41
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Multimodal Imaging-Guided Synergistic Photodynamic Therapy Using Carbonized Zn/Co Metal-Organic Framework Loaded with Cytotoxin Against Liver Cancer

, ORCID Icon, , , , , & ORCID Icon show all
Pages 4163-4180 | Received 26 Dec 2023, Accepted 23 Apr 2024, Published online: 11 May 2024

References

  • Rumgay H, Arnold M, Ferlay J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022;77(6):1598–1606. doi:10.1016/j.jhep.2022.08.021
  • Chan LK, Tsui YM, Ho DW, Ng IO. Cellular heterogeneity and plasticity in liver cancer. Semin Cancer Biol. 2022;82:134–149. doi:10.1016/j.semcancer.2021.02.015
  • Ladd AD, Duarte S, Sahin I, Zarrinpar A. Mechanisms of drug resistance in HCC. Hepatology. 2024;79(4):926–940. doi:10.1097/HEP.0000000000000237
  • Chen R, Zhao C, Chen Z, et al. A bionic cellulose nanofiber-based nanocage wound dressing for NIR-triggered multiple synergistic therapy of tumors and infected wounds. Biomaterials. 2022;281:121330. doi:10.1016/j.biomaterials.2021.121330
  • Jeong H, Park W, Kim DH, Na K. Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Adv Drug Deliv Rev. 2021;177:113954. doi:10.1016/j.addr.2021.113954
  • Li Z, Guo L, Lin L, et al. Porous SiO(2)-based reactor with self-supply of O(2) and H(2)O(2) for synergistic photo-thermal/photodynamic therapy. Int J Nanomed. 2023;18:3623–3639. doi:10.2147/IJN.S387505
  • Cui R, Shi J, Liu Z. Metal-organic framework-encapsulated nanoparticles for synergetic chemo/chemodynamic therapy with targeted H(2)O(2) self-supply. Dalton Trans. 2021;50(43):15870–15877. doi:10.1039/D1DT03110D
  • Kalita B, Utkin YN, Mukherjee AK. Current insights in the mechanisms of cobra venom cytotoxins and their complexes in inducing toxicity: implications in antivenom therapy. Toxins. 2022;14(12):839. doi:10.3390/toxins14120839
  • Chong HP, Tan KY, Tan CH. Cytotoxicity of snake venoms and cytotoxins from two southeast asian cobras (Naja sumatrana, Naja kaouthia): exploration of anticancer potential, selectivity, and cell death mechanism. Front Mol Biosci. 2020;7:583587. doi:10.3389/fmolb.2020.583587
  • Lafnoune A, Lee SY, Heo JY, et al. Anti-cancer effect of Moroccan cobra naja haje venom and its fractions against hepatocellular carcinoma in 3D cell culture. Toxins. 2021;13(6):402. doi:10.3390/toxins13060402
  • Derakhshani A, Silvestris N, Hajiasgharzadeh K, et al. Expression and characterization of a novel recombinant cytotoxin II from Naja naja oxiana venom: a potential treatment for breast cancer. Int J Biol Macromol. 2020;162:1283–1292. doi:10.1016/j.ijbiomac.2020.06.130
  • Al-Quraishy S, Dkhil MA, Abdel Moneim AE. Hepatotoxicity and oxidative stress induced by Naja haje crude venom. J Venom Anim Toxins Incl Trop Dis. 2014;20(1):42. doi:10.1186/1678-9199-20-42
  • Das T, Bhattacharya S, Halder B, et al. Cytotoxic and antioxidant property of a purified fraction (NN-32) of Indian Naja naja venom on Ehrlich ascites carcinoma in BALB/c mice. Toxicon. 2011;57(7–8):1065–1072. doi:10.1016/j.toxicon.2011.04.012
  • Li F, Shrivastava IH, Hanlon P, Dagda RK, Gasanoff ES. Molecular mechanism by which cobra venom cardiotoxins interact with the outer mitochondrial membrane. Toxins. 2020;12(7):425. doi:10.3390/toxins12070425
  • Attarde SS, Pandit SV. Anticancer potential of nanogold conjugated toxin GNP-NN-32 from Naja naja venom. J Venom Anim Toxins Incl Trop Dis. 2020;26:e20190047. doi:10.1590/1678-9199-jvatitd-2019-0047
  • Li X, Chen L, Huang M, et al. Innovative strategies for photodynamic therapy against hypoxic tumor. Asian J Pharm Sci. 2023;18(1):100775. doi:10.1016/j.ajps.2023.100775
  • Jo YU, Sim H, Lee CS, Kim KS, Na K. Solubilized chlorin e6-layered double hydroxide complex for anticancer photodynamic therapy. Biomater Res. 2022;26(1):23. doi:10.1186/s40824-022-00272-8
  • Maharjan PS, Bhattarai HK. Singlet oxygen, photodynamic therapy, and mechanisms of cancer cell death. J Oncol. 2022;2022:7211485. doi:10.1155/2022/7211485
  • Jiang W, Liang M, Lei Q, Li G, Wu S. The current status of photodynamic therapy in cancer treatment. Cancers. 2023;15(3):585. doi:10.3390/cancers15030585
  • Olszowy M, Nowak-Perlak M, Wozniak M. Current Strategies in Photodynamic Therapy (PDT) and Photodynamic Diagnostics (PDD) and the future potential of nanotechnology in cancer treatment. Pharmaceutics. 2023;15(6):1712. doi:10.3390/pharmaceutics15061712
  • Ur Rehman S, Sun M, Xu M, et al. Carbonized zeolitic imidazolate framework-67/polypyrrole: a magnetic-dielectric interface for enhanced microwave absorption properties. J Colloid Interface Sci. 2020;574:87–96. doi:10.1016/j.jcis.2020.04.053
  • Yang C, Tiwari SK, Guo L, et al. Zn-Co metal organic frameworks coated with chitosand and Au nanoparticles for chemo-photothermal-targeted combination therapy of liver cancer. Front Oncol. 2023;13:1110909. doi:10.3389/fonc.2023.1110909
  • George BP, Chota A, Sarbadhikary P, Abrahamse H. Fundamentals and applications of metal nanoparticle- enhanced singlet oxygen generation for improved cancer photodynamic therapy. Front Chem. 2022;10:964674. doi:10.3389/fchem.2022.964674
  • Ishiguro A, Nishioka M, Morishige A, et al. What is the best wavelength for the measurement of hemolysis index? Clin Chim Acta. 2020;510:15–20. doi:10.1016/j.cca.2020.06.046
  • Lv Y, Ding D, Zhuang Y, et al. Chromium-doped zinc gallogermanate@zeolitic imidazolate framework-8: a multifunctional nanoplatform for rechargeable in vivo persistent luminescence imaging and pH-responsive drug release. ACS Appl Mater Interfaces. 2019;11(2):1907–1916. doi:10.1021/acsami.8b19172
  • Paulus J, Nachtigall B, Meyer P, Sewald N. RGD peptidomimetic MMAE-conjugate addressing integrin αVβ3-expressing cells with high targeting index*. Chemistry. 2022;29(12):e202203476.
  • Li Y, Hu P, Wang X, Hou X, Liu F, Jiang X. Integrin αvβ3-targeted polydopamine-coated gold nanostars for photothermal ablation therapy of hepatocellular carcinoma. Regen Biomater. 2021;8(5):rbab046. doi:10.1093/rb/rbab046
  • Shi Y, Wang J, Huang G, et al. A novel epithelial-mesenchymal transition gene signature for the immune status and prognosis of hepatocellular carcinoma. Hepatol Int. 2022;16(4):906–917. doi:10.1007/s12072-022-10354-3
  • He Q, Lin Z, Wang Z, et al. SIX4 promotes hepatocellular carcinoma metastasis through upregulating YAP1 and c-MET. Oncogene. 2020;39(50):7279–7295. doi:10.1038/s41388-020-01500-y
  • Popgeorgiev N, Gil C, Berthenet K, Bertolin G, Ichim G. Shedding light on mitochondrial outer-membrane permeabilization and membrane potential: state of the art methods and biosensors. Semin Cell Dev Biol. 2023;156:58–65. doi:10.1016/j.semcdb.2023.07.003