52
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Unique Approach: Biomimetic Graphdiyne-Based Nanoplatform to Treat Prostate Cancer by Combining Cuproptosis and Enhanced Chemodynamic Therapy

, , , , , , , , , , , , ORCID Icon, , , & ORCID Icon show all
Pages 3957-3972 | Received 22 Jan 2024, Accepted 20 Apr 2024, Published online: 01 May 2024

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. Ca a Cancer J Clinicians. 2018;68(1):7–30. doi:10.3322/caac.21442
  • Teo MY, Rathkopf DE, Kantoff P. Treatment of advanced prostate cancer. Annual Review of Medicine. 2019;70(1):479–499. doi:10.1146/annurev-med-051517-011947
  • Sartor O. Curing more prostate cancer: thinking through the options. J clin oncol. 2018;36(15):1466–1468. doi:10.1200/jco.2018.78.4835
  • Kamba T. Bone-targeted treatment in CRPC management. Hormo Therapy Castr Res Pros Cancer. 317–325. 10.1007/978-981-10-7013-6_32
  • Zhao H, Freedland S. Enzalutamide treatment for the whole spectrum of CRPC. Nat Rev Urol. 2018;15(11):663–665. doi:10.1038/s41585-018-0090-1
  • Hadaschik B, Hellmis E. Therapie des nicht-Fernmetastasierten CRPC. Der Urologe. 2021;60(6):753–759. doi:10.1007/s00120-021-01473-0
  • Rae TD, Schmidt PJ, Pufahl RA, Culotta VC V, O’ Halloran T. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science. 1999;284(5415):805–808. doi:10.1126/science.284.5415.805
  • B-E K, Nevitt T, Dj T. Mechanisms for copper acquisition, distribution and Regulation. Nature Chem Bio. 2008;4(3):176–185. doi:10.1038/nchembio.72
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Experientia Supplementum. 2012;101:133–164. doi:10.1007/978-3-7643-8340-4_6
  • Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(2–3):65–87. doi:10.1016/j.tox.2011.03.001
  • Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–1261. doi:10.1126/science.abf0529
  • S-R L, L-L B, Cai L. Cuproptosis: lipoylated TCA cycle proteins-mediated novel Cell Death pathway. Signal Trans Targe Thera. 2022;7(1). doi:10.1038/s41392-022-01014-x
  • Cardoso HJ, Carvalho TM, Fonseca LR, Figueira MI, Vaz CV, Socorro S. Revisiting prostate cancer metabolism: from metabolites to disease and therapy. Med Res Rev. 2020;41(3):1499–1538. doi:10.1002/med.21766
  • Chen H, Li X, Huo M, et al. Tumor-responsive copper-activated disulfiram for synergetic nanocatalytic tumor therapy. Nano Res. 2020;14(1):205–211. doi:10.1007/s12274-020-3069-1
  • Oliveri V. Biomedical applications of copper ionophores. Coord Chem Rev. 2020;422:213474. doi:10.1016/j.ccr.2020.213474
  • Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Zovo K, Palumaa P. Affinity gradients drive copper to cellular destinations. Nature. 2010;465(7298):645–648. doi:10.1038/nature09018
  • Geim AK, Novoselov KS. The rise of graphene. Nature Mater. 2007;6(3):183–191. doi:10.1038/nmat1849
  • Li Y, Xu L, Liu H, Li Y. Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev. 2014;43(8):2572. doi:10.1039/c3cs60388a
  • Huang C, Li Y, Wang N, et al. Progress in research into 2D graphdiyne-based materials. Chem Rev. 2018;118(16):7744–7803. doi:10.1021/acs.chemrev.8b00288
  • Zhang Y, Xie W, Lin J, et al. Untargeted metabolomics to analyze alterations in two-dimensional graphdiyne–copper nanocomposite on the metabolic reprogramming of prostate cancer. 2D Mater. 2022;10(1):015011. doi:10.1088/2053-1583/ac9e67
  • Huang Z, Chen G, Deng F, Li Y. Nanostructured graphdiyne: synthesis and biomedical applications. Int j Nanomed. 2022;17:6467–6490. doi:10.2147/IJN.S383707
  • Šimůnek T, Štěrba M, Popelová O, Adamcová M, Hrdina R, Geršl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and Free Cellular Iron. Pharmacol Rep. 2009;61(1):154–171. doi:10.1016/s1734-1140(09)70018-0
  • Menna P, Recalcati S, Cairo G, Minotti G. An introduction to the metabolic determinants of anthracycline cardiotoxicity. Cardiovasc Toxicol. 2007;7(2):80–85. doi:10.1007/s12012-007-0011-7
  • Lin J, Yang H, Zhang Y, et al. Ferrocene‐based polymeric nanoparticles carrying doxorubicin for oncotherapeutic combination of chemotherapy and ferroptosis. Small. 2022;19(2). doi:10.1002/smll.202205024
  • Brillas E, Baños MA, Camps S, et al. Catalytic effect of fe2+, cu2+and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J Chem. 2004;28(2):314–322. doi:10.1039/b312445b
  • Soltani T, Lee B-K. Enhanced formation of sulfate radicals by metal-doped BIFEO3 under visible light for improving photo-fenton catalytic degradation of 2-chlorophenol. Chem Eng J. 2017;313:1258–1268. doi:10.1016/j.cej.2016.11.016
  • Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. Chem Commun. 2010;46(19):3256. doi:10.1039/b922733d
  • Xie M, Deng T, Li J, Shen H. The camouflage of graphene oxide by red blood cell membrane with high dispersibility for cancer chemotherapy. J Colloid Interface Sci. 2021;591:290–299. doi:10.1016/j.jcis.2021.01.088
  • Zhang J, Yu J, Zhang Y, Li Q, Gong JR. Visible light photocatalytic H2-production activity of CUS/zns porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 2011;11(11):4774–4779. doi:10.1021/nl202587b
  • Koski KJ, Cha JJ, Reed BW, Wessells CD, Kong D, Cui Y. Cheminform abstract: high-Density Chemical Intercalation of zero‐valent copper into bi2se3 nanoribbons. ChemInform. 2012;43(34). doi:10.1002/chin.201234008
  • Dehaini D, Wei X, Fang RH, et al. Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater. 2017;29(16). doi:10.1002/adma.201606209
  • Jin J, Guo M, Liu J, et al. Graphdiyne nanosheet-based drug delivery platform for photothermal/chemotherapy combination treatment of cancer. ACS Appl Mater Interfaces. 2018;10(10):8436–8442. doi:10.1021/acsami.7b17219
  • Li S, Chen Y, Liu H, et al. Graphdiyne materials as nanotransducer for in vivo photoacoustic imaging and photothermal therapy of tumor. Chem Mater. 2017;29(14):6087–6094. doi:10.1021/acs.chemmater.7b01965
  • Zhu J, Wang X, Su Y, et al. Multifunctional nanolocks with GSH as the key for synergistic ferroptosis and anti-chemotherapeutic resistance. Biomaterials. 2022;288:121704. doi:10.1016/j.biomaterials.2022.121704
  • Du J, Chen G, Yuan X, Yuan J, Li L. Multi-stimuli responsive cu-mofs@keratin drug delivery system for Chemodynamic therapy. Front Bioeng Biotechnol. 2023;11. doi:10.3389/fbioe.2023.1125348
  • Zheng H, Zhang Y, Liu L, et al. One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc. 2016;138(3):962–968. doi:10.1021/jacs.5b11720
  • Souris JS, Lee C-H, Cheng S-H, et al. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials. 2010;31(21):5564–5574. doi:10.1016/j.biomaterials.2010.03.048
  • Chi S, Zhang L, Cheng H, et al. Biomimetic nanocomposites camouflaged with hybrid cell membranes for accurate therapy of early-stage glioma. Angew Chem. 2023;135(29):e202304419. doi:10.1002/anie.202304419
  • Li J, Zhang J, Gao Y, et al. Targeted siRNA delivery by bioinspired cancer cell membrane-coated nanoparticles with enhanced anti-cancer immunity. Int j Nanomed. 2023;18:5961–5982. doi:10.2147/IJN.S429036
  • Wu Y, Zhu R, Zhou M, et al. Homologous cancer cell membrane-camouflaged nanoparticles target drug delivery and enhance the chemotherapy efficacy of hepatocellular carcinoma. Cancer Lett. 2023;558:216106. doi:10.1016/j.canlet.2023.216106
  • Czepas J, Koceva-Chyła A, Gwoździński K, Jóźwiak Z. Different effectiveness of piperidine nitroxides against oxidative stress induced by doxorubicin and hydrogen peroxide. Cell Biol Toxicol. 2007;24(1):101–112. doi:10.1007/s10565-007-9020-3
  • Tan P, Cai H, Wei Q, et al. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials. 2021;277:121061. doi:10.1016/j.biomaterials.2021.121061