301
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review

ORCID Icon, ORCID Icon, , ORCID Icon, &
Pages 3187-3215 | Received 07 Dec 2023, Accepted 12 Mar 2024, Published online: 03 Apr 2024

References

  • Singh A, Dhau JS. Advanced Nanomaterials in Biomedicine: benefits and Challenges. In: Advanced Functional Nanoparticles” Boon or Bane” for Environment Remediation Applications: Combating Environmental Issues. Springer; 2023:263–278.
  • Malik AQ, TuG M, Kumar D, et al. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. Environ Sci Pollut Res. 2023;2023:1–28.
  • Nadaf SJ, Jadhav NR, Naikwadi HS, et al. Green synthesis of gold and silver nanoparticles: updates on research, patents, and future prospects. OpenNano. 2022;2022:100076.
  • Ardila‐Fierro KJ, Hernández JG. Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry. ChemSusChem. 2021;14(10):2145–2162. doi:10.1002/cssc.202100478
  • Alfryyan N, Kordy MG, Abdel-Gabbar M, Soliman HA, Shaban M. Characterization of the biosynthesized intracellular and extracellular plasmonic silver nanoparticles using Bacillus cereus and their catalytic reduction of methylene blue. Sci Rep. 2022;12(1):12495. doi:10.1038/s41598-022-16029-1
  • Ibrahim S, Ahmad Z, Manzoor MZ, Mujahid M, Faheem Z, Adnan A. Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential. Sci Rep. 2021;11(1):770. doi:10.1038/s41598-020-80805-0
  • Fouad H, Hongjie L, Yanmei D, et al. Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity. Artif Cells Nanomed Biotechnol. 2017;45(7):1369–1378. doi:10.1080/21691401.2016.1241793
  • Gan L, Zhang S, Zhang Y, He S, Tian Y. Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Prep Biochem Biotechnol. 2018;48(7):582–588. doi:10.1080/10826068.2018.1476880
  • Ranjani A, Gopinath PM, Ananth S, et al. Multidimensional dose–response toxicity exploration of silver nanoparticles from Nocardiopsis flavascens RD30. Appl Nanosci. 2018;8:699–713. doi:10.1007/s13204-018-0824-7
  • Ahmed E, Kalathil S, Shi L, Alharbi O, Wang P. Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. J Saudi Chem Soc. 2018;22(8):919–929. doi:10.1016/j.jscs.2018.02.002
  • Bing W, Sun H, Wang F, Song Y, Ren J. Hydrogen-producing hyperthermophilic bacteria synthesized size-controllable fine gold nanoparticles with excellence for eradicating biofilm and antibacterial applications. J Mat Chem B. 2018;6(28):4602–4609. doi:10.1039/C8TB00549D
  • Jafari M, Rokhbakhsh-Zamin F, Shakibaie M, et al. Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by Micrococcus yunnanensis strain J2. Biocatal Agric Biotechnol. 2018;15:245–253. doi:10.1016/j.bcab.2018.06.014
  • Husen A, Siddiqi KS. Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol. 2014;12(1):1–10. doi:10.1186/s12951-014-0028-6
  • Maliszewska I. Microbial mediated synthesis of gold nanoparticles: preparation, characterization and cytotoxicity studies. Dig J Nanomat Biostruc. 2013;8:3.
  • Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K. Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng. 2012;35:637–643. doi:10.1007/s00449-011-0646-4
  • Pradeepa M, Harini K, Ruckmani K, Geetha N. Extracellular bio-inspired synthesis of silver nanoparticles using raspberry leaf extract against human pathogens. Int J Pharm Sci Rev Res. 2014;25(2):160–165.
  • Alfarraj NS, Tarroum M, Al-Qurainy F, et al. Biosynthesis of silver nanoparticles and exploring their potential of reducing the contamination of the in vitro culture media and inducing the callus growth of Rumex nervosus explants. Molecules. 2023;28(9):3666. doi:10.3390/molecules28093666
  • El-Desouky N, Shoueir KR, El-Mehasseb I, El-Kemary M. Bio-inspired green manufacturing of plasmonic silver nanoparticles/degussa using Banana Waste Peduncles: photocatalytic, antimicrobial, and cytotoxicity evaluation. J Mater Res Technol. 2021;10:671–686. doi:10.1016/j.jmrt.2020.12.035
  • Swarnavalli GCJ, Dinakaran S, Raman N, Jegadeesh R, Pereira C. Bio inspired synthesis of monodispersed silver nano particles using Sapindus emarginatus pericarp extract–Study of antibacterial efficacy. J Saudi Chem Soc. 2017;21(2):172–179. doi:10.1016/j.jscs.2015.03.004
  • Asiya S, Pal K, Kralj S, El-Sayyad G, de Souza F, Narayanan T. Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications. Mater Today Chem. 2020;17:100327. doi:10.1016/j.mtchem.2020.100327
  • Ahmad S, Ahmad H, Khan I, et al. Green synthesis of gold nanaoparticles using delphinium chitralense tuber extracts, their characterization and enzyme inhibitory potential. Braz J Biol. 2022; 82:e257622.
  • Nguyen THA, Nguyen V-C, Phan TNH, et al. Novel biogenic silver and gold nanoparticles for multifunctional applications: green synthesis, catalytic and antibacterial activity, and colorimetric detection of Fe (III) ions. Chemosphere. 2022;287:132271. doi:10.1016/j.chemosphere.2021.132271
  • Constantin M, Răut I, Suica-Bunghez R, et al. Ganoderma lucidum-mediated green synthesis of silver nanoparticles with antimicrobial activity. Materials. 2023;16(12):4261. doi:10.3390/ma16124261
  • González-Ballesteros N, Rodríguez-Argüelles M, Lastra-Valdor M, et al. Synthesis of silver and gold nanoparticles by Sargassum muticum biomolecules and evaluation of their antioxidant activity and antibacterial properties. J Nanostruct Chem. 2020;10:317–330. doi:10.1007/s40097-020-00352-y
  • Filip GA, Moldovan B, Baldea I, et al. UV-light mediated green synthesis of silver and gold nanoparticles using Cornelian cherry fruit extract and their comparative effects in experimental inflammation. J Photochem Photobiol B Biol. 2019;191:26–37. doi:10.1016/j.jphotobiol.2018.12.006
  • Punnoose MS, Bijimol D, Mathew B. Microwave assisted green synthesis of gold nanoparticles for catalytic degradation of environmental pollutants. Environ Nanotechnol Monit Manage. 2021;16:100525. doi:10.1016/j.enmm.2021.100525
  • Roy A, Mohanta B. Microwave-assisted green synthesis of Gold nanoparticles and its catalytic activity. Int J Nano Dimension. 2019;10(4):404–412.
  • Kaplan Ö, Tosun NG, Özgür A, et al. Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: characterization, anticancer, antimicrobial and wound healing activities. J Drug Delivery Sci Technol. 2021;64:102641. doi:10.1016/j.jddst.2021.102641
  • Vandarkuzhali SAA, Karthikeyan G, Pachamuthu M. Microwave assisted biosynthesis of Borassus flabellifer fruit mediated silver and gold nanoparticles for dye reduction, antibacterial and anticancer activity. J Environ Chem Eng. 2021;9(6):106411. doi:10.1016/j.jece.2021.106411
  • Strapasson GB, Assis M, Backes CW, Corrêa SA, Longo E, Weibel DE. Microwave assisted synthesis of silver nanoparticles and its application in sustainable photocatalytic hydrogen evolution. Int J Hydrogen Energy. 2021;46(69):34264–34275. doi:10.1016/j.ijhydene.2021.07.237
  • Raghavendra N, Hublikar LV, Patil S, Bhat P. Microwave assisted biosynthesis of silver nanoparticles using banana leaves extract: phytochemical, spectral characterization, and anticancer activity studies. J Water Environ Nanotechnol. 2021;6(1):49–61.
  • Shreyash N, Bajpai S, Khan MA, Vijay Y, Tiwary SK, Sonker M. Green synthesis of nanoparticles and their biomedical applications: a review. ACS Appl Nano Mater. 2021;4(11):11428–11457. doi:10.1021/acsanm.1c02946
  • Habeeb Rahuman HB, Dhandapani R, Narayanan S, et al. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 2022;16(4):115–144. doi:10.1049/nbt2.12078
  • Ngcobo S, Silwana B, Maqhashu K, Matoetoe MC. Bentonite nanoclay optoelectrochemical property improvement through bimetallic silver and gold nanoparticles. J Nanotechnol. 2022;2022:1–9. doi:10.1155/2022/3693938
  • Oliveira BB, Ferreira D, Fernandes AR, Baptista PV. Engineering gold nanoparticles for molecular diagnostics and biosensing. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15(1):e1836. doi:10.1002/wnan.1836
  • Al Saqr A, Khafagy E-S, Alalaiwe A, et al. Synthesis of gold nanoparticles by using green machinery: characterization and in vitro toxicity. Nanomaterials. 2021;11(3):808. doi:10.3390/nano11030808
  • Kowalczyk P, Szymczak M, Maciejewska M, et al. All that glitters is not silver—a new look at microbiological and medical applications of silver nanoparticles. Int J Mol Sci. 2021;22(2):854. doi:10.3390/ijms22020854
  • Beik J, Asadi M, Khoei S, et al. Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. J Photochem Photobiol B Biol. 2019;199:111599. doi:10.1016/j.jphotobiol.2019.111599
  • Uthappa U, Kigga M, Sriram G, et al. Facile green synthetic approach of bio inspired polydopamine coated diatoms as a drug vehicle for controlled drug release and active catalyst for dye degradation. Microporous Mesoporous Mater. 2019;288:109572. doi:10.1016/j.micromeso.2019.109572
  • Fritea L, Banica F, Costea TO, et al. Metal nanoparticles and carbon-based nanomaterials for improved performances of electrochemical (Bio) sensors with biomedical applications. Materials. 2021;14(21):6319. doi:10.3390/ma14216319
  • Nezhad-Mokhtari P, Akrami-Hasan-Kohal M, Ghorbani M. An injectable chitosan-based hydrogel scaffold containing gold nanoparticles for tissue engineering applications. Int J Biol Macromol. 2020;154:198–205. doi:10.1016/j.ijbiomac.2020.03.112
  • Andrea R, Nora I, Dora IA, et al. Green silver and gold nanoparticles: biological synthesis approaches and potentials for biomedical applications. Molecules 2021;26 (4): 844. doi: 10.3390/molecules26040844
  • Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-álvarez J, Vega-Fernández L, Montes de Oca-Vásquez G, Vega-Baudrit JR. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials. 2020;10(9):1763. doi:10.3390/nano10091763
  • Ritu VKK, Das A, Chandra P, Perara R, Sathiyanarayanan Y. Phytochemical-based synthesis of silver nanoparticle: mechanism and potential applications. BioNanoScience. 2023;1–22. doi:10.1007/s12668-023-01116-y
  • Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV. Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: a review. Environ Chem Lett. 2022;20(4):2531–2571. doi:10.1007/s10311-022-01425-w
  • Nath S, Shyanti RK, Pathak B. Plant-Mediated Synthesis of Silver and Gold Nanoparticles for Antibacterial and Anticancer Applications. Green Nanopart. 2020;2020:163–186.
  • Reddy KV, Sree NRS, Kumar PS, Ranjit P. Microbial Enzymes in the Biosynthesis of Metal Nanoparticles. In: Ecological Interplays in Microbial Enzymology. Springer; 2022:329–350.
  • Sheldon RA, Brady D. Streamlining design, engineering, and applications of enzymes for sustainable biocatalysis. ACS Sustainable Chem Eng. 2021;9(24):8032–8052. doi:10.1021/acssuschemeng.1c01742
  • Arib C, Spadavecchia J, de La Chapelle ML. Enzyme mediated synthesis of hybrid polyedric gold nanoparticles. Sci Rep. 2021;11(1):3208. doi:10.1038/s41598-021-81751-1
  • Willner I, Baron R, Willner B. Growing metal nanoparticles by enzymes. Adv Mater. 2006;18(9):1109–1120. doi:10.1002/adma.200501865
  • Schneidewind H, Schüler T, Strelau KK, et al. The morphology of silver nanoparticles prepared by enzyme-induced reduction. Beilstein J Nanotechnol. 2012;3(1):404–414. doi:10.3762/bjnano.3.47
  • Ekeoma BC, Ekeoma LN, Yusuf M, et al. Recent advances in the biocatalytic mitigation of emerging pollutants: a comprehensive review. J Biotechnol. 2023;369:14–34. doi:10.1016/j.jbiotec.2023.05.003
  • Pathak J, Ahmed H, Singh DK, Pandey A, Singh SP, Sinha RP. Recent developments in green synthesis of metal nanoparticles utilizing cyanobacterial cell factories. Nanomat Plant Alg Microorg. 2019;2019:237–265.
  • Ali S, Chen X, Shah MA, et al. The avenue of fruit wastes to worth for synthesis of silver and gold nanoparticles and their antimicrobial application against foodborne pathogens: a review. Food Chem. 2021;359:129912. doi:10.1016/j.foodchem.2021.129912
  • Sanket S, Das SK. Role of enzymes in synthesis of nanoparticles. Bioprosp Enzy Indus. 2021;2021:139–153.
  • Pechyen C, Ponsanti K, Tangnorawich B, Ngernyuang N. Waste fruit peel–Mediated green synthesis of biocompatible gold nanoparticles. J Mater Res Technol. 2021;14:2982–2991. doi:10.1016/j.jmrt.2021.08.111
  • Dikshit PK, Kumar J, Das AK, et al. Green synthesis of metallic nanoparticles: applications and limitations. Catalysts. 2021;11(8):902. doi:10.3390/catal11080902
  • Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial nano-factories: synthesis and biomedical applications. Front Chem. 2021;9:626834. doi:10.3389/fchem.2021.626834
  • Elbahnasawy MA, Shehabeldine AM, Khattab AM, Amin BH, Hashem AH. Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: characterization and anticandidal activity. J Drug Delivery Sci Technol. 2021;62:102401. doi:10.1016/j.jddst.2021.102401
  • Jeevanandam J, Kiew SF, Boakye-Ansah S, et al. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale. 2022;14(7):2534–2571. doi:10.1039/d1nr08144f
  • Mohamed HI, Fawzi EM, Abd-Elsalam KA, Ashry NA, Basit A. Endophytic fungi-derived biogenic nanoparticles: mechanisms and applications. In: Fungal Cell Factories for Sustainable Nanomaterials Productions and Agricultural Applications. Elsevier; 2023:361–391.
  • Patil MP, Kim G-D. Microorganism-mediated functionalization of nanoparticles for different applications. Functionalized Nanomaterials I. 2020;2020:279–298.
  • Balakumaran M, Ramachandran R, Balashanmugam P, Mukeshkumar D, Kalaichelvan P. Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res. 2016;182:8–20. doi:10.1016/j.micres.2015.09.009
  • Noga M, Milan J, Frydrych A, Jurowski K. Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs)—critical review: state of the art. Int J Mol Sci. 2023;24(6):5133. doi:10.3390/ijms24065133
  • Selvinsimpson S, Chen Y. Microbial-based synthesis of nanoparticles to remove different pollutants from wastewater. In: Environmental Applications of Microbial Nanotechnology. Elsevier; 2023:167–181.
  • Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. J Cleaner Prod. 2020;272:122880.
  • Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci. 2018;19(12):4100. doi:10.3390/ijms19124100
  • Rónavári A, Igaz N, Adamecz DI, et al. Green silver and gold nanoparticles: biological synthesis approaches and potentials for biomedical applications. Molecules. 2021;26(4):844. doi:10.3390/molecules26040844
  • Nymark P, Catalán J, Suhonen S, et al. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology. 2013;313(1):38–48. doi:10.1016/j.tox.2012.09.014
  • Kaczerewska O, Martins R, Figueiredo J, Loureiro S, Tedim J. Environmental behaviour and ecotoxicity of cationic surfactants towards marine organisms. J Hazard Mater. 2020;392:122299. doi:10.1016/j.jhazmat.2020.122299
  • Jiang Y, Zhou P, Zhang P, et al. Green synthesis of metal-based nanoparticles for sustainable agriculture. Environ Pollut. 2022;309:119755. doi:10.1016/j.envpol.2022.119755
  • Zhang Y, Poon K, Masonsong GSP, Ramaswamy Y, Singh G. Sustainable Nanomaterials for Biomedical Applications. Pharmaceutics. 2023;15(3):922. doi:10.3390/pharmaceutics15030922
  • Gebreslassie YT, Gebretnsae HG. Green and cost-effective synthesis of tin oxide nanoparticles: a review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res Lett. 2021;16(1):97. doi:10.1186/s11671-021-03555-6
  • Alprol AE, Mansour AT, El-Beltagi HS, Ashour M. Algal extracts for green synthesis of zinc oxide nanoparticles: promising approach for algae bioremediation. Materials. 2023;16(7):2819. doi:10.3390/ma16072819
  • Mughal B, Zaidi SZJ, Zhang X, Hassan SU. Biogenic nanoparticles: synthesis, characterisation and applications. Appl Sci. 2021;11(6):2598. doi:10.3390/app11062598
  • Khan SA, Shahid S, Hanif S, Almoallim HS, Alharbi SA, Sellami H. Green synthesis of chromium oxide nanoparticles for antibacterial, antioxidant anticancer, and biocompatibility activities. Int J Mol Sci. 2021;22(2):502. doi:10.3390/ijms22020502
  • Mohammadinejad R, Shavandi A, Raie DS, et al. Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem. 2019;21(8):1845–1865. doi:10.1039/C9GC00335E
  • Zheng Z, Nguyen HL, Hanikel N, et al. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nature Protoc. 2023;18(1):136–156. doi:10.1038/s41596-022-00756-w
  • Pearce AK, Wilks TR, Arno MC, O’Reilly RK. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Rev Chemist. 2021;5(1):21–45. doi:10.1038/s41570-020-00232-7
  • Chin CD-W, Treadwell LJ, Wiley JB. Microwave synthetic routes for shape-controlled catalyst nanoparticles and nanocomposites. Molecules. 2021;26(12):3647. doi:10.3390/molecules26123647
  • Sen M. Green Synthesis: introduction, Mechanism, and Effective Parameters. Bioinsp Green Synth Nanostruct. 2023;2023:1–24.
  • Heuson E, Dumeignil F. The various levels of integration of chemo-and bio-catalysis towards hybrid catalysis. Catal Sci Technol. 2020;10(21):7082–7100. doi:10.1039/D0CY00696C
  • Cho NH, Guerrero-Martínez A, Ma J, et al. Bioinspired chiral inorganic nanomaterials. Nature Rev Bioeng. 2023;1(2):88–106.
  • Yaraki MT, Zahed Nasab S, Zare I, et al. Biomimetic metallic nanostructures for biomedical applications, catalysis, and beyond. Ind Eng Chem Res. 2022;61(22):7547–7593. doi:10.1021/acs.iecr.2c00285
  • McDarby SP, Wang CJ, King ME, Personick ML. An Integrated Electrochemistry Approach to the Design and Synthesis of Polyhedral Noble Metal Nanoparticles. J Am Chem Soc. 2020;142(51):21322–21335. doi:10.1021/jacs.0c07987
  • Ha M, Kim J-H, You M, Li Q, Fan C, Nam J-M. Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem Rev. 2019;119(24):12208–12278. doi:10.1021/acs.chemrev.9b00234
  • Patwardhan SV, Staniland SS. Bioinspired ‘Green’synthesis of Nanomaterials. Green Nanomaterials: From Bioinspired Synthesis to Sustainable Manufacturing of Inorganic Nanomaterials. IOP Publishing; 2019.
  • Sohrabi S, Moraveji MK, Keshavarz moraveji M. Droplet microfluidics: fundamentals and its advanced applications. RSC Adv. 2020;10(46):27560–27574. doi:10.1039/D0RA04566G
  • Niculescu A-G, Chircov C, Bîrcă AC, Grumezescu AM. Nanomaterials synthesis through microfluidic methods: an updated overview. Nanomaterials. 2021;11(4):864. doi:10.3390/nano11040864
  • Lee EM, Lee J, Kim Y, et al. Hybrid Composite of Silver Nanoparticle–Porous Silicon Microparticles as an Image-Guided Localization Agent for Computed Tomography Scan of the Lungs. ACS Biomater Sci Eng. 2020;6(8):4390–4396. doi:10.1021/acsbiomaterials.0c00611
  • Hallot G, Cagan V, Laurent S, Gomez C, Port M. A greener chemistry process using microwaves in continuous flow to synthesize metallic bismuth nanoparticles. ACS Sustainable Chem Eng. 2021;9(28):9177–9187. doi:10.1021/acssuschemeng.1c00396
  • Kumari KA, Reddy GB, Mittapalli V Microwave assisted synthesis of gold nanoparticles with Phyla nodiflora (L.) Greene leaves extract and its studies of catalytic reduction of organic pollutants. Mater Today. 2020;27:1449–1454.
  • Manno R, Sebastian V, Irusta S, Mallada R, Santamaria J. Ultra-small silver nanoparticles immobilized in mesoporous SBA-15. Microwave-assisted synthesis and catalytic activity in the 4-nitrophenol reduction. Catal. Today. 2021;362:81–89. doi:10.1016/j.cattod.2020.04.018
  • Waghchaure RH, Adole VA. Biosynthesis of metal and metal oxide nanoparticles using various parts of plants for antibacterial, antifungal and anticancer activity: a review. J Indian Chem Soc. 2023;100:100987. doi:10.1016/j.jics.2023.100987
  • Nithin B, Bhuyar P, Maniam GP, Rahim MHA, Govindan N. Environment friendly approach for plant mediated green biosynthesis of gold nanoparticles and their modern applications in biomedical aspects—an updated report. BioNanoScience. 2023;2023:1–24.
  • Joseph D, Baskaran R, Yang SG, Huh YS, Han Y-K. Multifunctional spiky branched gold-silver nanostars with near-infrared and short-wavelength infrared localized surface plasmon resonances. J Colloid Interface Sci. 2019;542:308–316. doi:10.1016/j.jcis.2019.01.132
  • Kumar I, Mondal M, Meyappan V, Sakthivel N. Green one-pot synthesis of gold nanoparticles using Sansevieria roxburghiana leaf extract for the catalytic degradation of toxic organic pollutants. Mater Res Bull. 2019;117:18–27. doi:10.1016/j.materresbull.2019.04.029
  • Johnson AP, Sabu C, Nivitha K, et al. Bioinspired and biomimetic micro-and nanostructures in biomedicine. J Control Release. 2022;343:724–754. doi:10.1016/j.jconrel.2022.02.013
  • Sundaram T, Indu B, Reddy CS, et al. Bio Inspired Silver Nanoparticle Synthesis from Fish Liver Oil and Its Antibacterial Activity Against Shrimp Pathogen. IOP Publishing; 2020:012166.
  • Ali S, Iqbal M, Naseer A, et al. State of the art of gold (Au) nanoparticles synthesis via green routes and applications: a review. Environ Nanotechnol Monit Manage. 2021;16:100511.
  • Leon-Fernandez L, Caballero-Ortiz A, Martinez-Mora O, Fransaer J, Dominguez-Benetton X. Mechanism and kinetics of gold recovery and Au nanoparticle synthesis by Gas-Diffusion Electrocrystallization (GDEx). Electrochim Acta. 2023;460:142592. doi:10.1016/j.electacta.2023.142592
  • Wu H, Liu Z, Xu L, Wang X, Chen Q, Ostrikov KK. The Ag+ reduction process in a plasma electrochemical system tuned by the pH value. J Electrochem Soc. 2021;168(12):123508. doi:10.1149/1945-7111/ac41f5
  • Goswami S, Noh H, Redfern LR, et al. Pore-templated growth of catalytically active gold nanoparticles within a metal–organic framework. Chem Mater. 2019;31(5):1485–1490. doi:10.1021/acs.chemmater.8b04983
  • Yao F, Zhu P, Chen J, et al. Synthesis of nanoparticles via microfluidic devices and integrated applications. Mikrochim Acta. 2023;190(7):256. doi:10.1007/s00604-023-05838-4
  • Kung C-T, Gao H, Lee C-Y, et al. Microfluidic synthesis control technology and its application in drug delivery, bioimaging, biosensing, environmental analysis and cell analysis. Chem Eng J. 2020;399:125748.
  • Afshari AR, Sanati M, Mollazadeh H, Kesharwani P, Johnston TP, Sahebkar A. Nanoparticle-Based Drug Delivery Systems in Cancer: A Focus on Inflammatory Pathways. Elsevier; 2022.
  • Azadpour A, Hajrasouliha S, Khaleghi S. Green synthesized-silver nanoparticles coated with targeted chitosan nanoparticles for smart drug delivery. J Drug Delivery Sci Technol. 2022;74:103554. doi:10.1016/j.jddst.2022.103554
  • Wang X, Yuan L, Deng H, Zhang Z. Structural characterization and stability study of green synthesized starch stabilized silver nanoparticles loaded with isoorientin. Food Chem. 2021;338:127807. doi:10.1016/j.foodchem.2020.127807
  • Shady NH, Khattab AR, Ahmed S, et al. Hepatitis c virus ns3 protease and helicase inhibitors from red sea sponge (Amphimedon) species in green synthesized silver nanoparticles assisted by in silico modeling and metabolic profiling. Int j Nanomed. 2020;Volume 15:3377–3389. doi:10.2147/IJN.S233766
  • Chen Z, Wang Y, Yang Y, Yang X, Zhang X. Multifunctional sensing platform based on green-synthesized silver nanostructure and microcrack architecture. Chem Eng J. 2021;403:126388. doi:10.1016/j.cej.2020.126388
  • Barbinta-Patrascu M. Biogenic nanosilver from Cornus mas fruits as multifunctional eco-friendly platform:“green” development and biophysical characterization. J Optoelectron Adv Mater. 2020. 22:523–528.
  • Bharadwaj KK, Rabha B, Pati S, et al. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules. 2021;26(21):6389. doi:10.3390/molecules26216389
  • Sargazi S, Laraib U, Er S, et al. Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials. 2022;12(7):1102. doi:10.3390/nano12071102
  • Yassin MT, Mostafa AA-F, Al-Askar AA, Al-Otibi FO. Synergistic antibacterial activity of green synthesized silver nanomaterials with colistin antibiotic against multidrug-resistant bacterial pathogens. Crystals. 2022;12(8):1057. doi:10.3390/cryst12081057
  • Pammi S, Padavala VS, Karumuri TSK, et al. Wound healing synergy in Wistar albino rats via green synthesized nanoparticles and topical antibiotic neomycin. OpenNano. 2023;11:100135. doi:10.1016/j.onano.2023.100135
  • Qu J, Yang J, Chen M, Zhai A. Anti-human gastric cancer study of gold nanoparticles synthesized using Alhagi maurorum. Inorg Chem Commun. 2023;151:109859. doi:10.1016/j.inoche.2022.109859
  • Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett. 2021;19:355–374. doi:10.1007/s10311-020-01074-x
  • Ramírez-Rodríguez GB, Dal Sasso G, Carmona FJ, et al. Engineering biomimetic calcium phosphate nanoparticles: a green synthesis of slow-release multinutrient (NPK) nanofertilizers. ACS Appl Bio Mater. 2020;3(3):1344–1353. doi:10.1021/acsabm.9b00937
  • Li S, Tan L, Meng X. Nanoscale metal‐organic frameworks: synthesis, biocompatibility, imaging applications, and thermal and dynamic therapy of tumors. Adv Funct Mater. 2020;30(13):1908924. doi:10.1002/adfm.201908924
  • Imran M, Ehrhardt CJ, Bertino MF, Shah MR, Yadavalli VK. Chitosan stabilized silver nanoparticles for the electrochemical detection of lipopolysaccharide: a facile biosensing approach for gram-negative bacteria. Micromachines. 2020;11(4):413. doi:10.3390/mi11040413
  • Xu L, Bai X, Bhunia AK. Current state of development of biosensors and their application in foodborne pathogen detection. Journal of Food Protection. 2021;84(7):1213–1227. doi:10.4315/JFP-20-464
  • Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int j Nanomed. 2020;15:9823–9857. doi:10.2147/IJN.S279094
  • Desai MP, Paiva-Santos AC, Nimbalkar MS, Sonawane KD, Patil PS, Pawar KD. Iron tolerant Bacillus badius mediated bimetallic magnetic iron oxide and gold nanoparticles as Doxorubicin carrier and for hyperthermia treatment. J Drug Delivery Sci Technol. 2023;81:104214. doi:10.1016/j.jddst.2023.104214
  • Patil T, Gambhir R, Vibhute A, Tiwari AP. Gold nanoparticles: synthesis methods, functionalization and biological applications. Journal of Cluster Science. 2023;34(2):705–725. doi:10.1007/s10876-022-02287-6
  • Abed AS, Khalaf YH, Mohammed AM. Green synthesis of gold nanoparticles as an effective opportunity for cancer treatment. Res Chem. 2023;5:100848. doi:10.1016/j.rechem.2023.100848
  • Rezaeian A, Amini SM, Najafabadi MRH, Farsangi ZJ, Samadian H. Plasmonic hyperthermia or radiofrequency electric field hyperthermia of cancerous cells through green-synthesized curcumin-coated gold nanoparticles. Lasers Med Sci. 2022;37(2):1333–1341. doi:10.1007/s10103-021-03399-7
  • El-Borady OM, Ayat MS, Shabrawy MA, Millet P. Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. Adv Powder Technol. 2020;31(10):4390–4400. doi:10.1016/j.apt.2020.09.017
  • Majeed M, Hakeem KR, Rehman RU. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications-present insights and bottlenecks. Chemosphere. 2022;288:132527. doi:10.1016/j.chemosphere.2021.132527
  • Shahid H, Arooj I, Zafar S. Honey-mediated synthesis of Cr2O3 nanoparticles and their potent anti-bacterial, anti-oxidant and anti-inflammatory activities. Arabian J Chem. 2023;16:104544. doi:10.1016/j.arabjc.2023.104544
  • Faisal S, Ullah R, Alotaibi A, Zafar S, Rizwan M, Tariq MH. Biofabrication of silver nanoparticles employing biomolecules of Paraclostridium benzoelyticum strain: its characterization and their in-vitro antibacterial, anti-aging, anti-cancer and other biomedical applications. Microsc Res Tech. 2023;86:846–861. doi:10.1002/jemt.24362
  • Nandhini SN, Sisubalan N, Vijayan A, et al. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon. 2023;9:e13128. doi:10.1016/j.heliyon.2023.e13128
  • Patil TP, Vibhute AA, Patil SL, Dongale TD, Tiwari AP. Green synthesis of gold nanoparticles via Capsicum annum fruit extract: characterization, antiangiogenic, antioxidant and anti-inflammatory activities. Appl Surf Sci Adv. 2023;13:100372. doi:10.1016/j.apsadv.2023.100372
  • Yazdanian M, Rostamzadeh P, Rahbar M, et al. The potential application of green-synthesized metal nanoparticles in dentistry: a comprehensive review. Bioinorg Chem Applic. 2022;2022:1–27. doi:10.1155/2022/2311910
  • Rodrigues MC, Rolim WR, Viana MM, et al. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J Dent. 2020;96:103327. doi:10.1016/j.jdent.2020.103327
  • Ahmed O, Sibuyi NRS, Fadaka AO, et al. Plant extract-synthesized silver nanoparticles for application in dental therapy. Pharmaceutics. 2022;14(2):380. doi:10.3390/pharmaceutics14020380
  • Muddapur UM, Alshehri S, Ghoneim MM, et al. Plant-based synthesis of gold nanoparticles and theranostic applications: a review. Molecules. 2022;27(4):1391. doi:10.3390/molecules27041391
  • Chen Y-H, Tsai C-Y, Huang P-Y, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharmaceut. 2007;4(5):713–722. doi:10.1021/mp060132k
  • Saha B, Bhattacharya J, Mukherjee A, et al. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett. 2007;2:614–622. doi:10.1007/s11671-007-9104-2
  • Kharey P, Goel M, Husain Z, et al. Green synthesis of biocompatible superparamagnetic iron oxide-gold composite nanoparticles for magnetic resonance imaging, hyperthermia and photothermal therapeutic applications. Mater Chem Phys. 2023;293:126859. doi:10.1016/j.matchemphys.2022.126859
  • Pavithra N, Johri S, Varshney R, Ramamurthy PC Dopamine fluorescent sensor based on green synthesized copper oxide nanoparticles and tyrosinase. IEEE J Flexib Elect. 2023;2023:1
  • Adhikary T, Hossain CM, Basak P. Optimization of the process parameters to develop green‐synthesized nanostructures with a special interest in cancer theranostics. Bioinsp Green Synth Nanostruct. 2023;2023:43–64.
  • Sohrabi H, Majidi MR, Khaki P, Jahanban‐Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: lateral flow assays toward the point‐of‐care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf. 2022;21(2):1868–1912. doi:10.1111/1541-4337.12913
  • Kwon KC, Jo E, Kwon YW, et al. Superparamagnetic gold nanoparticles synthesized on protein particle scaffolds for cancer theragnosis. Adv Mater. 2017;29(38):1701146. doi:10.1002/adma.201701146
  • Luke GP, Myers JN, Emelianov SY, Sokolov KV. Sentinel lymph node biopsy revisited: ultrasound-guided photoacoustic detection of micrometastases using molecularly targeted plasmonic nanosensors. Cancer Res. 2014;74(19):5397–5408. doi:10.1158/0008-5472.CAN-14-0796
  • Han S, Bouchard R, Sokolov KV. Molecular photoacoustic imaging with ultra-small gold nanoparticles. Biomed Opt Express. 2019;10(7):3472–3483. doi:10.1364/BOE.10.003472
  • Dang H, Fawcett D, Poinern GEJ. Green synthesis of gold nanoparticles from waste macadamia nut shells and their antimicrobial activity against Escherichia coli and Staphylococcus epidermis. Int J Res Med Sci. 2019;7(4):1171. doi:10.18203/2320-6012.ijrms20191320
  • Jiang M, Li S, Ming P, et al. Rational design of porous structure-based sodium alginate/chitosan sponges loaded with green synthesized hybrid antibacterial agents for infected wound healing. Int J Biol Macromol. 2023;237:123944. doi:10.1016/j.ijbiomac.2023.123944
  • Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, et al. Cellulose-graphene oxide nanocomposites encapsulated with green synthesized silver nanoparticles as an effective antibacterial agent. Mater Today Commun. 2023;35:105652. doi:10.1016/j.mtcomm.2023.105652
  • Farizan AF, Yusoff HM, Badar N, et al. Green synthesis of magnesium oxide nanoparticles using mariposa christia vespertilionis leaves extract and its antimicrobial study toward S. aureus and E. coli. Arab J Sci Eng. 2023;48(6):7373–7386. doi:10.1007/s13369-022-07282-7
  • Hetta HF, Ramadan YN, Al-Harbi AI, et al. Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines. 2023;11(2):413. doi:10.3390/biomedicines11020413
  • Perveen K, Husain FM, Qais FA, et al. Microwave-assisted rapid green synthesis of gold nanoparticles using seed extract of Trachyspermum ammi: ROS mediated biofilm inhibition and anticancer activity. Biomolecules. 2021;11(2):197. doi:10.3390/biom11020197
  • Pourmadadi M, Yazdian F, Koulivand A, Rahmani E. Green synthesized polyvinylpyrrolidone/titanium dioxide hydrogel nanocomposite modified with agarose macromolecules for sustained and pH-responsive release of anticancer drug. Int J Biol Macromol. 2023;240:124345. doi:10.1016/j.ijbiomac.2023.124345
  • Rais A, Varshney I, Kumar S, Kumar V, Prasad T. Green Nanotechnology: applications in Medicine. In: Innovations in Green Nanoscience and Nanotechnology. CRC Press; 2022:167–207.
  • Alsamhary K, Al-Enazi N, Alshehri WA, Ameen F. Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microb Pathogenesis. 2020;139:103928. doi:10.1016/j.micpath.2019.103928
  • Govindaraju S, Ramasamy M, Baskaran R, Ahn SJ, Yun K. Ultraviolet light and laser irradiation enhances the antibacterial activity of glucosamine-functionalized gold nanoparticles. Int j Nanomed. 2015;10(sup1):67–78. doi:10.2147/IJN.S88318
  • Bajaj M, Pandey SK, Nain T, et al. Stabilized cationic dipeptide capped gold/silver nanohybrids: towards enhanced antibacterial and antifungal efficacy. Colloids Surf B. 2017;158:397–407. doi:10.1016/j.colsurfb.2017.07.009
  • Zheng Y, Wei M, Wu H, Li F, Ling D. Antibacterial metal nanoclusters. J Nanobiotechnol. 2022;20(1):328. doi:10.1186/s12951-022-01538-y
  • Yang X, Wei Q, Shao H, Jiang X. Multivalent aminosaccharide-based gold nanoparticles as narrow-spectrum antibiotics in vivo. ACS Appl Mater Interfaces. 2019;11(8):7725–7730. doi:10.1021/acsami.8b19658
  • Lee B, Lee DG. Synergistic antibacterial activity of gold nanoparticles caused by apoptosis‐like death. J Appl Microbiol. 2019;127(3):701–712. doi:10.1111/jam.14357
  • Li X, Robinson SM, Gupta A, et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS nano. 2014;8(10):10682–10686. doi:10.1021/nn5042625
  • Badwaik VD, Vangala LM, Pender DS, et al. Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method. Nanoscale Res Lett. 2012;7:1–11. doi:10.1186/1556-276X-7-623
  • Inbaraj BS, Chen B-Y, Liao C-W, Chen B-H. Green synthesis, characterization and evaluation of catalytic and antibacterial activities of chitosan, glycol chitosan and poly (γ-glutamic acid) capped gold nanoparticles. Int J Biol Macromol. 2020;161:1484–1495. doi:10.1016/j.ijbiomac.2020.07.244
  • Wang J, Zhang J, Liu K, et al. Synthesis of gold nanoflowers stabilized with amphiphilic daptomycin for enhanced photothermal antitumor and antibacterial effects. Int J Pharm. 2020;580:119231. doi:10.1016/j.ijpharm.2020.119231
  • Awad NS, Salkho NM, Abuwatfa WH, Paul V, AlSawaftah NM, Husseini GA. Tumor vasculature vs tumor cell targeting: understanding the latest trends in using functional nanoparticles for cancer treatment. OpenNano. 2023;11:100136. doi:10.1016/j.onano.2023.100136
  • Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnol. 2022;20(1):1–35. doi:10.1186/s12951-021-01184-w
  • Mosleh-Shirazi S, Kasaee SR, Dehghani F, et al. Investigation through the anticancer properties of green synthesized spinel ferrite nanoparticles in present and absent of laser photothermal effect. Ceram Int. 2023;49(7):11293–11301. doi:10.1016/j.ceramint.2022.11.329
  • Andleeb A, Andleeb A, Asghar S, et al. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers. 2021;13(11):2818. doi:10.3390/cancers13112818
  • Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold nanoparticles in cancer theranostics. Front Bioeng Biotechnol. 2021;9:647905. doi:10.3389/fbioe.2021.647905
  • Yin W, Pan F, Zhu J, et al. Nanotechnology and nanomedicine: a promising avenue for lung cancer diagnosis and therapy. Engineering. 2021;7(11):1577–1585. doi:10.1016/j.eng.2020.04.017
  • Kim HS, Lee DY. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers. 2018;10(9):961. doi:10.3390/polym10090961
  • Stabile J, Najafali D, Cheema Y, et al. Engineering gold nanoparticles for photothermal therapy, surgery, and imaging. In: Nanoparticles for Biomedical Applications. Elsevier; 2020:175–193.
  • Botteon C, Silva L, Ccana-Ccapatinta G, et al. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci Rep. 2021;11(1):1974. doi:10.1038/s41598-021-81281-w
  • Doghish AS, Hashem AH, Shehabeldine AM, Sallam -A-AM, El-Sayyad GS, Salem SS. Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: synthesis, characterization, antimicrobial, and anticancer activities. J Drug Delivery Sci Technol. 2022;77:103874. doi:10.1016/j.jddst.2022.103874
  • Fathi-Achachelouei M, Knopf-Marques H, Ribeiro da Silva CE, et al. Use of nanoparticles in tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2019;7:113. doi:10.3389/fbioe.2019.00113
  • Jagadeesh P, Rangappa SM, Siengchin S. Advanced characterization techniques for nanostructured materials in biomedical applications. Adv Ind Eng Polym Res. 2023;2023:1.
  • Yi C, Liu D, Fong -C-C, Zhang J, Yang M. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS nano. 2010;4(11):6439–6448. doi:10.1021/nn101373r
  • Zhang D, Liu D, Zhang J, Fong C, Yang M. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater Sci Eng C. 2014;42:70–77. doi:10.1016/j.msec.2014.04.042
  • Ge J, Liu K, Niu W, et al. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Biomaterials. 2018;175:19–29. doi:10.1016/j.biomaterials.2018.05.027
  • Heo DN, W-K K, Moon H-J, et al. Inhibition of osteoclast differentiation by gold nanoparticles functionalized with cyclodextrin curcumin complexes. ACS nano. 2014;8(12):12049–12062. doi:10.1021/nn504329u
  • Conners CM, Bhethanabotla VR, Gupta VK. Concentration‐dependent effects of alendronate and pamidronate functionalized gold nanoparticles on osteoclast and osteoblast viability. J Biomed Mater Res Part B. 2017;105(1):21–29. doi:10.1002/jbm.b.33527
  • W-K K, Heo DN, Moon H-J, et al. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci. 2015;438:68–76. doi:10.1016/j.jcis.2014.08.058
  • Li J, Zhang J, Wang X, Kawazoe N, Chen G. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale. 2016;8(15):7992–8007. doi:10.1039/C5NR08808A
  • Yuan M, Wang Y, Qin YX. SPIO‐Au core–shell nanoparticles for promoting osteogenic differentiation of MC3T3‐E1 cells: concentration‐dependence study. J Biomed Mater Res Part A. 2017;105(12):3350–3359. doi:10.1002/jbm.a.36200
  • Ali S, Chen X, Ahmad S, et al. Morphology-controllable bimetallic gold nanostructures for mercury detection: recent developments, challenges and prospects. Arabian J Chem;2023. 104997. doi:10.1016/j.arabjc.2023.104997
  • Noah NM, Ndangili PM. Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery. Sen Internat. 2022;3:100166. doi:10.1016/j.sintl.2022.100166
  • Anfossi L, Di Nardo F, Russo A, et al. Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Anal Bioanal Chem. 2019;411:1905–1913. doi:10.1007/s00216-018-1451-6
  • Yuan D, Fang X, Liu Y, Kong J, Chen Q. A hybridization chain reaction coupled with gold nanoparticles for allergen gene detection in peanut, soybean and sesame DNAs. Analyst. 2019;144(12):3886–3891. doi:10.1039/C9AN00394K
  • Tian F, Zhou J, Fu R, et al. Multicolor colorimetric detection of ochratoxin A via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chem. 2020;320:126607. doi:10.1016/j.foodchem.2020.126607
  • Khan IM, Niazi S, Yu Y, et al. Aptamer induced multicolored AuNCs-WS2 “turn on” FRET nano platform for dual-color simultaneous detection of aflatoxinB1 and zearalenone. Anal Chem. 2019;91(21):14085–14092. doi:10.1021/acs.analchem.9b03880
  • Di Nardo F, Alladio E, Baggiani C, et al. Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single Test line. Talanta. 2019;192:288–294. doi:10.1016/j.talanta.2018.09.037
  • Valentini P, Pompa PP. A universal polymerase chain reaction developer. Angew Chem Int Ed. 2016;55(6):2157–2160. doi:10.1002/anie.201511010
  • Li F, Li F, Yang G, Aguilar ZP, Lai W, Xu H. Asymmetric polymerase chain assay combined with propidium monoazide treatment and unmodified gold nanoparticles for colorimetric detection of viable emetic Bacillus cereus in milk. Sensors and Actuat B Chem. 2018;255:1455–1461. doi:10.1016/j.snb.2017.08.154
  • Trigueros SB, Domènech E, Toulis V, Marfany G. In vitro gene delivery in retinal pigment epithelium cells by plasmid DNA-wrapped gold nanoparticles. Genes. 2019;10(4):289. doi:10.3390/genes10040289
  • Sarkar K, Banerjee SL, Kundu PP, Madras G, Chatterjee K. Biofunctionalized surface-modified silver nanoparticles for gene delivery. J Mat Chem B. 2015;3(26):5266–5276. doi:10.1039/C5TB00614G
  • Kumar S, Diwan A, Singh P, et al. Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment. RSC Adv. 2019;9(41):23894–23907. doi:10.1039/C9RA03608C
  • Shrestha B, Wang L, Zhang H, Hung CY, Tang L. Gold nanoparticles mediated drug-gene combinational therapy for breast cancer treatment. Int j Nanomed. 2020;Volume 15:8109–8119. doi:10.2147/IJN.S258625
  • Yang Y, Han Y, Sun Q, et al. Au-siRNA@ aptamer nanocages as a high-efficiency drug and gene delivery system for targeted lung cancer therapy. J Nanobiotechnol. 2021;19(1):1–14. doi:10.1186/s12951-020-00759-3
  • Verma V, Al-Dossari M, Singh J, Rawat M, Kordy MG, Shaban M. A review on green synthesis of TiO2 NPs: photocatalysis and antimicrobial applications. Polymers. 2022;14(7):1444. doi:10.3390/polym14071444
  • Al-Ramamneh EA-DM, Ghrair AM, Shakya AK, et al. Efficacy of Sterculia diversifolia leaf extracts: volatile compounds, antioxidant and anti-Inflammatory activity, and green synthesis of potential antibacterial silver nanoparticles. Plants. 2022;11(19):2492. doi:10.3390/plants11192492
  • Nahari MH, Al Ali A, Asiri A, et al. Green synthesis and characterization of iron nanoparticles synthesized from aqueous leaf extract of vitex leucoxylon and its biomedical applications. Nanomaterials. 2022;12(14):2404. doi:10.3390/nano12142404
  • Ganaie SU, Abbasi T, Abbasi SA. Utilization of the terrestrial weed A ntigonon leptopus in the rapid and green synthesis of stable gold nanoparticles with shape/size control. Environ Prog Sustainable Energy. 2016;35(1):20–33. doi:10.1002/ep.12181
  • Patra JK, Baek K-H. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int j Nanomed. 2015;10:7253–7264. doi:10.2147/IJN.S95483
  • Dipankar C, Murugan S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B. 2012;98:112–119. doi:10.1016/j.colsurfb.2012.04.006
  • Royer M, Prado M, García-Pérez ME, Diouf PN, Stevanovic T. Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition. 2013;1(4):158–167. doi:10.1016/j.phanu.2013.05.001
  • Mahmood RI, Mohammed-Salih HS, Ghazi A, Abdulbaqi HJ, Al-Obaidi JR. Exploring the potential of copper oxide biogenic synthesis: a review article on the biomedical and dental implementations. Arab Gulf J Sci Res. 2023. doi:10.1108/AGJSR-12-2022-0315
  • Mohandoss S, Murugaboopathy V, Haricharan PB, et al. Ulvan as a reducing agent for the green synthesis of silver nanoparticles: a novel mouthwash. Inorganics. 2023;11(1):5. doi:10.3390/inorganics11010005
  • Bin-Jardan LI, Almadani DI, Almutairi LS, et al. Inorganic Compounds as Remineralizing Fillers in Dental Restorative Materials: narrative Review. Int J Mol Sci. 2023;24(9):8295. doi:10.3390/ijms24098295
  • Qiu W, Zhou Y, Li Z, et al. Application of antibiotics/antimicrobial agents on dental caries. Biomed Res Int. 2020;2020:1–11. doi:10.1155/2020/5658212
  • Hernández-Sierra JF, Ruiz F, Pena DCC, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed Nanotechnol Biol Med. 2008;4(3):237–240. doi:10.1016/j.nano.2008.04.005
  • Park SR, Lee HW, Hong JW, et al. Enhancement of the killing effect of low-temperature plasma on Streptococcus mutans by combined treatment with gold nanoparticles. J Nanobiotechnol. 2014;12:1–8. doi:10.1186/s12951-014-0029-5
  • Elgamily HM, El-Sayed HS, Abdelnabi A. The antibacterial effect of two cavity disinfectants against one of cariogenic pathogen: an in vitro comparative study. Contemp Clin Dent. 2018;9(3):457. doi:10.4103/ccd.ccd_308_18
  • Khan SA, Shahid S, Lee C-S. Green synthesis of gold and silver nanoparticles using leaf extract of Clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules. 2020;10(6):835. doi:10.3390/biom10060835
  • Ifijen IH, Maliki M, Udokpoh NU, Odiachi IJ, Atoe B. A Concise Review of the Antibacterial Action of Gold Nanoparticles Against Various Bacteria. Springer; 2023:655–664.
  • Nair GM, Sajini T, Mathew B. Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open. 2022;5:100080. doi:10.1016/j.talo.2021.100080
  • Dubadi R, Huang SD, Jaroniec M. Mechanochemical synthesis of nanoparticles for potential antimicrobial applications. Materials. 2023;16(4):1460. doi:10.3390/ma16041460
  • Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. J Nanobiotechnol. 2021;19(1):256. doi:10.1186/s12951-021-00996-0
  • Hassan H, Sharma P, Hasan MR, Singh S, Thakur D, Narang J. Gold nanomaterials–The golden approach from synthesis to applications. Mater Sci Energy Technol. 2022;5:375–390. doi:10.1016/j.mset.2022.09.004
  • Rabiee N, Ahmadi S, Akhavan O, Luque R. Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria. Materials. 2022;15(5):1799. doi:10.3390/ma15051799
  • Lee KX, Shameli K, Yew YP, et al. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int j Nanomed. 2020;Volume 15:275–300. doi:10.2147/IJN.S233789
  • Sharma P, Kaushal A, Kaushal A. Green nanoparticle formation toward wound healing, and its application in drug delivery approaches. Eur J Med Chem Rep. 2022;6:100088. doi:10.1016/j.ejmcr.2022.100088
  • Londhe S, Haque S, Patra CR. Silver and gold nanoparticles: potential cancer theranostic applications, recent development, challenges, and future perspectives. In: Gold and Silver Nanoparticles. Elsevier; 2023:247–290.
  • Strużyńska L, Dąbrowska-Bouta B, Sulkowski G. Developmental neurotoxicity of silver nanoparticles: the current state of knowledge and future directions. Nanotoxicology. 2022;16(4):500–525. doi:10.1080/17435390.2022.2105172
  • Chauhan A, Khan T, Omri A. Design and encapsulation of immunomodulators onto gold nanoparticles in cancer immunotherapy. Int J Mol Sci. 2021;22(15):8037. doi:10.3390/ijms22158037
  • Almeida JPM, Figueroa ER, Drezek RA. Gold nanoparticle mediated cancer immunotherapy. Nanomed Nanotechnol Biol Med. 2014;10(3):503–514. doi:10.1016/j.nano.2013.09.011
  • Siddique S, Chow JC. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci. 2020;10(11):3824. doi:10.3390/app10113824
  • Kanwar R, Rathee J, Salunke DB, Mehta SK. Green nanotechnology-driven drug delivery assemblies. ACS omega. 2019;4(5):8804–8815. doi:10.1021/acsomega.9b00304
  • Li H, Wang Y, Tang Q, et al. The protein Corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater. 2021;129:57–72. doi:10.1016/j.actbio.2021.05.019
  • Ryu H-J, Lee WK, Kim YH, Lee J-S. Interfacial interactions of SERS-active noble metal nanostructures with functional ligands for diagnostic analysis of protein cancer markers. Mikrochim Acta. 2021;188:1–26. doi:10.1007/s00604-021-04807-z
  • Mehrizi TZ, Ardestani MS, Kafiabad SA. A review of the use of metallic nanoparticles as a novel approach for overcoming the stability challenges of blood products: a narrative review from 2011–2021. Current Drug Deliv. 2023;20(3):261–280. doi:10.2174/1567201819666220513092020
  • Saleh TA, Fadillah G. Green synthesis protocols, toxicity, and recent progress in nanomaterial-based for environmental chemical sensors applications. Trend Environm Analy Chem. 2023;2023:e00204.
  • Fan J, Cheng Y, Sun M. Functionalized gold nanoparticles: synthesis, properties and biomedical applications. Chem Rec. 2020;20(12):1474–1504. doi:10.1002/tcr.202000087
  • Srivastava N, Singh A, Kumari P, et al. Advances in extraction technologies: isolation and purification of bioactive compounds from biological materials. In Natural Bioactive Compounds. Elsevier; 2021:409–433.
  • Chen X, Xue Z, Ji J, et al. Hedysarum polysaccharides mediated green synthesis of gold nanoparticles and study of its characteristic, analytical merit, catalytic activity. Mater Res Bull. 2021;133:111070. doi:10.1016/j.materresbull.2020.111070
  • Asariha M, Kiaie SH, Izadi SH, Pirhayati F, Fouladi M, Gholamhosseinpour M. Extended-release of doxorubicin through green surface modification of gold nanoparticles: in vitro and in ovo assessment. BMC Chemistry. 2022;16(1):110. doi:10.1186/s13065-022-00895-x
  • Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: a paradigm shift in oncological theranostics. Eur J Pharm Sci. 2021;164:105892. doi:10.1016/j.ejps.2021.105892
  • Oladipo AO, Lebelo SL, Msagati TA. Nanocarrier design–function relationship: the prodigious role of properties in regulating biocompatibility for drug delivery applications. Chem Biol Interact. 2023;377:110466. doi:10.1016/j.cbi.2023.110466
  • Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. J Nanopart Res. 2023;25(3):43. doi:10.1007/s11051-023-05690-w
  • Gupta D, Thakur A, Gupta TK, Gupta TK. Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environ Res. 2023;231:116316. doi:10.1016/j.envres.2023.116316