170
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Engineered Extracellular Vesicles in Chronic Kidney Diseases: A Comprehensive Review

&
Pages 2377-2393 | Received 29 Nov 2023, Accepted 19 Feb 2024, Published online: 07 Mar 2024

References

  • Glassock RJ, Warnock DG, Delanaye P. The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat Rev Nephrol. 2017;13(2):104–114. doi:10.1038/nrneph.2016.163
  • de Boer IH, Khunti K, Sadusky T, et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: improving Global Outcomes (KDIGO). Kidney Int. 2022;102(5):974–989. doi:10.1016/j.kint.2022.08.012
  • Martin P, Awan AA, Berenguer MC, et al. Executive Summary of the KDIGO 2022 clinical practice guideline for the prevention, diagnosis, evaluation, and treatment of hepatitis c in chronic kidney disease. Kidney Int. 2022;102(6):1228–1237. doi:10.1016/j.kint.2022.07.012
  • Noels H, Jankowski J. Increased risk of cardiovascular complications in chronic kidney disease: introduction to a compendium. Circ Res. 2023;132(8):899–901. doi:10.1161/CIRCRESAHA.123.322806
  • Zhou S, Cheing GLY, Cheung AKK. Role of exosomes and exosomal microRNA in muscle-Kidney crosstalk in chronic kidney disease. Front Cell Dev Biol. 2022;10:10 951837. doi:10.3389/fcell.2022.951837
  • Li Q, Zhang C, Shi J, et al. High-Phosphate-stimulated macrophage-derived exosomes promote vascular calcification via let-7b-5p/TGFBR1 axis in chronic kidney disease. Cells. 2022;12(1):161. doi:10.3390/cells12010161
  • Gudehithlu KP, Hart P, Joshi A, et al. Urine exosomal ceruloplasmin: a potential early biomarker of underlying kidney disease. Clin Exp Nephrol. 2019;23(8):1013–1021. doi:10.1007/s10157-019-01734-5
  • Tang TT, Wang B, Li ZL, et al. Kim-1 targeted extracellular vesicles: a new therapeutic platform for RNAi to Treat AKI. J Am Soc Nephrol. 2021;32(10):2467–2483. doi:10.1681/ASN.2020111561
  • Yoon YM, Lee JH, Song KH, Noh H, Lee SH. Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease-derived mesenchymal stem/stromal cells via cellular prion proteins. J Pineal Res. 2020;68(3):e12632. doi:10.1111/jpi.12632
  • Ceccotti E, Saccu G, Herrera Sanchez MB, Bruno S. Naive or engineered extracellular vesicles from different cell sources: therapeutic tools for kidney diseases. Pharmaceutics. 2023;15(6):1715. doi:10.3390/pharmaceutics15061715
  • Grange C, Skovronova R, Marabese F, Bussolati B. Stem Cell-derived extracellular vesicles and kidney regeneration. Cells. 2019;8(10):1240. doi:10.3390/cells8101240
  • Yang B, Lin Y, Huang Y, Zhu N, Shen YQ. Extracellular vesicles modulate key signalling pathways in refractory wound healing. Burns Trauma. 2023;11:11 tkad039. doi:10.1093/burnst/tkad039
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478). doi:10.1126/science.aau6977
  • Madkhali AM, Mobarki AA, Ghzwani AH, et al. Elevated levels of procoagulant microvesicles and tissue-factor bearing microvesicles in malaria patients. Int J Gen Med. 2023;16:1205–1215. doi:10.2147/IJGM.S402212
  • Yang J, Zhang X, Wang G, et al. ApoSEVs-mediated modulation of versatile target cells promotes diabetic wound healing: unveiling a promising strategy. Int J Nanomed. 2023;18:6955–6977. doi:10.2147/IJN.S436350
  • Hu Z, Chen G, Zhao Y, et al. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer. 2023;22(1):55. doi:10.1186/s12943-023-01759-1
  • Hu Y, Tao R, Chen L, et al. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnol. 2021;19(1):150. doi:10.1186/s12951-021-00894-5
  • Zhao M, Liu S, Wang C, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA. ACS Nano. 2021;15(1):1519–1538. doi:10.1021/acsnano.0c08947
  • Zhou M, Li YJ, Tang YC, et al. Apoptotic bodies for advanced drug delivery and therapy. J Control Release. 2022;351:394–406.
  • Liu H, Liu S, Qiu X, et al. Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy. 2020;16(12):2140–2155. doi:10.1080/15548627.2020.1717128
  • Liao Y, Zhang Z, Ouyang L, Mi B, Liu G. Engineered extracellular vesicles in wound healing: design, paradigms, and clinical application. Small. 2023;20(7):e2307058. doi:10.1002/smll.202307058
  • Zhang Y, Tang Y, Du S, Li P, Du S, Li P. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomed. 2020;15:6917–6934. doi:10.2147/IJN.S264498
  • Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol. 2023;23(4):236–250. doi:10.1038/s41577-022-00763-8
  • Mi B, Chen L, Xiong Y, et al. Saliva exosomes-derived UBE2O mRNA promotes angiogenesis in cutaneous wounds by targeting SMAD6. J Nanobiotechnol. 2020;18(1):68. doi:10.1186/s12951-020-00624-3
  • Ferreira JV, da Rosa Soares A, Ramalho J, et al. LAMP2A regulates the loading of proteins into exosomes. Sci Adv. 2022;8(12):eabm1140. doi:10.1126/sciadv.abm1140
  • Chen C, Zheng H, Luo Y, et al. SUMOylation promotes extracellular vesicle-mediated transmission of lncRNA ELNAT1 and lymph node metastasis in bladder cancer. J Clin Invest. 2021;131(8). doi:10.1172/JCI146431
  • Lin Z, Xiong Y, Zeng R, et al. Circulating MiRNA-21-enriched extracellular vesicles promote bone remodeling in traumatic brain injury patients. Exp Mol Med. 2023;55(3):587–596. doi:10.1038/s12276-023-00956-8
  • Segel M, Lash B, Song J, et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science. 2021;373(6557):882–889. doi:10.1126/science.abg6155
  • Bitto NJ, Cheng L, Johnston EL, et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles. 2021;10(6):e12080. doi:10.1002/jev2.12080
  • Yu Y, Chen M, Guo Q, et al. Human umbilical cord mesenchymal stem cell exosome-derived miR-874-3p targeting RIPK1/PGAM5 attenuates kidney tubular epithelial cell damage. Cell Mol Biol Lett. 2023;28(1):12. doi:10.1186/s11658-023-00425-0
  • Ding H, Li LX, Harris PC, Yang J, Li X. Extracellular vesicles and exosomes generated from cystic renal epithelial cells promote cyst growth in autosomal dominant polycystic kidney disease. Nat Commun. 2021;12(1):4548. doi:10.1038/s41467-021-24799-x
  • Wang H, Wang B, Zhang A, et al. Exosome-mediated miR-29 transfer reduces muscle atrophy and kidney fibrosis in mice. Mol Ther. 2019;27(3):571–583. doi:10.1016/j.ymthe.2019.01.008
  • El Fekih R, Hurley J, Tadigotla V, et al. Discovery and validation of a urinary exosome mRNA signature for the diagnosis of human kidney transplant rejection. J Am Soc Nephrol. 2021;32(4):994–1004. doi:10.1681/ASN.2020060850
  • Erdbrugger U, Blijdorp CJ, Bijnsdorp IV, et al. Urinary extracellular vesicles: a position paper by the urine task force of the international society for extracellular vesicles. J Extracell Vesicles. 2021;10(7):e12093. doi:10.1002/jev2.12093
  • Chen S, Zhang X, Meng K, et al. Urinary exosome tsRNAs as novel markers for diagnosis and prediction of lupus nephritis. Front Immunol. 2023;14:1077645. doi:10.3389/fimmu.2023.1077645
  • Liu Y, Guo Y, Bao S, Huang H, Liu W, Guo W. Bone marrow mesenchymal stem cell-derived exosomal microRNA-381-3p alleviates vascular calcification in chronic kidney disease by targeting NFAT5. Cell Death Dis. 2022;13(3):278. doi:10.1038/s41419-022-04703-1
  • Behrens F, Holle J, Kuebler WM, Simmons S. Extracellular vesicles as regulators of kidney function and disease. Intensive Care Med Exp. 2020;8(Suppl 1):22. doi:10.1186/s40635-020-00306-2
  • Zhou X, Zhao S, Li W, et al. Tubular cell-derived exosomal miR-150-5p contributes to renal fibrosis following unilateral ischemia-reperfusion injury by activating fibroblast in vitro and in vivo. Int J Biol Sci. 2021;17(14):4021–4033. doi:10.7150/ijbs.62478
  • Zhang W, Zheng X, Yu Y, et al. Renal cell carcinoma-derived exosomes deliver lncARSR to induce macrophage polarization and promote tumor progression via STAT3 pathway. Int J Biol Sci. 2022;18(8):3209–3222. doi:10.7150/ijbs.70289
  • Wang B, Zhang A, Wang H, et al. miR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease. Theranostics. 2019;9(7):1864–1877. doi:10.7150/thno.29579
  • Zhou X, Zhang W, Yao Q, et al. Exosome production and its regulation of EGFR during wound healing in renal tubular cells. Am J Physiol Renal Physiol. 2017;312(6):F963–F70. doi:10.1152/ajprenal.00078.2017
  • Lv LL, Feng Y, Wu WJ, et al. Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation. J Am Soc Nephrol. 2018;29(3):919–935. doi:10.1681/ASN.2017050523
  • Jalal D, Sanford B, Ten Eyck P. Detection of pro angiogenic and inflammatory biomarkers in patients with CKD. Sci Rep. 2021;11(1):8786. doi:10.1038/s41598-021-87710-0
  • Chen S, Zhang M, Li J, et al. beta-catenin-controlled tubular cell-derived exosomes play a key role in fibroblast activation via the OPN-CD44 axis. J Extracell Vesicles. 2022;11(3):e12203. doi:10.1002/jev2.12203
  • Lin X, Shan SK, Xu F, et al. The crosstalk between endothelial cells and vascular smooth muscle cells aggravates high phosphorus-induced arterial calcification. Cell Death Dis. 2022;13(7):650. doi:10.1038/s41419-022-05064-5
  • Zietzer A, Steffen E, Niepmann S, et al. MicroRNA-mediated vascular intercellular communication is altered in chronic kidney disease. Cardiovasc Res. 2022;118(1):316–333. doi:10.1093/cvr/cvaa322
  • Jankowski J, Floege J, Fliser D, Bohm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021;143(11):1157–1172. doi:10.1161/CIRCULATIONAHA.120.050686
  • Cao H, Cheng Y, Gao H, et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury. ACS Nano. 2020;14(4):4014–4026. doi:10.1021/acsnano.9b08207
  • Wen J, Ma Z, Livingston MJ, et al. Decreased secretion and profibrotic activity of tubular exosomes in diabetic kidney disease. Am J Physiol Renal Physiol. 2020;319(4):F664–F73. doi:10.1152/ajprenal.00292.2020
  • Li ZL, Lv LL, Tang TT, et al. HIF-1alpha inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation. Kidney Int. 2019;95(2):388–404. doi:10.1016/j.kint.2018.09.013
  • Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 2020;27(1):210–226. doi:10.1038/s41418-019-0349-y
  • Zhang L, Li S, Cong M, et al. Lemon-derived extracellular vesicle-like nanoparticles block the progression of kidney stones by antagonizing endoplasmic reticulum stress in renal tubular cells. Nano Lett. 2023;23(4):1555–1563. doi:10.1021/acs.nanolett.2c05099
  • Han L, Wang S, Li J, Zhao L, Zhou H. Urinary exosomes from patients with diabetic kidney disease induced podocyte apoptosis via microRNA-145-5p/Srgap2 and the RhoA/ROCK pathway. Exp Mol Pathol. 2023;134 104877. doi:10.1016/j.yexmp.2023.104877
  • Burrello J, Monticone S, Burrello A, et al. Identification of a serum and urine extracellular vesicle signature predicting renal outcome after kidney transplant. Nephrol Dial Transplant. 2023;38(3):764–777. doi:10.1093/ndt/gfac259
  • Haney NM, Kim CJ, Kuczler MD, et al. Novel urinary tract obstruction marker discovery by multi-marker profiling of urinary extracellular vesicles derived from a rat UTO model. Am J Clin Exp Urol. 2023;11(2):136–145.
  • Tao Y, Wei X, Yue Y, et al. Extracellular vesicle-derived AEBP1 mRNA as a novel candidate biomarker for diabetic kidney disease. J Transl Med. 2021;19(1):326. doi:10.1186/s12967-021-03000-3
  • Saejong S, Townamchai N, Somparn P, et al. MicroRNA-21 in plasma exosome, but not from whole plasma, as a biomarker for the severe interstitial fibrosis and tubular atrophy (IF/TA) in post-renal transplantation. Asian Pac J Allergy Immunol. 2022;40(1):94–102. doi:10.12932/AP-101019-0656
  • Kim HY, Kwon S, Um W, et al. Functional extracellular vesicles for regenerative medicine. Small. 2022;18(36):e2106569. doi:10.1002/smll.202106569
  • Yuan X, Li L, Liu H, et al. Strategies for improving adipose-derived stem cells for tissue regeneration. Burns Trauma. 2022;10:10 tkac028. doi:10.1093/burnst/tkac028
  • Lin Y, Yan M, Bai Z, et al. Huc-MSC-derived exosomes modified with the targeting peptide of aHSCs for liver fibrosis therapy. J Nanobiotechnol. 2022;20(1):432. doi:10.1186/s12951-022-01636-x
  • Xiong Y, Chen L, Liu P, et al. All-in-one: multifunctional hydrogel accelerates oxidative diabetic wound healing through timed-release of exosome and fibroblast growth factor. Small. 2022;18(1):e2104229. doi:10.1002/smll.202104229
  • Aslan C, Zolbanin NM, Faraji F, Jafari R. Exosomes for CRISPR-Cas9 delivery: the cutting edge in genome editing. Mol Biotechnol. 2023;1:2.
  • Ilahibaks NF, Kluiver TA, de Jong OG, et al. Extracellular vesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex targeting proprotein convertase subtilisin-kexin type 9 (Pcsk9) in primary mouse hepatocytes. J Extracell Vesicles. 2024;13(1):e12389. doi:10.1002/jev2.12389
  • Osteikoetxea X, Silva A, Lazaro-Ibanez E, et al. Engineered Cas9 extracellular vesicles as a novel gene editing tool. J Extracell Vesicles. 2022;11(5):e12225. doi:10.1002/jev2.12225
  • Salunkhe S, Chitkara D, Mittal A, Chitkara D, Mittal A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: strategies and significance. J Control Release. 2020;326:326 599–614. doi:10.1016/j.jconrel.2020.07.042
  • Liu S, Lv K, Wang Y, et al. Improving the circulation time and renal therapeutic potency of extracellular vesicles using an endogenous ligand binding strategy. J Control Release. 2022;352:1009–1023. doi:10.1016/j.jconrel.2022.11.017
  • Chen C, Sun M, Liu X, et al. General and mild modification of food-derived extracellular vesicles for enhanced cell targeting. Nanoscale. 2021;13(5):3061–3069. doi:10.1039/D0NR06309F
  • Deng D, Li X, Zhang JJ, et al. Biotin-avidin system-based delivery enhances the therapeutic performance of MSC-derived exosomes. ACS Nano. 2023;17(9):8530–8550. doi:10.1021/acsnano.3c00839
  • Gao L, Qiu F, Cao H, et al. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine. Theranostics. 2023;13(2):685–703. doi:10.7150/thno.73568
  • Choi HY, Kim TY, Lee M, et al. Kidney mesenchymal stem cell-derived extracellular vesicles engineered to express erythropoietin improve renal anemia in mice with chronic kidney disease. Stem Cell Rev Rep. 2022;18(3):980–992. doi:10.1007/s12015-021-10141-x
  • Kim S, Lee SA, Yoon H, et al. Exosome-based delivery of super-repressor IkappaBalpha ameliorates kidney ischemia-reperfusion injury. Kidney Int. 2021;100(3):570–584. doi:10.1016/j.kint.2021.04.039
  • Rong Y, Wang Z, Tang P, et al. Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioact Mater. 2023;23:328–342. doi:10.1016/j.bioactmat.2022.11.011
  • Yuan J, Yang H, Liu C, et al. Microneedle patch loaded with exosomes containing MicroRNA-29b prevents cardiac fibrosis after myocardial infarction. Adv Healthc Mater. 2023;12(13):e2202959. doi:10.1002/adhm.202202959
  • Lai JJ, Chau ZL, Chen SY, et al. Exosome processing and characterization approaches for research and technology development. Adv Sci. 2022;9(15):e2103222. doi:10.1002/advs.202103222
  • Xiong Y, Lin Z, Bu P, et al. A whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing. Adv Mater. 2023;35(19):e2212300. doi:10.1002/adma.202212300
  • Zheng H, Ji J, Zhao T, Wang E, Zhang A. Exosome‑encapsulated miR‑26a attenuates aldosterone‑induced tubulointerstitial fibrosis by inhibiting the CTGF/SMAD3 signaling pathway. Int J Mol Med. 2023;51:2.
  • Liang M, Zhang D, He W, Jin J. Exosomes from miR-374a-5p-modified mesenchymal stem cells inhibit the progression of renal fibrosis by regulating MAPK6/MK5/YAP axis. Bioengineered. 2022;13(2):4517–4527. doi:10.1080/21655979.2022.2033465
  • Tang TT, Wang B, Wu M, et al. Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Sci Adv. 2020;6(33):eaaz0748. doi:10.1126/sciadv.aaz0748
  • Ko KW, Park SY, Lee EH, Yoo YI, Kim DS. Integrated bioactive scaffold with polydeoxyribonucleotide and stem-cell-derived extracellular vesicles for kidney regeneration. ACS Nano. 2021;15(4):7575–7585. doi:10.1021/acsnano.1c01098
  • Shi J, Duan J, Gong H, Pang Y, Wang L, Yan Y. Exosomes from miR-20b-3p-overexpressing stromal cells ameliorate calcium oxalate deposition in rat kidney. J Cell Mol Med. 2019;23(11):7268–7278. doi:10.1111/jcmm.14555
  • Jia Y, Zheng Z, Xue M, et al. Extracellular vesicles from albumin-induced tubular epithelial cells promote the M1 macrophage phenotype by targeting klotho. Mol Ther. 2019;27(8):1452–1466. doi:10.1016/j.ymthe.2019.05.019
  • Guo J, Liu X, Song H, Gu Y, Niu J, Yang L. MHC-1B carried exosomes derived from tubular epithelial cell induced by the EGFR mimotope inhibit macrophage activation in renal fibrosis. Extracel Vesicle. 2023;2:100024. doi:10.1016/j.vesic.2023.100024
  • Song T, Eirin A, Zhu X, et al. Mesenchymal stem cell-derived extracellular vesicles induce regulatory T cells to ameliorate chronic kidney injury. Hypertension. 2020;75(5):1223–1232. doi:10.1161/HYPERTENSIONAHA.119.14546
  • Li Y, Chakraborty A, Broughton BRS, et al. Comparing the renoprotective effects of BM-MSCs versus BM-MSC-exosomes, when combined with an anti-fibrotic drug, in hypertensive mice. Biomed Pharmacother;2021. 144 112256. doi:10.1016/j.biopha.2021.112256
  • Tapparo M, Bruno S, Collino F, et al. Renal regenerative potential of extracellular vesicles derived from miRNA-Engineered mesenchymal stromal cells. Int J Mol Sci. 2019;20:10.
  • Wang B, Yao K, Huuskes BM, et al. Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis. Mol Ther. 2016;24(7):1290–1301. doi:10.1038/mt.2016.90
  • Jin J, Qian F, Zheng D, He W, Gong J, He Q. Mesenchymal stem cells attenuate renal fibrosis via exosomes-mediated delivery of microRNA Let-7i-5p antagomir. Int J Nanomed. 2021;16:3565–3578. doi:10.2147/IJN.S299969
  • Liu X, Liu Z, Wang C, et al. Kidney tubular epithelial cells control interstitial fibroblast fate by releasing TNFAIP8-encapsulated exosomes. Cell Death Dis. 2023;14(10):672. doi:10.1038/s41419-023-06209-w
  • Chen XJ, Jiang K, Ferguson CM, et al. Augmented efficacy of exogenous extracellular vesicles targeted to injured kidneys. Signal Transduct Target Ther. 2020;5(1):199. doi:10.1038/s41392-020-00304-6
  • Ji C, Zhang J, Shi L, et al. Engineered extracellular vesicle-encapsulated CHIP as novel nanotherapeutics for treatment of renal fibrosis. NPJ Regen Med. 2024;9(1):3. doi:10.1038/s41536-024-00348-0
  • Jin C, Wu P, Li L, Xu W, Qian H. Exosomes: emerging therapy delivery tools and biomarkers for kidney diseases. Stem Cells Int. 2021;2021:7844455. doi:10.1155/2021/7844455
  • Cheng YQ, Yue YX, Cao HM, et al. Coassembly of hypoxia-sensitive macrocyclic amphiphiles and extracellular vesicles for targeted kidney injury imaging and therapy. J Nanobiotechnol. 2021;19(1):451. doi:10.1186/s12951-021-01192-w
  • Yan J, Xiao H, Zhou X, et al. Engineered exosomes reprogram Gli1(+) cells in vivo to prevent calcification of vascular grafts and autologous pathological vessels. Sci Adv. 2023;9(29):eadf7858. doi:10.1126/sciadv.adf7858
  • Yea JH, Yoon YM, Lee JH, Yun CW, Lee SH. Exosomes isolated from melatonin-stimulated mesenchymal stem cells improve kidney function by regulating inflammation and fibrosis in a chronic kidney disease mouse model. J Tissue Eng. 2021;12:12 20417314211059624. doi:10.1177/20417314211059624
  • Chen L, Wang Y, Li S, et al. Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics. 2020;10(20):9425–9442. doi:10.7150/thno.43315
  • Huang W, Zhu XY, Lerman A, Lerman LO. Extracellular vesicles as theranostic tools in kidney disease. Clin J Am Soc Nephrol. 2022;17(9):1418–1429. doi:10.2215/CJN.16751221
  • Kishi S, Matsumoto T, Brooks CR, Brooks CR. Human reconstructed kidney models. Vitro Cell Dev Biol Anim. 2021;57(2):133–147. doi:10.1007/s11626-021-00548-8
  • Tian Y, Gong M, Hu Y, et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J Extracell Vesicles. 2020;9(1):1697028. doi:10.1080/20013078.2019.1697028
  • Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 2023;33(8):667–681. doi:10.1016/j.tcb.2023.01.002
  • Verweij FJ, Balaj L, Boulanger CM, et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods. 2021;18(9):1013–1026. doi:10.1038/s41592-021-01206-3
  • Chen J, Tan Q, Yang Z, Jin Y. Engineered extracellular vesicles: potentials in cancer combination therapy. J Nanobiotechnol. 2022;20(1):132. doi:10.1186/s12951-022-01330-y
  • Zhang J, Wu J, Wang G, et al. Extracellular vesicles: techniques and biomedical applications related to single vesicle analysis. ACS Nano. 2023;17(18):17668–17698. doi:10.1021/acsnano.3c03172
  • Whitley JA, Cai H. Engineering extracellular vesicles to deliver CRISPR ribonucleoprotein for gene editing. J Extracell Vesicles. 2023;12(9):e12343. doi:10.1002/jev2.12343