94
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

An Eco-Friendly Synthesis Approach for Enhanced Photocatalytic and Antibacterial Properties of Copper Oxide Nanoparticles Using Coelastrella terrestris Algal Extract

, , , , ORCID Icon, , , ORCID Icon, , & ORCID Icon show all
Pages 4137-4162 | Received 02 Dec 2023, Accepted 26 Apr 2024, Published online: 10 May 2024

References

  • Wijesinghe U, Thiripuranathar G, Iqbal H, Menaa F. Biomimetic synthesis, characterization, and evaluation of fluorescence resonance energy transfer, photoluminescence, and photocatalytic activity of zinc oxide nanoparticles. Sustainability. 2021;13(4):2004. doi:10.3390/su13042004
  • Aravind M, Amalanathan M, Mary M. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl Sci. 2021;3(4):1–10. doi:10.1007/s42452-021-04281-5
  • Khandelwal M, Kumawat A, Misra KP, Khangarot RK. Efficient antibacterial activity in copper oxide nanoparticles biosynthesized via Jasminum sambac flower extract. Part Sci Technol. 2022;2:1–13.
  • Jabbar A, Abbas A, Assad N, et al. A highly selective Hg2+ colorimetric sensor and antimicrobial agent based on green synthesized silver nanoparticles using Equisetum diffusum extract. RSC Adv. 2023;13(41):28666–28675. doi:10.1039/D3RA05070J
  • Siddique AB, Amr D, Abbas A, et al. Synthesis of hydroxyethylcellulose phthalate-modified silver nanoparticles and their multifunctional applications as an efficient antibacterial, photocatalytic and mercury-selective sensing agent. Int J Biol Macromol. 2024;256:128009. doi:10.1016/j.ijbiomac.2023.128009
  • Ejaz A, Mamtaz Z, Yasmin I, et al. Cyperus scariosus extract based greenly synthesized gold nanoparticles as colorimetric nanoprobe for Ni2+ detection and as antibacterial and photocatalytic agent. J Mol Liq. 2024;393:123622. doi:10.1016/j.molliq.2023.123622
  • Saied E, Salem SS, Al-Askar AA, Elkady FM, Arishi AA, Hashem AH. Mycosynthesis of hematite (α-Fe2O3) nanoparticles using Aspergillus Niger and their antimicrobial and photocatalytic activities. Bioengineering. 2022;9(8):397. doi:10.3390/bioengineering9080397
  • Salem SS, Hammad EN, Mohamed AA, El-Dougdoug W. A comprehensive review of nanomaterials: types, synthesis, characterization, and applications. Biointerface Res Appl Chem. 2022;13(1):41.
  • Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2021;199(1):344–370. doi:10.1007/s12011-020-02138-3
  • Dezfuli AAZ, Abu-Elghait M, Salem SS. Recent insights into nanotechnology in colorectal cancer. Appl Biochem Biotechnol. 2023;2:1–15.
  • Salem SS. A mini review on green nanotechnology and its development in biological effects. Arch Microbiol. 2023;205(4):128. doi:10.1007/s00203-023-03467-2
  • Hussein AS, Hashem AH, Salem SS. Mitigation of the hyperglycemic effect of streptozotocin-induced diabetes albino rats using biosynthesized copper oxide nanoparticles. Biomole Conc. 2023;14(1). doi:10.1515/bmc-2022-0037
  • Mohamed AA, Abu-Elghait M, Ahmed NE, Salem SS. Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biol Trace Elem Res. 2021;199(7):2788–2799. doi:10.1007/s12011-020-02369-4
  • Fouda A, Salem SS, Wassel AR, Hamza MF, Shaheen TI. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon. 2020;6(9):e04896. doi:10.1016/j.heliyon.2020.e04896
  • Cuong HN, Pansambal S, Ghotekar S, et al. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: a review. Environ Res. 2022;203:111858. doi:10.1016/j.envres.2021.111858
  • Shaheen TI, Fouda A, Salem SS. Integration of cotton fabrics with biosynthesized CuO nanoparticles for bactericidal activity in the terms of their cytotoxicity assessment. Ind Eng Chem Res. 2021;60(4):1553–1563. doi:10.1021/acs.iecr.0c04880
  • Chaudhary S, Rohilla D, Umar A, Kaur N, Shanavas A. Synthesis and characterizations of luminescent copper oxide nanoparticles: toxicological profiling and sensing applications. Ceram Int. 2019;45(12):15025–15035. doi:10.1016/j.ceramint.2019.04.239
  • Nasibulin AG, Ahonen PP, Richard O, Kauppinen EI, Altman IS. Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper (II) acetylacetonate. J Nanopart Res. 2001;3(5):383–398. doi:10.1023/A:1012508407420
  • Khatoon UT, Velidandi A, Nageswara Rao GVS. Copper oxide nanoparticles: synthesis via chemical reduction, characterization, antibacterial activity, and possible mechanism involved. Inorg Chem Commun. 2023;149:110372. doi:10.1016/j.inoche.2022.110372
  • Suzuki K, Tanaka N, Ando A, Takagi H. Size-selected copper oxide nanoparticles synthesized by laser ablation. J Nanopart Res. 2012;14(5):863. doi:10.1007/s11051-012-0863-z
  • Thanoon HK, Hubeatir KA, Al-Amiery AA. Synthesis of copper oxide nanoparticles via sol-gel method. Int J Res Engine Innovat. 2017;1(4):43–45.
  • Khayati G, Nourafkan E, Karimi G, Moradgholi J. Synthesis of cuprous oxide nanoparticles by mechanochemical oxidation of copper in high planetary energy ball mill. Adv Powder Technol. 2013;24(1):301–305. doi:10.1016/j.apt.2012.07.006
  • Cattaruzza E, Battaglin G, Canton P, Sada C. Some structural and optical properties of copper and copper oxide nanoparticles in silica films formed by co-deposition of copper and silica. J Non Crystalline Solids. 2005;351(21–23):1932–1936. doi:10.1016/j.jnoncrysol.2005.04.041
  • Liu P, Li Z, Cai W, Fang M, Luo X. Fabrication of cuprous oxide nanoparticles by laser ablation in PVP aqueous solution. RSC Adv. 2011;1(5):847–851. doi:10.1039/c1ra00261a
  • Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 2007;7(7):1947–1952. doi:10.1021/nl070648a
  • Khatoon UT, Mohan Mantravadi K, Nageswara Rao G. Strategies to synthesise copper oxide nanoparticles and their bio applications–a review. Mater Sci Technol. 2018;34(18):2214–2222. doi:10.1080/02670836.2018.1482600
  • Singh J, Kumar V, Kim KH, Rawat M. Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ Res. 2019;177:108569. doi:10.1016/j.envres.2019.108569
  • Ramaswamy SVP, Narendhran S, Sivaraj R. Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities. Bull Mater Sci. 2016;39(2):361–364. doi:10.1007/s12034-016-1173-3
  • Hassan SED, Fouda A, Radwan AA, et al. Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem. 2019;24(3):377–393. doi:10.1007/s00775-019-01654-5
  • Mani VM, Kalaivani S, Sabarathinam S, et al. Copper oxide nanoparticles synthesized from an endophytic fungus Aspergillus terreus: bioactivity and anti-cancer evaluations. Environ Res. 2021;201:111502. doi:10.1016/j.envres.2021.111502
  • Nzilu DM, Madivoli ES, Makhanu DS, Wanakai SI, Kiprono GK, Kareru PG. Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Sci Rep. 2023;13(1):14030. doi:10.1038/s41598-023-41119-z
  • Shehabeldine AM, Amin BH, Hagras FA, et al. Potential antimicrobial and antibiofilm properties of copper oxide nanoparticles: time-kill kinetic essay and ultrastructure of pathogenic bacterial cells. Appl Biochem Biotechnol. 2023;195(1):467–485. doi:10.1007/s12010-022-04120-2
  • Badawy AA, Abdelfattah NAH, Salem SS, Awad MF, Fouda A. Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant. Biology. 2021;10(3):233. doi:10.3390/biology10030233
  • Hammad EN, Salem SS, Zohair MM, Mohamed AA, El-Dougdoug W. Purpureocillium lilacinum mediated biosynthesis copper oxide nanoparticles with promising removal of dyes. Biointerf Res Appl Chem. 2022;12(2):1397–1404.
  • Chaudhary R, Nawaz K, Khan AK, Hano C, Abbasi BH, Anjum S. An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules. 2020;10(11):1498. doi:10.3390/biom10111498
  • Sinha SN, Paul D, Halder N, Sengupta D, Patra SK. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont) Wittrock and evaluation of their antibacterial activity. Appl Nanosci. 2015;5(6):703–709. doi:10.1007/s13204-014-0366-6
  • Abdel-Aal EI, Haroon AM, Mofeed J. Successive solvent extraction and GC–MS analysis for the evaluation of the phytochemical constituents of the filamentous green alga Spirogyra longata. Egyptian J Aqua Res. 2015;41(3):233–246. doi:10.1016/j.ejar.2015.06.001
  • Haq SH, Al-Ruwaished G, Al-Mutlaq MA, et al. Antioxidant, anticancer activity and phytochemical analysis of green algae, Chaetomorpha collected from the Arabian Gulf. Sci Rep. 2019;9(1):1–7. doi:10.1038/s41598-019-55309-1
  • Choudhary S, Kumawat G, Khandelwal M, et al. Sustainable phyco-fabrication of silver nanoparticles using Coelastrella terrestris and their multiple downstream applications. Biocatal Agric Biotechnol. 2023;53:102854. doi:10.1016/j.bcab.2023.102854
  • Dahoumane SA, Mechouet M, Wijesekera K, et al. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology–a review. Green Chem. 2017;19(3):552–587. doi:10.1039/C6GC02346K
  • Akintelu SA, Folorunso AS, Folorunso FA, Oyebamiji AK. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon. 2020;6(7):e04508. doi:10.1016/j.heliyon.2020.e04508
  • Abboud Y, Saffaj T, Chagraoui A, et al. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci. 2014;4(5):571–576. doi:10.1007/s13204-013-0233-x
  • Gu H, Chen X, Chen F, Zhou X, Parsaee Z. Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason Sonochem. 2018;41:109–119. doi:10.1016/j.ultsonch.2017.09.006
  • Bhattacharya P, Swarnakar S, Ghosh S, Majumdar S, Banerjee S. Disinfection of drinking water via algae mediated green synthesized copper oxide nanoparticles and its toxicity evaluation. J Environ Chem Eng. 2019;7(1):102867. doi:10.1016/j.jece.2018.102867
  • Araya-Castro K, Chao TC, Durán-Vinet B, Cisternas C, Ciudad G, Rubilar O. Green synthesis of copper oxide nanoparticles using protein fractions from an aqueous extract of Brown Algae Macrocystis pyrifera. Processes. 2020;9(1):78. doi:10.3390/pr9010078
  • Rajeshkumar S, Nandhini N, Manjunath K, et al. Environment friendly synthesis copper oxide nanoparticles and its antioxidant, antibacterial activities using Seaweed (Sargassum longifolium) extract. J Mol Struct. 2021;1242:130724. doi:10.1016/j.molstruc.2021.130724
  • Khandelwal M, Choudhary S, Kumawat A, Misra KP, Rathore DS, Khangarot RK. Asterarcys quadricellulare algae-mediated copper oxide nanoparticles as a robust and recyclable catalyst for the degradation of noxious dyes from wastewater. RSC Adv. 2023;13(40):28179–28196. doi:10.1039/D3RA05254K
  • Veisi H, Karmakar B, Tamoradi T, Hemmati S, Hekmati M, Hamelian M. Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys Lavandulifolia) flowers and evaluation of its catalytic activity. Sci Rep. 2021;11(1):1983. doi:10.1038/s41598-021-81320-6
  • Letchumanan D, Sok SP, Ibrahim S, Nagoor NH, Arshad NM. Plant-based biosynthesis of copper/copper oxide nanoparticles: an update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules. 2021;11(4):564. doi:10.3390/biom11040564
  • Asbrink S, Waskowska A. CuO: x-ray single-crystal structure determination at 196 K and room temperature. J Phys. 1991;3(42):8173.
  • Langford J, Louer D. High-resolution powder diffraction studies of copper (II) oxide. J Appl Crystallogr. 1991;24(2):149–155. doi:10.1107/S0021889890012092
  • Sharma A, Khangarot RK, Misra KP, et al. Band gap reduction and quenching of pd exchange interaction in sol-gel derived Zn (Al, Cu) O nanostructures. Phys Scr. 2021;96(7):075803. doi:10.1088/1402-4896/abf8ea
  • Sharma A, Khangarot RK, Kumar N, Chattopadhyay S, Misra KP. Rise in UV and blue emission and reduction of surface roughness due to the presence of Ag and Al in monocrystalline ZnO films grown by sol-gel spin coating. Mater Technol. 2020;1–11. doi:10.1080/10667857.2020.1776029
  • Sharma A, Kumawat A, Raput B, et al. Effect of Heavy Al Doping on Microstructural and Morphological Behavior of ZnO Thin Film Deposited by Sol-Gel Spin Coating. Vol. 2352. AIP Publishing LLC; 2021:040001.
  • Pellegrino F, Pellutiè L, Sordello F, et al. Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Appl Catal B. 2017;216:80–87. doi:10.1016/j.apcatb.2017.05.046
  • Saravanakumar K, Mariadoss AVA, Sathiyaseelan A, Wang MH. Synthesis and characterization of nano-chitosan capped gold nanoparticles with multifunctional bioactive properties. Int J Biol Macromol. 2020;165:747–757. doi:10.1016/j.ijbiomac.2020.09.177
  • Kashyap M, Samadhiya K, Ghosh A, Anand V, Shirage PM, Bala K. Screening of microalgae for biosynthesis and optimization of Ag/AgCl nano hybrids having antibacterial effect. RSC Adv. 2019;9(44):25583–25591. doi:10.1039/C9RA04451E
  • Balashanmugam P, Kalaichelvan PT. Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity. Int j Nanomed. 2015;10(sup2):87–97. doi:10.2147/IJN.S79984
  • Jadhav MS, Kulkarni S, Raikar P, Barretto DA, Vootla SK, Raikar US. Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New J Chem. 2018;42(1):204–213. doi:10.1039/C7NJ02977B
  • Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Met. 2014;2014:2. doi:10.1155/2014/692643
  • Borah D, Das N, Das N, et al. Alga-mediated facile green synthesis of silver nanoparticles: photophysical, catalytic and antibacterial activity. Appl Organomet Chem. 2020;34(5):e5597. doi:10.1002/aoc.5597
  • Thangaraj M, Saravana BP, Thanasekaran J, Joen-Rong S, Manubolu M, Pathakoti K. Phytochemicals of algae, Arthospira platensis (spirulina) Chlorella vulgaris (chlorella) and Azolla pinnata (azolla). GSC Bio Pharm Sci. 2022;19(2):023–043. doi:10.30574/gscbps.2022.19.2.0167
  • Benhadria N, Hachemaoui M, Zaoui F, et al. Catalytic reduction of methylene blue dye by copper oxide nanoparticles. Journal of Cluster Sci. 2022;33(1):249–260. doi:10.1007/s10876-020-01950-0
  • Selvam K, Albasher G, Alamri O, et al. Enhanced photocatalytic activity of novel Canthium coromandelicum leaves based copper oxide nanoparticles for the degradation of textile dyes. Environ Res. 2022;211:113046. doi:10.1016/j.envres.2022.113046
  • Sharma A, Kumawat A, Chattopadhyay S, Khangarot RK, Misra R, Misra KP. Low temperature induced red-shift in violet-blue emission from Zn (Al, Ag) O nanoparticles. Mater Technol. 2021;5:1–10.
  • Sharma A, Kumawat A, Chattopadhyay S, et al. Band gap reduction and Zn related defects enhancement in Zn (Al, Ce) O nanoparticles. Mater Today. 2022;60:21–25.
  • Misra KP, Shukla R, Srivastava A, Srivastava A. Blueshift in optical band gap in nanocrystalline Zn 1− x Ca x O films deposited by sol-gel method. Appl Phys Lett. 2009;95(3):031901. doi:10.1063/1.3184789
  • Shreyash N, Bajpai S, Khan MA, Vijay Y, Tiwary SK, Sonker M. Green synthesis of nanoparticles and their biomedical applications: a review. ACS Appl Nano Mater. 2021;4(11):11428–11457. doi:10.1021/acsanm.1c02946
  • Halder U, Roy RK, Biswas R, Khan D, Mazumder K, Bandopadhyay R. Synthesis of copper oxide nanoparticles using capsular polymeric substances produced by Bacillus altitudinis and investigation of its efficacy to kill pathogenic Pseudomonas aeruginosa. Chem Eng J Adv. 2022;11:100294. doi:10.1016/j.ceja.2022.100294
  • Khandelwal M, Sharma D, Pemawat G, Khangarot RK. Mechanistic insights into photodegradation of organic dyes using copper oxide nanocatalyst. In: Current and Future Perspectives of Environmental Pollution and Its Remediation. Vol. 1. Tamil Nadu: Thanuj International Publishers; 2022:36–49.
  • Wilson CM. Studies and critique of amido black 10B, Coomassie blue R, and fast green FCF as stains for proteins after polyacrylamide gel electrophoresis. Anal Biochem. 1979;96(2):263–278. doi:10.1016/0003-2697(79)90581-5
  • Wilson CM. Staining of proteins on gels: comparisons of dyes and procedures. In: Methods in Enzymology. Vol. 91. Academic Press; 1983:236–247.
  • Pagga U, Brown D. The degradation of dyestuffs: part II Behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere. 1986;15(4):479–491. doi:10.1016/0045-6535(86)90542-4
  • Mittal A, Thakur V, Gajbe V. Adsorptive removal of toxic azo dye Amido Black 10B by hen feather. Environ Sci Pollut Res. 2013;20(1):260–269. doi:10.1007/s11356-012-0843-y
  • Kashyap J, Gautam S, Ashraf S, Riaz U. Synergistic performance of sonolytically synthesized Poly (1‐naphthylamine)/TiO2 nanohybrids: degradation studies of amido black‐10B dye. ChemistrySelect. 2018;3(42):11926–11934. doi:10.1002/slct.201802688
  • Borker P, Gaokar RD. Enhanced photocatalytic activity of ZnO supported on Alumina and Antibacterial study. Surf Interfaces. 2020;19:100477. doi:10.1016/j.surfin.2020.100477
  • Iqbal A, Ahmed AS, Ahmad N, et al. Biogenic synthesis of CeO2 nanoparticles and its potential application as an efficient photocatalyst for the degradation of toxic amido black dye. Environ Nanotechnol. 2021;16:100505.
  • Muninathan S, Arumugam S. Enhanced photocatalytic activities of NiS decorated reduced graphene oxide for hydrogen production and toxic dye degradation under visible light irradiation. Int J Hydrogen Energy. 2021;46(9):6532–6546. doi:10.1016/j.ijhydene.2020.11.178
  • Jaishree G, Divya G, Rao TS, Chippada M, Raju IM. Biogenic surfactant mediated facile synthesis of visible light sensitized Zn/Mg co-doped TiO2 nanomaterials–a green approach: evaluation of photocatalytic activity by degradation of Amido Black 10B. Sustainable Environ Res. 2022;32(1):1–20. doi:10.1186/s42834-022-00149-4
  • Nandiyanto ABD, Zaen R, Oktiani R. Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles. Arabian J Chem. 2020;13(1):1283–1296. doi:10.1016/j.arabjc.2017.10.010
  • Sharma A, Dutta RK. Studies on the drastic improvement of photocatalytic degradation of acid Orange-74 dye by TPPO capped CuO nanoparticles in tandem with suitable electron capturing agents. RSC Adv. 2015;5(54):43815–43823. doi:10.1039/C5RA04179A
  • Vyas Y, Chundawat P, Punjabi PB, Ameta C, Ameta C. Green and facile synthesis of luminescent CQDs from pomegranate peels and its utilization in the degradation of azure B and amido black 10B by decorating it on CuO nanorods. ChemistrySelect. 2021;6(33):8566–8580. doi:10.1002/slct.202102156
  • Mousavi M, Habibi-Yangjeh A, Abitorabi M. Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J Colloid Interface Sci. 2016;480:218–231. doi:10.1016/j.jcis.2016.07.021
  • Pearson RG. Absolute electronegativity and hardness: application to inorganic chemistry. Inorganic Chemistry. 1988;27(4):734–740. doi:10.1021/ic00277a030
  • Fouda A, Hassan SED, Saied E, Hamza MF. Photocatalytic degradation of real textile and tannery effluent using biosynthesized magnesium oxide nanoparticles (MgO-NPs), heavy metal adsorption, phytotoxicity, and antimicrobial activity. J Environ Chem Eng. 2021;9(4):105346. doi:10.1016/j.jece.2021.105346
  • Kansal S, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater. 2007;141(3):581–590. doi:10.1016/j.jhazmat.2006.07.035
  • Vyas Y, Chundawat P, Dharmendra D, Jain A, Punjabi PB, Ameta C. Biosynthesis and characterization of carbon quantum Dots@ CuS composite using water hyacinth leaves and its usage in photocatalytic dilapidation of Brilliant Green dye. Mater Chem Phys. 2022;281:125921. doi:10.1016/j.matchemphys.2022.125921
  • Sravanthi M, Muni Kumar D, Usha B, et al. Biological synthesis and characterization of copper oxide nanoparticles using Antigonon leptopus leaf extract and their antibacterial activity. Int J Adv Res. 2016;4(8):589–602. doi:10.21474/IJAR01/1251
  • Kouhkan M, Ahangar P, Babaganjeh LA, Allahyari-Devin M. Biosynthesis of copper oxide nanoparticles using Lactobacillus casei subsp. casei and its anticancer and antibacterial activities. Curr Nanosci. 2020;16(1):101–111. doi:10.2174/1573413715666190318155801
  • Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int j Nanomed. 2012;7:6003. doi:10.2147/IJN.S35347
  • Kalaiyan G, Suresh S, Thambidurai S, et al. Green synthesis of hierarchical copper oxide microleaf bundles using Hibiscus cannabinus leaf extract for antibacterial application. J Mol Struct. 2020;1217:128379. doi:10.1016/j.molstruc.2020.128379
  • Mohan P, Mala R. Comparative antibacterial activity of magnetic iron oxide nanoparticles synthesized by biological and chemical methods against poultry feed pathogens. Mater Res Express. 2019;6(11):115077. doi:10.1088/2053-1591/ab4964
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227–1249. doi:10.2147/IJN.S121956
  • Applerot G, Lellouche J, Lipovsky A, et al. Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small. 2012;8(21):3326–3337. doi:10.1002/smll.201200772
  • Ma X, Zhou S, Xu X, Du Q. Copper-containing nanoparticles: mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg. 2022;9:905892. doi:10.3389/fsurg.2022.905892