokinetic characteristics. Int J Nanomed. 2021;16:4959–4984. doi:10.2147/IJN.S315705
  • Stefanik M, Bhosale DS, Haviernik J, et al. Diphyllin shows a broad-spectrum antiviral activity against multiple medically important enveloped RNA and DNA viruses. Viruses. 2022;14(2):1–21. doi:10.3390/v14020354
  • Stefanik M, Strakova P, Haviernik J, Miller AD, Ruzek D, Eyer L. Antiviral activity of vacuolar ATPase blocker diphyllin against SARS-CoV-2. Microorganisms. 2021;9(3):1–10. doi:10.3390/microorganisms9030471
  • Sorensen MG, Henriksen K, Neutzsky-Wulff AV, Dziegiel MH, Karsdal MA. Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. J Bone Miner Res. 2007;22(10):1640–1648. doi:10.1359/jbmr.070613
  • Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8(11):917–929. doi:10.1038/nrm2272
  • Staring J, Raaben M, Brummelkamp TR. Viral escape from endosomes and host detection at a glance. J Cell Sci. 2018;131(15):1–8. doi:10.1242/jcs.216259
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi:10.1038/s41573-020-0090-8
  • Hu CMJ, Chen YT, Fang ZS, Chang WS, Chen HW. Antiviral efficacy of nanoparticulate vacuolar ATPase inhibitors against influenza virus infection. Int J Nanomed. 2018;13:8579–8593. doi:10.2147/IJN.S185806
  • Cmj H, Chang WS, Fang ZS, et al. Nanoparticulate vacuolar ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus. Sci Rep. 2017;7(1):1–11. doi:10.1038/s41598-016-0028-x
  • Fan KL, Jia XH, Zhou M, et al. Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano. 2018;12(5):4105–4115. doi:10.1021/acsnano.7b06969
  • Operti MC, Bernhardt A, Grimm S, Engel A, Figdor CG, Tagit O. PLGA-based nanomedicines manufacturing: technologies overview and challenges in industrial scale-up. Int J Pharm. 2021;605:1–12. doi:10.1016/j.ijpharm.2021.120807
  • Tesarova B, Musilek K, Rex S, Heger Z. Taking advantage of cellular uptake of ferritin nanocages for targeted drug delivery. J Control Release. 2020;325:176–190. doi:10.1016/j.jconrel.2020.06.026
  • Heger Z, Skalickova S, Zitka O, Adam V, Kizek R. Apoferritin applications in nanomedicine. Nanomedicine. 2014;9(14):2233–2245. doi:10.2217/nnm.14.119
  • Kuruppu AI, Zhang L, Collins H, Turyanska L, Thomas NR, Bradshaw TD. An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv Healthc Mater. 2015;4(18):2816–2821. doi:10.1002/adhm.201500389
  • Zhen ZP, Tang W, Chuang YJ, et al. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano. 2014;8(6):6004–6013. doi:10.1021/nn501134q
  • Crich SG, Cadenazzi M, Lanzardo S, et al. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells. Nanoscale. 2015;7(15):6527–6533. doi:10.1039/C5NR00352K
  • He JY, Fan KL, Yan XY. Ferritin drug carrier (FDC) for tumor targeting therapy. J Control Release. 2019;311:288–300. doi:10.1016/j.jconrel.2019.09.002
  • Kidane TZ, Sauble E, Linder MC. Release of iron from ferritin requires lysosomal activity. Am J Physiol Cell Physiol. 2006;291(3):445–455. doi:10.1152/ajpcell.00505.2005
  • Sun CJ, Yuan Y, Xu ZH, et al. Fine-Tuned H-ferritin nanocage with multiple gold clusters as near-infrared kidney specific targeting nanoprobe. Bioconjugate Chem. 2015;26(2):193–196. doi:10.1021/bc5005284
  • Tesarova B, Dostalova S, Smidova V, et al. Surface-PASylation of ferritin to form stealth nanovehicles enhances in vivo therapeutic performance of encapsulated ellipticine. Appl Mater Today. 2020;18:1–11.
  • Parodi A, Buzaeva P, Nigovora D, et al. Nanomedicine for increasing the oral bioavailability of cancer treatments. J Nanobiotechnol. 2021;19(1):1–19. doi:10.1186/s12951-021-01100-2
  • Yang BY, Dong YX, Xu ZC, Li X, Wang F, Zhang Y. Improved stability and pharmacokinetics of wogonin through loading into PASylated ferritin. Colloids Surf B. 2022;216:1–9. doi:10.1016/j.colsurfb.2022.112515
  • Skubalova Z, Rex S, Sukupova M, et al. Passive diffusion vs active pH-dependent encapsulation of tyrosine kinase inhibitors vandetanib and lenvatinib into folate-targeted ferritin delivery system. Int J Nanomed. 2021;16:1–14. doi:10.2147/IJN.S275808
  • Tosha T, Behera RK, Ng HL, Bhattasali O, Alber T, Theil EC. Ferritin protein nanocage ion channels gating by N-terminal extensions. J Biol Chem. 2012;287(16):13016–13025. doi:10.1074/jbc.M111.332734
  • Takahashi T, Kuyucak S. Functional properties of threefold and fourfold channels in ferritin deduced from electrostatic calculations. Biophys J. 2003;84(4):2256–2263. doi:10.1016/S0006-3495(03)75031-0
  • Kim M, Rho Y, Jin KS, et al. pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules. 2011;12(5):1629–1640. doi:10.1021/bm200026v
  • Li L, Fang CJ, Ryan JC, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci U S A. 2010;107(8):3505–3510. doi:10.1073/pnas.0913192107
  • Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30(17):3481–3500. doi:10.1038/emboj.2011.286
  • Liang M, Fan K, Zhou M, et al. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A. 2014;111(41):14900–14905. doi:10.1073/pnas.1407808111
  • Lee YK, Choi EJ, Webster TJ, Kim SH, Khang D. Effect of the protein Corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J Nanomed. 2015;10:97–112.
  • Mahmoudi M, Landry MP, Moore A, Coreas R. The protein Corona from nanomedicine to environmental science. Nat Rev Mater. 2023;8(7):422–438. doi:10.1038/s41578-023-00552-2
  • Asano J, Chiba K, Tada M, Yoshii T. Antiviral activity of lignans and their glycosides from Justicia procumbens. Phytochem. 1996;42(3):713–717. doi:10.1016/0031-9422(96)00024-6
  • Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: a review. J Control Release. 2021;331:30–44. doi:10.1016/j.jconrel.2021.01.017
  • Zivotska H, Mokry M, Rodrigo MAM, et al. Conotoxin-derived biomimetic coiled cone-shaped peptide as ligand for selective nanodelivery to norepinephrine transporter-expressing neuroblastoma cells. Appl Mater Today. 2022;27:1–14.
  • Kaur N, Popli P, Tiwary N, Swami R. Small molecules as cancer targeting ligands: shifting the paradigm. J Control Release. 2023;355:417–433. doi:10.1016/j.jconrel.2023.01.032
  • Srinivasarao M, Low PS. Ligand-targeted drug delivery. Chem Rev. 2017;117(19):12133–12164. doi:10.1021/acs.chemrev.7b00013