192
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy

, , , , , , ORCID Icon & show all
Pages 3387-3404 | Received 08 Dec 2023, Accepted 14 Mar 2024, Published online: 08 Apr 2024

References

  • Li Z, Lai X, Fu S, et al. Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv Sci. 2022;9(22):e2201734. doi:10.1002/advs.202201734
  • Estapé Senti M, García Del Valle L, Schiffelers RM. mRNA delivery systems for cancer immunotherapy: lipid nanoparticles and beyond. Adv Drug Deliv Rev. 2024;206:115190. doi:10.1016/j.addr.2024.115190
  • Leonard WJ, Lin JX. Strategies to therapeutically modulate cytokine action. Nat Rev Drug Discov. 2023;22(10):827–854. doi:10.1038/s41573-023-00746-x
  • Liu Y, Adu-Berchie K, Brockman JM, et al. Cytokine conjugation to enhance T cell therapy. Proc Natl Acad Sci U S A. 2023;120(1):e2213222120. doi:10.1073/pnas.2213222120
  • Shojaie L, Bogdanov JM, Alavifard H, et al. Innate and adaptive immune cell interaction drives inflammasome activation and hepatocyte apoptosis in murine liver injury from immune checkpoint inhibitors. Cell Death Dis. 2024;15(2):140. doi:10.1038/s41419-024-06535-7
  • Zak KM, Grudnik P, Magiera K, Dömling A, Dubin G, Holak TA. Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure. 2017;25(8):1163–1174. doi:10.1016/j.str.2017.06.011
  • Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov. 2022;21(7):509–528. doi:10.1038/s41573-021-00345-8
  • Niu C, Zhu K, Zhang J, et al. Analysis of immune-related adverse events in gastrointestinal malignancy patients treated with immune checkpoint inhibitors. Int, J, Cancer. 2024;154(7):1261–1271. doi:10.1002/ijc.34813
  • Desai J, Fong P, Moreno V, et al. A Phase 1/2 study of the PD-L1 inhibitor, BGB-A333, alone and in combination with the PD-1 inhibitor, tislelizumab, in patients with advanced solid tumours. Br J Cancer. 2023;128(8):1418–1428. doi:10.1038/s41416-022-02128-3
  • Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18(1):155. doi:10.1186/s12943-019-1091-2
  • Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem Int Ed Engl. 2019;58(3):670–680. doi:10.1002/anie.201804882
  • Kang X, Zhang Y, Song J, et al. A photo-triggered self-accelerated nanoplatform for multifunctional image-guided combination cancer immunotherapy. Nat Commun. 2023;14(1):5216. doi:10.1038/s41467-023-40996-2
  • Wang L, Geng H, Liu Y, et al. Hot and cold tumors: immunological features and the therapeutic strategies. MedComm. 2023;4(5):e343. doi:10.1002/mco2.343
  • Giustarini G, Pavesi A, Adriani G. Nanoparticle-based therapies for turning cold tumors hot: how to treat an immunosuppressive tumor microenvironment. Front Bioeng Biotechnol. 2021;9:689245. doi:10.3389/fbioe.2021.689245
  • Mao L, Ma P, Luo X, et al. Stimuli-responsive polymeric nanovaccines toward next-generation immunotherapy. ACS Nano. 2023;17(11):9826–9849. doi:10.1021/acsnano.3c02273
  • Cui L, Wang X, Liu Z, et al. Metal-organic framework decorated with glycyrrhetinic acid conjugated chitosan as a pH-responsive nanocarrier for targeted drug delivery. Int J Biol Macromol. 2023;240:124370. doi:10.1016/j.ijbiomac.2023.124370
  • Shi Y, Zhang Y, Zhu L, Miao Y, Zhu Y, Yue B. Tailored drug delivery platforms: stimulus-responsive core-shell structured nanocarriers. Adv Healthc Mater. 2024;13(1):e2301726. doi:10.1002/adhm.202301726
  • Batool S, Sohail S, Ud Din F, et al. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv. 2023;30(1):2183815. doi:10.1080/10717544.2023.2183815
  • Mu W, Chu Q, Liu Y, Zhang N. A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nanomicro Lett. 2020;12(1):142. doi:10.1007/s40820-020-00482-6
  • Shim MK, Song SK, Jeon SI, Hwang KY, Kim K. Nano-sized drug delivery systems to potentiate the immune checkpoint blockade therapy. Expert Opin Drug Deliv. 2022;19(6):641–652. doi:10.1080/17425247.2022.2081683
  • Liang Y, Zhang J, Tian B, Wu Z, Svirskis D, Han J. A NAG-guided nano-delivery system for redox- and pH-triggered intracellularly sequential drug release in cancer cells. Int J Nanomed. 2020;15:841–855. doi:10.2147/IJN.S226249
  • Liang Y, Wang PY, Liu Z, et al. Dual stimuli-responsive micelles for imaging-guided mitochondrion-targeted photothermal/photodynamic/chemo combination therapy-induced immunogenic cell death. Int J Nanomed. 2023;18:4381–4402. doi:10.2147/IJN.S410047
  • Kepp O, Kroemer G. Immunogenic cell stress and death sensitize tumors to immunotherapy. Cells. 2023;12(24):2843. doi:10.3390/cells12242843
  • Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev. 2017;280(1):126–148. doi:10.1111/imr.12574
  • Luan Y, Luan Y, Jiao Y, et al. Broadening horizons: exploring mtDAMPs as a mechanism and potential intervention target in cardiovascular diseases. Aging Dis. 2023;1130. doi:10.14336/AD.2023.1130
  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–875. doi:10.1038/nrc3380
  • Birmpilis AI, Paschalis A, Mourkakis A, et al. Immunogenic cell death, DAMPs and prothymosin α as a putative anticancer immune response biomarker. Cells. 2022;11(9):1415. doi:10.3390/cells11091415
  • Luo W, Yu Z. Calreticulin (CALR) mutation in myeloproliferative neoplasms (MPNs). Stem Cell Investig. 2015;2:16. doi:10.3978/j.issn.2306-9759.2015.08.01
  • Zhang M, Xiao J, Liu J, et al. Calreticulin as a marker and therapeutic target for cancer. Clin Exp Med. 2023;23(5):1393–1404. doi:10.1007/s10238-022-00937-7
  • Politis PK, Charonis AS. Calreticulin in renal fibrosis: a short review. J Cell Mol Med. 2022;26(24):5949–5954. doi:10.1111/jcmm.17627
  • Liu X, Xie P, Hao N, et al. HIF-1-regulated expression of calreticulin promotes breast tumorigenesis and progression through Wnt/β-catenin pathway activation. Proc Natl Acad Sci U S A. 2021;118(44):e2109144118. doi:10.1073/pnas.2109144118
  • Fucikova J, Spisek R, Kroemer G, Galluzzi L. Calreticulin and cancer. Cell Res. 2021;31(1):5–16. doi:10.1038/s41422-020-0383-9
  • Kielbik M, Szulc-Kielbik I, Klink M. Calreticulin-multifunctional chaperone in immunogenic cell death: potential significance as a prognostic biomarker in ovarian cancer patients. Cells. 2021;10(1):130. doi:10.3390/cells10010130
  • Bai X, Li Q, Peng X, et al. P2X7 receptor promotes migration and invasion of non-small cell lung cancer A549 cells through the PI3K/Akt pathways. Purinergic Sig. 2023. doi:10.1007/s11302-023-09928-z
  • Jiang Y, Lin J, Zheng H, Zhu P. The role of purinergic signaling in heart transplantation. Front Immunol. 2022;13:826943. doi:10.3389/fimmu.2022.826943
  • Kepp O, Bezu L, Yamazaki T, et al. ATP and cancer immunosurveillance. EMBO J. 2021;40(13):e108130. doi:10.15252/embj.2021108130
  • Pavelec CM, Young AP, Luviano HL, et al. Pannexin 1 channels control cardiomyocyte metabolism and neutrophil recruitment during non-ischemic heart failure. Preprint bioRxiv. 2023;573679. doi:10.1101/2023.12.29.573679
  • Dwyer KM, Kishore BK, Robson SC. Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol. 2020;16(9):509–524. doi:10.1038/s41581-020-0304-7
  • Yuan Y, Sun M, Jin Z, Zheng C, Ye H, Weng H. Dapagliflozin ameliorates diabetic renal injury through suppressing the self-perpetuating cycle of inflammation mediated by HMGB1 feedback signaling in the kidney. Eur J Pharmacol. 2023;943:175560. doi:10.1016/j.ejphar.2023.175560
  • Shen X, Li WQ. High-mobility group box 1 protein and its role in severe acute pancreatitis. World J Gastroenterol. 2015;21(5):1424–1435. doi:10.3748/wjg.v21.i5.1424
  • Chen R, Zou J, Kang R, Tang D. The redox protein HMGB1 in cell death and cancer. Antioxid Redox Signal. 2023;2. doi:10.1089/ars.2023.0007
  • Wang S, Zhang Y. HMGB1 in inflammation and cancer. J Hematol Oncol. 2020;13(1):116. doi:10.1186/s13045-020-00950-x
  • Chen S, Tang W, Yu G, Tang Z, Liu E. CXCL12/CXCR4 axis is involved in the recruitment of NK cells by HMGB1 contributing to persistent airway inflammation and AHR during the late stage of RSV infection. J Microbiol. 2023;61(4):461–469. doi:10.1007/s12275-023-00018-8
  • Wang Q, Liu P, Wen Y, et al. Metal-enriched HSP90 nanoinhibitor overcomes heat resistance in hyperthermic intraperitoneal chemotherapy used for peritoneal metastases. Mol Cancer. 2023;22(1):95. doi:10.1186/s12943-023-01790-2
  • Hu C, Yang J, Qi Z, et al. Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. MedComm. 2022;3(3):e161. doi:10.1002/mco2.161
  • Sakai S, Shichita T. Role of alarmins in poststroke inflammation and neuronal repair. Semin Immunopathol. 2023;45(3):427–435. doi:10.1007/s00281-022-00961-5
  • Bai S, Yang LL, Wang Y, et al. Prodrug-based versatile nanomedicine for enhancing cancer immunotherapy by increasing immunogenic cell death. Small. 2020;16(19):e2000214. doi:10.1002/smll.202000214
  • Workenhe ST, Pol J, Kroemer G. Tumor-intrinsic determinants of immunogenic cell death modalities. Oncoimmunology. 2021;10(1):1893466. doi:10.1080/2162402X.2021.1893466
  • Zhang R, Kang R, Tang D. The STING1 network regulates autophagy and cell death. Signal Transduct Target Ther. 2021;6(1):208. doi:10.1038/s41392-021-00613-4
  • Wang H, Chen Y, Wei R, et al. Synergistic chemoimmunotherapy augmentation via sequential nanocomposite hydrogel-mediated reprogramming of cancer-associated fibroblasts in osteosarcoma. Adv Mater. 2023;9591. doi:10.1002/adma.202309591
  • Wang A, Yang X, Li R, et al. Immunomodulator-mediated suppressive tumor immune microenvironment remodeling nanoplatform for enhanced immuno/chemo/photothermal combination therapy of triple negative breast cancer. ACS Appl Mater Interfaces. 2023;15(46):53318–53332. doi:10.1021/acsami.3c14137
  • Duo Y, Chen Z, Li Z, et al. Combination of bacterial-targeted delivery of gold-based AIEgen radiosensitizer for fluorescence-image-guided enhanced radio-immunotherapy against advanced cancer. Bioact Mater. 2023;30:200–213. doi:10.1016/j.bioactmat.2023.05.010
  • Liu YB, Chen XY, Yu BX, et al. Chimeric peptide-engineered self-delivery nanomedicine for photodynamic-triggered breast cancer immunotherapy by macrophage polarization. Small. 2023;94. doi:10.1002/smll.202309994
  • Ji S, Li J, Duan X, et al. Targeted enrichment of enzyme-instructed assemblies in cancer cell lysosomes turns immunologically cold tumors hot. Angew Chem Int Ed Engl. 2021;60(52):26994–27004. doi:10.1002/anie.202110512
  • Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: present and emerging inducers. J Cell Mol Med. 2019;23(8):4854–4865. doi:10.1111/jcmm.14356
  • Zhu H, Shan Y, Ge K, Lu J, Kong W, Jia C. Oxaliplatin induces immunogenic cell death in hepatocellular carcinoma cells and synergizes with immune checkpoint blockade therapy. Cell Oncol Dordr. 2020;43(6):1203–1214. doi:10.1007/s13402-020-00552-2
  • Chang X, Bian M, Liu L, et al. Induction of immunogenic cell death by novel platinum-based anticancer agents. Pharmacol Res. 2023;187:106556. doi:10.1016/j.phrs.2022.106556
  • Kaneko K, Acharya CR, Nagata H, et al. Combination of a novel heat shock protein 90-targeted photodynamic therapy with PD-1/PD-L1 blockade induces potent systemic antitumor efficacy and abscopal effect against breast cancers. J Immunother Cancer. 2022;10(9):e004793. doi:10.1136/jitc-2022-004793
  • Wu Q, Li Z, Zhou X, et al. Photothermal ferrotherapy-induced immunogenic cell death via iron-based ternary chalcogenide nanoparticles against triple-negative breast cancer. Small. 2023;766. doi:10.1002/smll.202306766
  • Li T, Gao M, Wu Z, et al. Tantalum-zirconium co-doped metal-organic frameworks sequentially sensitize radio-radiodynamic-immunotherapy for metastatic osteosarcoma. Adv Sci. 2023;10(10):e2206779. doi:10.1002/advs.202206779
  • Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther. 2022;7(1):331. doi:10.1038/s41392-022-01136-2
  • Wang R, Kumar P, Reda M, et al. Nanotechnology applications in breast cancer immunotherapy. Small. 2023. doi:10.1002/smll.202308639
  • Kim GR, Choi JM. Current understanding of cytotoxic T lymphocyte antigen-4 (CTLA-4) signaling in T-cell biology and disease therapy. Mol Cells. 2022;45(8):513–521. doi:10.14348/molcells.2022.2056
  • Naimi A, Mohammed RN, Raji A, et al. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal. 2022;20(1):44. doi:10.1186/s12964-022-00854-y
  • Chi Z, Lu Y, Yang Y, Li B, Lu P. Transcriptional and epigenetic regulation of PD-1 expression. Cell Mol Life Sci. 2021;78(7):3239–3246. doi:10.1007/s00018-020-03737-y
  • Pang K, Shi ZD, Wei LY, et al. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resist Updat. 2023;66:100907. doi:10.1016/j.drup.2022.100907
  • Pimenta J, Prada J, Pires I, Cotovio M. Programmed cell death-ligand 1 (PD-L1) immunohistochemical expression in equine melanocytic tumors. Animals. 2023;14(1):48. doi:10.3390/ani14010048
  • Franco F, Jaccard A, Romero P, Yu YR, Ho PC. Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab. 2020;2(10):1001–1012. doi:10.1038/s42255-020-00280-9
  • Chen Y, Zhi S, Ou J, et al. Cancer cell membrane-coated nanoparticle co-loaded with photosensitizer and toll-like receptor 7 agonist for the enhancement of combined tumor immunotherapy. ACS Nano. 2023;17(17):16620–16632. doi:10.1021/acsnano.3c02724
  • Luo C, Chen H, Wu H, Liu Y, Li G, Lun W. Case report: toripalimab: a novel immune checkpoint inhibitor in advanced nasopharyngeal carcinoma and severe immune-related colitis. Front Immunol. 2023;14:1298902. doi:10.3389/fimmu.2023.1298902
  • Zeng TM, Yang G, Lou C, et al. Clinical and biomarker analyses of sintilimab plus gemcitabine and cisplatin as first-line treatment for patients with advanced biliary tract cancer. Nat Commun. 2023;14(1):1340. doi:10.1038/s41467-023-37030-w
  • Qin S, Chan SL, Gu S, et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international Phase 3 study. Lancet. 2023;402(10408):1133–1146. doi:10.1016/S0140-6736(23)00961-3
  • Ding K, Liu H, Ma J, et al. Tislelizumab with gemcitabine and oxaliplatin in patients with relapsed or refractory classic Hodgkin lymphoma: a multicenter Phase II trial. Haematologica. 2023;108(8):2146–2154. doi:10.3324/haematol.2022.282266
  • Shi Y, Gao L, Tian Y, et al. Penpulimab combined with anlotinib in patients with R/M HNSCC after failure of platinum-based chemotherapy: a single-arm, multicenter, phase II study. ESMO Open. 2023;8(6):102194. doi:10.1016/j.esmoop.2023.102194
  • Xia L, Wang J, Wang C, et al. Efficacy and safety of zimberelimab (GLS-010) monotherapy in patients with recurrent or metastatic cervical cancer: a multicenter, single-arm, phase II study. Int J Gynecol Cancer. 2023;33(12):1861–1868. doi:10.1136/ijgc-2023-004705
  • Markham A. Envafolimab: first approval. Drugs. 2022;82(2):235–240. doi:10.1007/s40265-022-01671-w
  • Keam SJ. Cadonilimab: first approval. Drugs. 2022;82(12):1333–1339. doi:10.1007/s40265-022-01761-9
  • Provencio M, Nadal E, González-Larriba JL, et al. Perioperative nivolumab and chemotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2023;389(6):504–513. doi:10.1056/NEJMoa2215530
  • Lim SM, Peters S, Ortega Granados AL, et al. Dostarlimab or pembrolizumab plus chemotherapy in previously untreated metastatic non-squamous non-small cell lung cancer: the randomized PERLA phase II trial. Nat Commun. 2023;14(1):7301. doi:10.1038/s41467-023-42900-4
  • Schmid P, Turner NC, Barrios CH, et al. First-line ipatasertib, atezolizumab, and taxane triplet for metastatic triple-negative breast cancer: clinical and biomarker results. Clin Cancer Res. 2023. doi:10.1158/1078-0432.CCR-23-2084
  • Johnson ML, Cho BC, Luft A, et al. Durvalumab with or without tremelimumab in combination with chemotherapy as first-line therapy for metastatic non-small-cell lung cancer: the Phase III POSEIDON study. J Clin Oncol. 2023;41(6):1213–1227. doi:10.1200/JCO.22.00975
  • Rohaan MW, Borch TH, van den Berg JH, et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N Engl J Med. 2022;387(23):2113–2125. doi:10.1056/NEJMoa2210233
  • Guo J, Zou Y, Huang L. Nano delivery of chemotherapeutic ICD inducers for tumor immunotherapy. Small Methods. 2023;7(5):e2201307. doi:10.1002/smtd.202201307
  • Wu M, Huang Q, Xie Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 2022;15(1):24. doi:10.1186/s13045-022-01242-2
  • Han X, Li H, Zhou D, Chen Z, Gu Z. Local and targeted delivery of immune checkpoint blockade therapeutics. Acc Chem Res. 2020;53(11):2521–2533. doi:10.1021/acs.accounts.0c00339
  • Jelinek T, Mihalyova J, Kascak M, Duras J, Hajek R. PD-1/PD-L1 inhibitors in haematological malignancies: update 2017. Immunology. 2017;152(3):357–371. doi:10.1111/imm.12788
  • Verschueren MV, Peters BJ, Bloem LT, et al. Pembrolizumab plus chemotherapy per PD-L1 stratum in patients with metastatic non-small cell lung cancer: real-world effectiveness versus trial efficacy. Clin Lung Cancer. 2023. doi:10.1016/j.cllc.2023.12.011
  • Li R, Liang H, Li J, et al. Paclitaxel liposome (lipusu) based chemotherapy combined with immunotherapy for advanced non-small cell lung cancer: a multicenter, retrospective real-world study. BMC Cancer. 2024;24(1):107. doi:10.1186/s12885-024-11860-3
  • Luo S, Lv Z, Yang Q, Chang R, Wu J. Research progress on stimulus-responsive polymer nanocarriers for cancer treatment. Pharmaceutics. 2023;15(7):1928. doi:10.3390/pharmaceutics15071928
  • Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv. 2021;18(2):205–227. doi:10.1080/17425247.2021.1828339
  • Yan Z, Liu Y, Zhao L, et al. In situ stimulus-responsive self-assembled nanomaterials for drug delivery and disease treatment. Mater Horiz. 2023;10(9):3197–3217. doi:10.1039/d3mh00592e
  • Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–1501. doi:10.1039/c5cs00798d
  • Kaushik N, Borkar SB, Nandanwar SK, Panda PK, Choi EH, Kaushik NK. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J Nanobiotechnol. 2022;20(1):152. doi:10.1186/s12951-022-01364-2
  • Wang Z, Chen L, Ma Y, et al. Peptide vaccine-conjugated mesoporous carriers synergize with immunogenic cell death and PD-L1 blockade for amplified immunotherapy of metastatic spinal. J Nanobiotechnol. 2021;19(1):243. doi:10.1186/s12951-021-00975-5
  • Zhang X, Yi C, Zhang L, et al. Size-optimized nuclear-targeting phototherapy enhances the type I interferon response for “cold” tumor immunotherapy. Acta Biomater. 2023;159:338–352. doi:10.1016/j.actbio.2023.01.023
  • Tian Y, Younis MR, Zhao Y, et al. Precision delivery of dual immune inhibitors loaded nanomodulator to reverse immune suppression for combinational photothermal-immunotherapy. Small. 2023;19(21):e2206441. doi:10.1002/smll.202206441
  • Zheng RR, Zhao LP, Yang N, et al. Cascade immune activation of self-delivery biomedicine for photodynamic immunotherapy against metastatic tumor. Small. 2023;19(3):e2205694. doi:10.1002/smll.202205694
  • Liu H, Hu Y, Sun Y, et al. Co-delivery of bee venom melittin and a photosensitizer with an organic-inorganic hybrid nanocarrier for photodynamic therapy and immunotherapy. ACS Nano. 2019;13(11):12638–12652. doi:10.1021/acsnano.9b04181
  • Xiao Y, Zhu T, Zeng Q, Tan Q, Jiang G, Huang X. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy. Acta Biomater. 2023;157:451–466. doi:10.1016/j.actbio.2022.11.043
  • Yu Y, Li J, Song B, et al. Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy. Biomaterials. 2022;280:121312. doi:10.1016/j.biomaterials.2021.121312
  • Yu Q, Tang X, Zhao W, et al. Mild hyperthermia promotes immune checkpoint blockade-based immunotherapy against metastatic pancreatic cancer using size-adjustable nanoparticles. Acta Biomater. 2021;133:244–256. doi:10.1016/j.actbio.2021.05.002
  • Liu X, Zheng J, Sun W, et al. Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological effect for treating cancer metastasis. ACS Nano. 2019;13(8):8811–8825. doi:10.1021/acsnano.9b01979
  • Pan J, Hu P, Guo Y, et al. Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS Nano. 2020;14(1):1033–1044. doi:10.1021/acsnano.9b08550
  • Zhang L, Zhang Q, Hinojosa DT, et al. Multifunctional magnetic nanoclusters can induce immunogenic cell death and suppress tumor recurrence and metastasis. ACS Nano. 2022;16(11):18538–18554. doi:10.1021/acsnano.2c06776
  • Zhang Q, Shi D, Guo M, Zhao H, Zhao Y, Yang X. Radiofrequency-activated pyroptosis of bi-valent gold nanocluster for cancer immunotherapy. ACS Nano. 2023;17(1):515–529. doi:10.1021/acsnano.2c09242
  • Wang Z, Little N, Chen J, et al. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy. Nat Nanotechnol. 2021;16(10):1130–1140. doi:10.1038/s41565-021-00950-z
  • Moon Y, Shim MK, Choi J, et al. Anti-PD-L1 peptide-conjugated prodrug nanoparticles for targeted cancer immunotherapy combining PD-L1 blockade with immunogenic cell death. Theranostics. 2022;12(5):1999–2014. doi:10.7150/thno.69119
  • Bai X, Zhou Y, Yokota Y, et al. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade. J Exp Clin Cancer Res. 2022;41(1):132. doi:10.1186/s13046-022-02307-3
  • Xia GQ, Lei TR, Yu TB, Zhou PH. Nanocarrier-based activation of necroptotic cell death potentiates cancer immunotherapy. Nanoscale. 2021;13(2):1220–1230. doi:10.1039/d0nr05832g
  • Wang C, Shi X, Song H, et al. Polymer-lipid hybrid nanovesicle-enabled combination of immunogenic chemotherapy and RNAi-mediated PD-L1 knockdown elicits antitumor immunity against melanoma. Biomaterials. 2021;268:120579. doi:10.1016/j.biomaterials.2020.120579
  • Zhu W, Bai Y, Zhang N, et al. A tumor extracellular pH-sensitive PD-L1 binding peptide nanoparticle for chemo-immunotherapy of cancer. J Mater Chem B. 2021;9(20):4201–4210. doi:10.1039/d1tb00537e
  • Jiang M, Chen W, Yu W, et al. Sequentially pH-responsive drug-delivery nanosystem for tumor immunogenic cell death and cooperating with immune checkpoint blockade for efficient cancer chemoimmunotherapy. ACS Appl Mater Interfaces. 2021;13(37):43963–43974. doi:10.1021/acsami.1c10643
  • Wu J, Chen J, Feng Y, et al. An immune cocktail therapy to realize multiple boosting of the cancer-immunity cycle by combination of drug/gene delivery nanoparticles. Sci Adv. 2020;6(40):eabc7828. doi:10.1126/sciadv.abc7828
  • Ge YX, Zhang TW, Zhou L, et al. Enhancement of anti-PD-1/PD-L1 immunotherapy for osteosarcoma using an intelligent autophagy-controlling metal organic framework. Biomaterials. 2022;282:121407. doi:10.1016/j.biomaterials.2022.121407
  • Xu J, Qiu W, Liang M, et al. Dual-stimulus phototherapeutic nanogel for triggering pyroptosis to promote cancer immunotherapy. J Control Release. 2023;358:219–231. doi:10.1016/j.jconrel.2023.04.030
  • Xie L, Wang G, Sang W, et al. Phenolic immunogenic cell death nanoinducer for sensitizing tumor to PD-1 checkpoint blockade immunotherapy. Biomaterials. 2021;269:120638. doi:10.1016/j.biomaterials.2020.120638
  • Jeong SD, Jung BK, Ahn HM, et al. Immunogenic cell death inducing fluorinated mitochondria-disrupting helical polypeptide synergizes with PD-L1 immune checkpoint blockade. Adv Sci. 2021;8(7):2001308. doi:10.1002/advs.202001308
  • Wan WJ, Huang G, Wang Y. Coadministration of iRGD peptide with ROS-sensitive nanoparticles co-delivering siFGL1 and siPD-L1 enhanced tumor immunotherapy. Acta Biomater. 2021;136:473–484. doi:10.1016/j.actbio.2021.09.040
  • Jia L, Pang M, Fan M, et al. A pH-responsive Pickering nanoemulsion for specified spatial delivery of immune checkpoint inhibitor and chemotherapy agent to tumors. Theranostics. 2020;10(22):9956–9969. doi:10.7150/thno.46089
  • Hou G, Qian J, Guo M, et al. Hydrazide-manganese coordinated multifunctional nanoplatform for potentiating immunotherapy in hepatocellular carcinoma. J Colloid Interface Sci. 2022;628(Pt B):968–983. doi:10.1016/j.jcis.2022.08.091
  • Xu Y, Guo Y, Zhang C, et al. Fibronectin-coated metal-phenolic networks for cooperative tumor chemo-/chemodynamic/Immune therapy via enhanced ferroptosis-mediated immunogenic cell death. ACS Nano. 2022;16(1):984–996. doi:10.1021/acsnano.1c08585
  • Wang M, Chang M, Li C, et al. Tumor-microenvironment-activated reactive oxygen species amplifier for enzymatic cascade cancer starvation/chemodynamic/immunotherapy. Adv Mater. 2022;34(4):e2106010. doi:10.1002/adma.202106010
  • Ding M, Fan Y, Lv Y. A prodrug hydrogel with tumor microenvironment and near-infrared light dual-responsive action for synergistic cancer immunotherapy. Acta Biomater. 2022;149:334–346. doi:10.1016/j.actbio.2022.06.041
  • Lu YF, Zhou JP, Zhou QM. Ultra-thin layered double hydroxide-mediated photothermal therapy combine with asynchronous blockade of PD-L1 and NR2F6 inhibit hepatocellular carcinoma. J Nanobiotechnol. 2022;20(1):351. doi:10.1186/s12951-022-01565-9
  • Yue J, Mei Q, Wang P, Miao P, Dong WF, Li L. Light-triggered multifunctional nanoplatform for efficient cancer photo-immunotherapy. J Nanobiotechnol. 2022;20(1):181. doi:10.1186/s12951-022-01388-8
  • Su Z, Xiao Z, Wang Y. Codelivery of anti-PD-1 antibody and paclitaxel with matrix metalloproteinase and pH dual-Sensitive micelles for enhanced tumor chemoimmunotherapy. Small. 2020;16(7):e1906832. doi:10.1002/smll.201906832
  • Liu Y, Chen XG, Yang PP, Qiao ZY, Wang H. Tumor microenvironmental pH and enzyme dual responsive polymer-Liposomes for synergistic treatment of cancer immuno-chemotherapy. Biomacromolecules. 2019;20(2):882–892. doi:10.1021/acs.biomac.8b01510
  • Dahri M, Beheshtizadeh N, Seyedpour N, et al. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother. 2023;165:115048. doi:10.1016/j.biopha.2023.115048
  • Rui R, Zhou L, He S. Cancer immunotherapies: advances and bottlenecks. Front Immunol. 2023;14:1212476. doi:10.3389/fimmu.2023.1212476
  • Li L, Yang Z, Chen X. Recent advances in stimuli-responsive platforms for cancer immunotherapy. Acc Chem Res. 2020;53(10):2044–2054. doi:10.1021/acs.accounts.0c00334
  • Vincent MP, Navidzadeh JO, Bobbala S, Scott EA. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell. 2022;40(3):255–276. doi:10.1016/j.ccell.2022.01.006
  • Shin Y, Husni P, Kang K. Recent advances in pH- or/and photo-responsive nanovehicles. pharmaceutics. 2021;13(5):725. doi:10.3390/pharmaceutics13050725
  • Chauhan M, Basu SM, Qasim M, Giri J. Polypropylene sulphide coating on magnetic nanoparticles as a novel platform for excellent biocompatible, stimuli-responsive smart magnetic nanocarriers for cancer therapeutics. Nanoscale. 2023;15(16):7384–7402. doi:10.1039/d2nr05218k
  • Yusefi M, Shameli K, Jahangirian H. How magnetic composites are effective anticancer therapeutics? A comprehensive review of the literature. Int J Nanomed. 2023;18:3535–3575. doi:10.2147/IJN.S375964
  • Zhang K, Qi C, Cai K. Manganese-based tumor immunotherapy. Adv Mater. 2023;35(19):e2205409. doi:10.1002/adma.202205409
  • Eslami P, Albino M, Scavone F. Smart magnetic nanocarriers for multi-stimuli on-demand drug delivery. Nanomaterials. 2022;12(3):303. doi:10.3390/nano12030303
  • Ge J, Yang N, Yang Y. The combination of eddy thermal effect of biodegradable magnesium with immune checkpoint blockade shows enhanced efficacy against osteosarcoma. Bioact Mater. 2023;25:73–85. doi:10.1016/j.bioactmat.2023.01.008
  • Kapalatiya H, Madav Y, Tambe VS, Wairkar S. Enzyme-responsive smart nanocarriers for targeted chemotherapy: an overview. Drug Deliv Transl Res. 2022;12(6):1293–1305. doi:10.1007/s13346-021-01020-6
  • Zhao N, Zhu L, Liu M, He L, Xu H, Jia J. Enzyme-responsive lignin nanocarriers for triggered delivery of abamectin to control plant root-knot nematodes (Meloidogyne incognita). J Agric Food Chem. 2023;71(8):3790–3799. doi:10.1021/acs.jafc.2c07466
  • Jia N, Gao Y, Li M. Metabolic reprogramming of proinflammatory macrophages by target delivered roburic acid effectively ameliorates rheumatoid arthritis symptoms. Signal Transduct Target Ther. 2023;8(1):280. doi:10.1038/s41392-023-01499-0
  • Ding H, Tan P, Fu S. Preparation and application of pH-responsive drug delivery systems. J Control Release. 2022;348:206–238. doi:10.1016/j.jconrel.2022.05.056
  • Lee CG, Kwon TH. Controlling morphologies of redox-responsive polymeric nanocarriers for a smart drug delivery system. Chemistry. 2023;29(34):e202300594. doi:10.1002/chem.202300594
  • Mollazadeh S, Mackiewicz M, Yazdimamaghani M. Recent advances in the redox-responsive drug delivery nanoplatforms: a chemical structure and physical property perspective. Mater Sci Eng C Mater Biol Appl. 2021;118:111536. doi:10.1016/j.msec.2020.111536
  • Zhang W, Zhu D, Tong Z, et al. Influence of surface ligand density and particle size on the penetration of the blood-brain barrier by porous silicon nanoparticles. Pharmaceutics. 2023;15(9):2271. doi:10.3390/pharmaceutics15092271
  • Nezhadi S, Dorkoosh FA. Co-delivery systems: hope for clinical application? Drug Deliv Transl Res. 2022;12(6):1339–1354. doi:10.1007/s13346-021-01041-1
  • Chen D, Liu X, Lu X, Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol. 2023;14:1111991. doi:10.3389/fphar.2023.1111991
  • Al Bostami RD, Abuwatfa WH, Husseini GA. Recent advances in nanoparticle-based co-delivery systems for cancer therapy. Nanomaterials. 2022;12(15):2672. doi:10.3390/nano12152672
  • Liang Y, Liu ZY, Wang PY, Li YJ, Wang RR, Xie SY. Nanoplatform-based natural products co-delivery system to surmount cancer multidrug-resistant. J Control Release. 2021;336:396–409. doi:10.1016/j.jconrel.2021.06.034
  • Qi J, Jin F, You Y, et al. Synergistic effect of tumor chemo-immunotherapy induced by leukocyte-hitchhiking thermal-sensitive micelles. Nat Commun. 2021;12(1):4755. doi:10.1038/s41467-021-24902-2
  • DePeaux K, Delgoffe GM. Metabolic barriers to cancer immunotherapy. Nat Rev Immunol. 2021;21(12):785–797. doi:10.1038/s41577-021-00541-y
  • Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16(9):563–580. doi:10.1038/s41571-019-0218-0