91
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Analysis of Optimal Treatment Starting Time for Photothermal Therapy Through Analysis of Diffusion Behavior of Gold Nanoparticles

ORCID Icon &
Pages 3167-3186 | Received 29 Nov 2023, Accepted 28 Feb 2024, Published online: 03 Apr 2024

References

  • Overchuk M, Weersink RA, Wilson BC, et al. Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS nano. 2023;17(9):7979–8003. doi:10.1021/acsnano.3c00891
  • Zhang Y, Xu Z, Yuan Y, et al. Flexible antiswelling photothermal-therapy mxene hydrogel-based epidermal sensor for intelligent human–machine interfacing. Adv Funct Mater. 2023;33(21):2300299. doi:10.1002/adfm.202300299
  • Yin B, WKH H, Xia X, et al. A multilayered mesoporous gold nanoarchitecture for ultraeffective near-infrared light-controlled chemo/photothermal therapy for cancer guided by SERS imaging. Small. 2023;19(6):2206762. doi:10.1002/smll.202206762
  • Qi K, Sun B, Liu S, et al. Research progress on carbon materials in tumor photothermal therapy. Biomed Pharmacother. 2023;165:115070. doi:10.1016/j.biopha.2023.115070
  • Almond DP, Patel P. Photothermal Science and Techniques. Springer Science & Business Media; 1996.
  • D’arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–592. doi:10.1002/cbin.11137
  • Ni Z, Zhang D, Zhen S, et al. NIR light-driven pure organic Janus-like nanoparticles for thermophoresis-enhanced photothermal therapy. Biomaterials. 2023;301:122261. doi:10.1016/j.biomaterials.2023.122261
  • Tang SJ, Li QF, Wang MF, et al. Bleeding the excited state energy to the utmost: single-molecule iridium complexes for in vivo dual photodynamic and photothermal therapy by an infrared low-power laser. Adv Healthc Mater. 2023;12(28):2301227. doi:10.1002/adhm.202301227
  • Fu M, Yang Y, Zhang Z, et al. Biosynthesis of melanin nanoparticles for photoacoustic imaging guided photothermal therapy. Small. 2023;19(14):2205343. doi:10.1002/smll.202205343
  • Li D, Deng X, Xu Z, et al. Molecular engineering of NIR-II AIE Luminogen excited at 1700 nm for ultradeep intravital brain two-photon fluorescence imaging. Adv Funct Mater. 2023;33(46):2303967. doi:10.1002/adfm.202303967
  • Choi J, Kim SY. Multi-shell structured nanocarriers with enhanced multiphoton upconversion luminescence efficiency for NIR-mediated targeted photodynamic therapy. Appl Mater Today. 2023;31:101755 doi:10.1016/j.apmt.2023.1017555.
  • Liu T, Zhu M, Chang X, et al. Tumor-specific photothermal-therapy-assisted immunomodulation via multiresponsive adjuvant nanoparticles. Adv Mater. 2023;35(18):2300086. doi:10.1002/adma.202300086
  • Liu S, Pan X, Liu H. Two-dimensional nanomaterials for photothermal therapy. Angew Chem. 2020;132(15):5943–5953. doi:10.1002/ange.201911477
  • Farzin L, Saber R, Sadjadi S, et al. Nanomaterials-based hyperthermia: a literature review from concept to applications in chemistry and biomedicine. J Therm Biol. 2022;104:103201 doi:10.1016/j.jtherbio.2022.103201.
  • Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater. 2004;16(19):1685–1706. doi:10.1002/adma.200400271
  • Rai M, Ingle AP, Birla S, et al. Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol. 2016;42(5):696–719. doi:10.3109/1040841X.2015.1018131
  • Zhen X, Pu K, Jiang X. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: signal amplification and second near-infrared construction. Small. 2021;17(6):2004723. doi:10.1002/smll.202004723
  • Hu H, Li D, Dai W, et al. A NIR-II aiegen-based supramolecular nanodot for peroxynitrite-potentiated mild-temperature photothermal therapy of hepatocellular carcinoma. Adv Funct Mater. 2023;33(19):2213134 doi:10.1002/adfm.202213134.
  • Cheng JKK, Ooi EH, Chiew YS, et al. Gold nanorods assisted photothermal therapy of bladder cancer in mice: a computational study on the effects of gold nanorods distribution at the centre, periphery, and surface of bladder cancer. Comput Methods Prog Biomed. 2023;230:107363. doi:10.1016/j.cmpb.2023.107363
  • Yin T, Yang T, Chen L, et al. Intelligent gold nanoparticles for malignant tumor treatment via spontaneous copper manipulation and on-demand photothermal therapy based on copper induced click chemistry. Acta Biomater. 2023;166:485–495. doi:10.1016/j.actbio.2023.04.036
  • Gheflati B, Naghavi N. Computational study of nanoparticle assisted hyperthermia in tumors embedded with large blood vessels. Int J Heat Mass Transf. 2020;151:119415 doi:10.1016/j.ijheatmasstransfer.2020.119415.
  • Kim D, Paik J, Kim H. Effect of gold nanoparticles distribution radius on photothermal therapy efficacy. Sci Rep. 2023;13(1):12135. doi:10.1038/s41598-023-39040-6
  • Kim D, Kim H. Induction of apoptotic temperature in photothermal therapy under various heating conditions in multi-layered skin structure. Int J Mol Sci. 2021;22(20):11091. doi:10.3390/ijms222011091
  • Stocker T. Introduction to Climate Modelling. Springer Science & Business Media; 2011.
  • Edward JT. Molecular volumes and the Stokes-Einstein equation. J Chem Educ. 1970;47(4):261. doi:10.1021/ed047p261
  • Soni S, Tyagi H Investigation of nanoparticle injection to a tissue through porous media. ICTEA: International Conference on Thermal Engineering Vol. 2019.
  • Charny CK. Mathematical models of bioheat transfer. Adv Heat Transf. 1992;22:19–155 doi:10.1016/S0065-2717(08)70344-7.
  • Dombrovsky LA, Timchenko V, Jackson M, Yeoh GH. A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. Int J Heat Mass Transf. 2011;54(25–26):5459–5469. doi:10.1016/j.ijheatmasstransfer.2011.07.045
  • Keim U, Katalinic A, Holleczek B, et al. Incidence, mortality and trends of cutaneous squamous cell carcinoma in Germany, the Netherlands, and Scotland. Eur J Cancer. 2023;183:60–68. doi:10.1016/j.ejca.2023.01.017
  • Zhang J, Yang Q, Wu J, et al. Trends in cutaneous squamous cell carcinoma on the lip incidence and mortality in the United States, 2000–2019. Front Oncol. 2023;13:1111907. doi:10.3389/fonc.2023.1111907
  • Çetingül MP, Herman C. Quantification of the thermal signature of a melanoma lesion. Int J Therm Sci. 2011;50(4):421–431. doi:10.1016/j.ijthermalsci.2010.10.019
  • Holmer C, Lehmann KS, Wanken J, et al. Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction. J Biomed Opt. 2007;12(1):014025. doi:10.1117/1.2564793
  • Prasad B, Kim S, Cho W, Kim S, Kim JK. Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia. J Therm Biol. 2018;74:281–289. doi:10.1016/j.jtherbio.2018.04.007
  • Salomatina E, Jiang B, Novak J, Yaroslavsky AN. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J Biomed Opt. 2006;11(6):064026. doi:10.1117/1.2398928
  • Paul A, Paul A. Thermomechanical analysis of a triple layered skin structure in presence of nanoparticle embedding multi-level blood vessels. Int J Heat Mass Transf. 2020;148:119076. doi:10.1016/j.ijheatmasstransfer.2019.119076
  • Kim D, Kim H. Numerical study on death of squamous cell carcinoma based on various shapes of gold nanoparticles using photothermal therapy. Sensors. 2022;22(4):1671. doi:10.3390/s22041671
  • Draine BT, Flatau PJ. Discrete-dipole approximation for periodic targets: theory and tests. Josa A. 2008;25(11):2693–2703. doi:10.1364/JOSAA.25.002693
  • Paul A, Narasimhan A, Kahlen FJ, Das SK. Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating. J Therm Biol. 2014;41:77–87. doi:10.1016/j.jtherbio.2014.02.010
  • Kim M, Kim G, Kim D, et al. Numerical study on effective conditions for the induction of apoptotic temperatures for various tumor aspect ratios using a single continuous-wave laser in photothermal therapy using gold nanorods. Cancers. 2019;11(6):764. doi:10.3390/cancers11060764