106
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Advancing Tissue Damage Repair in Geriatric Diseases: Prospects of Combining Stem Cell-Derived Exosomes with Hydrogels

, , , , , , , , & ORCID Icon show all
Pages 3773-3804 | Received 22 Dec 2023, Accepted 19 Apr 2024, Published online: 29 Apr 2024

References

  • Marti GP, Liu L, Zhang X, et al. Wound Healing in the Elderly. In: Rosenthal RA, Zenilman ME, Katlic MR, editors. Principles and Practice of Geriatric Surgery. Springer New York; 2011:107–127. doi:10.1007/978-1-4419-6999-6_8
  • Suárez-Formigo GM, Saavedra-Hernández D. Biomodulina T may restore immunity in older adults. MEDICC Rev. 2020;22(3). doi:10.37757/MR2020.V22.N3.11
  • Forman DE, Maurer MS, Boyd C, et al. Multimorbidity in older adults with cardiovascular disease. J Am Coll Cardiol. 2018;71(19):2149–2161. doi:10.1016/j.jacc.2018.03.022
  • Gosain A, DiPietro LA. Aging and wound healing. World j Surg. 2004;28(3):321–326. doi:10.1007/s00268-003-7397-6
  • Liu J, Ren L, Li S, et al. The biology, function, and applications of exosomes in cancer. Acta Pharmaceutica Sinica B. 2021;11(9):2783–2797. doi:10.1016/j.apsb.2021.01.001
  • Mi P, Liu JL, Qi BP, Wei BM, Xu CZ, Zhu L. Stem cell-derived exosomes for chronic wound repair. Cell Tissue Res. 2023;391:419–423. doi:10.1007/s00441-023-03742-0
  • Pascucci L, Coccè V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release. 2014;192:262–270. doi:10.1016/j.jconrel.2014.07.042
  • Cui G, Wu J, Mou F, et al. Exosomes derived from hypoxia‐preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB j. 2018;32(2):654–668. doi:10.1096/fj.201700600R
  • Katsuda T, Oki K, Ochiya T. Potential Application of Extracellular Vesicles of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Alzheimer’s Disease Therapeutics. In: Turksen K editor. Stem Cell Renewal and Cell-Cell Communication. Methods in Molecular Biology. New York: Springer; 2014:171–181. doi:10.1007/7651_2014_98
  • Spang MT, Christman KL. Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater. 2018;68:1–14. doi:10.1016/j.actbio.2017.12.019
  • Xu T, Hua Y, Mei P, Zeng D, Jiang S, Liao C. Black phosphorus thermosensitive hydrogels loaded with bone marrow mesenchymal stem cell-derived exosomes synergistically promote bone tissue defect repair. J Mat Chem B. 2023;11:4396–4407. doi:10.1039/D3TB00341H
  • Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76(17):3323–3348. doi:10.1007/s00018-019-03125-1
  • Song CG, Zhang YZ, Wu HN, et al. Stem cells: a promising candidate to treat neurological disorders. Neural Regen Res. 2018;13(7):1294. doi:10.4103/1673-5374.235085
  • Chang C, Yan J, Yao Z, Zhang C, Li X, Mao H. Effects of mesenchymal stem cell‐derived paracrine signals and their delivery strategies. Adv Healthcare Mater. 2021;10(7):2001689. doi:10.1002/adhm.202001689
  • Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol. 2016;7. doi:10.3389/fphar.2016.00231
  • Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell‐free therapy. J Extracellular Vesicle. 2018;7(1):1522236. doi:10.1080/20013078.2018.1522236
  • Xunian Z, Kalluri R. Biology and therapeutic potential of mesenchymal stem cell‐derived exosomes. Cancer Sci. 2020;111(9):3100–3110. doi:10.1111/cas.14563
  • Azoulay-Alfaguter I, Mor A. Proteomic analysis of human T cell-derived exosomes reveals differential RAS/MAPK signaling. Eur J Immunol. 2018;48(11):1915–1917. doi:10.1002/eji.201847655
  • Lin LY, Du LM, Cao K, et al. Tumour cell-derived exosomes endow mesenchymal stromal cells with tumour-promotion capabilities. Oncogene. 2016;35(46):6038–6042. doi:10.1038/onc.2016.131
  • Royce SG, Patel KP, Mao W, Zhu D, Lim R, Samuel CS. Serelaxin enhances the therapeutic effects of human amnion epithelial cell‐derived exosomes in experimental models of lung disease. Br J Pharmacol. 2019;bph.14666. doi:10.1111/bph.14666
  • Yu G, Jung H, Kang YY, Mok H. Comparative evaluation of cell- and serum-derived exosomes to deliver immune stimulators to lymph nodes. Biomaterials. 2018;162:71–81. doi:10.1016/j.biomaterials.2018.02.003
  • Hock A, Miyake H, Li B, et al. Breast milk-derived exosomes promote intestinal epithelial cell growth. J Pediat Surg. 2017;52(5):755–759. doi:10.1016/j.jpedsurg.2017.01.032
  • Sheller-Miller S, Menon R. Isolation and characterization of human amniotic fluid-derived exosomes. In: Methods in Enzymology. Elsevier; 2020:181–194. doi:10.1016/bs.mie.2020.07.006
  • Anderson MR, Pleet ML, Enose‐Akahata Y, et al. Viral antigens detectable in CSF exosomes from patients with retrovirus associated neurologic disease: functional role of exosomes. Clin Translat Med. 2018;7(1). doi:10.1186/s40169-018-0204-7
  • Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One. 2010;5(1):e8577. doi:10.1371/journal.pone.0008577
  • Yao Y, Jiao D, Li Z, et al. Roles of bile-derived exosomes in hepatobiliary disease. BioMed Res Internat 2021;2021:1–14. doi:10.1155/2021/8743409
  • Coughlan C, Bruce KD, Burgy O, et al. Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Curr Protoc Cell Bio. 2020;88(1). doi:10.1002/cpcb.110
  • Zhang Z, Wang C, Li T, Liu Z, Li L. Comparison of ultracentrifugation and density gradient separation methods for isolating Tca8113 human tongue cancer cell line-derived exosomes. Oncol Lett. 2014;8(4):1701–1706. doi:10.3892/ol.2014.2373
  • Jiawei S, Zhi C, Kewei T, Xiaoping L. Magnetic bead-based adsorption strategy for exosome isolation. Front Bioeng Biotechnol. 2022;10:942077. doi:10.3389/fbioe.2022.942077
  • An M, Wu J, Zhu J, Lubman DM. Comparison of an optimized ultracentrifugation method versus size-exclusion chromatography for isolation of exosomes from human serum. J Proteome Res. 2018;17(10):3599–3605. doi:10.1021/acs.jproteome.8b00479
  • Wunsch BH, Smith JT, Gifford SM, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nature Nanotech. 2016;11(11):936–940. doi:10.1038/nnano.2016.134
  • Su W, Li H, Chen W, Qin J. Microfluidic strategies for label-free exosomes isolation and analysis. TrAC Trend Analy Chem. 2019;118:686–698. doi:10.1016/j.trac.2019.06.037
  • Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–579. doi:10.1038/nri855
  • Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics. 2009;6(3):267–283. doi:10.1586/epr.09.17
  • Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine. Cells. 2021;10(8):1959. doi:10.3390/cells10081959
  • Salehi M, Sharifi M. Exosomal miRNAs as novel cancer biomarkers: challenges and opportunities. J Cell Physiol. 2018;233(9):6370–6380. doi:10.1002/jcp.26481
  • Lin J, Lin W, Bai Y, et al. Identification of exosomal hsa-miR-483-5p as a potential biomarker for hepatocellular carcinoma via microRNA expression profiling of tumor-derived exosomes. Exp. Cell. Res. 2022;417(2):113232. doi:10.1016/j.yexcr.2022.113232
  • Guo Z, Wang X, Yang Y, et al. Hypoxic tumor-derived exosomal long noncoding RNA UCA1 promotes angiogenesis via miR-96-5p/AMOTL2 in pancreatic cancer. Mol Ther Nucleic Acids. 2020;22:179–195. doi:10.1016/j.omtn.2020.08.021
  • zhen JZ, mei LY, Niu X, et al. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther. 2016;7(1):24. doi:10.1186/s13287-016-0287-2
  • wei LJ, Wei L, Han Z, Chen Z. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur. J. Pharmacol. 2019;852:68–76. doi:10.1016/j.ejphar.2019.01.022
  • Chander S, Kulkarni GT, Dhiman N, Kharkwal H. Protein-Based Nanohydrogels for Bioactive Delivery. Front Chem. 2021;9:573748. doi:10.3389/fchem.2021.573748
  • Kasai RD, Radhika D, Archana S, et al. A review on hydrogels classification and recent developments in biomedical applications. Int J Polym Mater Polym Biomater. 2023;72(13):1059–1069. doi:10.1080/00914037.2022.2075872
  • Mehta P, Sharma M, Devi M. Hydrogels: an overview of its classifications, properties, and applications. J Mech Behav Biomed Mater. 2023;147:106145. doi:10.1016/j.jmbbm.2023.106145
  • Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30(10):115. doi:10.1007/s10856-019-6318-7
  • Madduma‐Bandarage USK, Madihally SV. Synthetic hydrogels: synthesis, novel trends, and applications. J of Applied Polymer Sci. 2021;138(19):50376. doi:10.1002/app.50376
  • Ju Y, Hu Y, Yang P, Xie X, Fang B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater Today Bio. 2023;18:100522. doi:10.1016/j.mtbio.2022.100522
  • Mantha S, Pillai S, Khayambashi P, et al. Smart hydrogels in tissue engineering and regenerative medicine. Materials. 2019;12(20):3323. doi:10.3390/ma12203323
  • Yang L, Fan L, Lin X, Yu Y, Zhao Y. Pearl powder hybrid bioactive scaffolds from microfluidic 3D printing for bone regeneration. Adv Sci. 2023;10(34):2304190. doi:10.1002/advs.202304190
  • Chi H, Qiu Y, Ye X, Shi J, Li Z. Preparation strategy of hydrogel microsphere and its application in skin repair. Front Bioeng Biotechnol. 2023;11:1239183. doi:10.3389/fbioe.2023.1239183
  • Hong Y, Lin Z, Yang Y, Jiang T, Shang J, Luo Z. Biocompatible conductive hydrogels: applications in the field of biomedicine. IJMS. 2022;23(9):4578. doi:10.3390/ijms23094578
  • Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35(5):530–544. doi:10.1016/j.biotechadv.2017.05.006
  • Picone P, Sabatino MA, Ajovalasit A, Giacomazza D, Dispenza C, Di Carlo M. Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application. Int J Biol Macromol. 2019;121:784–795. doi:10.1016/j.ijbiomac.2018.10.078
  • Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5(1):17014. doi:10.1038/boneres.2017.14
  • Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release. 2015;199:145–155. doi:10.1016/j.jconrel.2014.12.013
  • Yamashita T, Takahashi Y, Nishikawa M, Takakura Y. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur J Pharm Biopharm. 2016;98:1–8. doi:10.1016/j.ejpb.2015.10.017
  • Wang M, Wang C, Chen M, et al. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano. 2019;13(9):10279–10293. doi:10.1021/acsnano.9b03656
  • Shafei S, Khanmohammadi M, Heidari R, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full‐thickness skin wounds: an in vivo study. J Biomed Mater Res. 2020;108(3):545–556. doi:10.1002/jbm.a.36835
  • Thomas V, Yallapu MM, Sreedhar B, Bajpai SK. Breathing‐in/breathing‐out approach to preparing nanosilver‐loaded hydrogels: highly efficient antibacterial nanocomposites. J of Applied Polymer Sci. 2009;111(2):934–944. doi:10.1002/app.29018
  • Qin Y, Wang L, Gao Z, Chen G, Zhang C. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep. 2016;6(1):21961. doi:10.1038/srep21961
  • Deepthi S, Jayakumar R. Alginate nanobeads interspersed fibrin network as in situ forming hydrogel for soft tissue engineering. Bioact. Mater. 2018;3(2):194–200. doi:10.1016/j.bioactmat.2017.09.005
  • Bakadia BM, Qaed Ahmed AA, Lamboni L, et al. Engineering homologous platelet-rich plasma, platelet-rich plasma-derived exosomes, and mesenchymal stem cell-derived exosomes-based dual-crosslinked hydrogels as bioactive diabetic wound dressings. Bioact. Mater. 2023;28:74–94. doi:10.1016/j.bioactmat.2023.05.002
  • Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater. 2013;2(1):57–71. doi:10.1002/adhm.201200197
  • Wang C, Wang M, Xu T, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019;9(1):65–76. doi:10.7150/thno.29766
  • Zhang M, Zhang R, Chen H, et al. Injectable supramolecular hybrid hydrogel delivers IL-1β-stimulated exosomes to target neuroinflammation. ACS Appl Mater Interfaces. 2023;15(5):6486–6498. doi:10.1021/acsami.2c19997
  • Liu Z, Tong H, Li J, et al. Low-stiffness hydrogels promote peripheral nerve regeneration through the rapid release of exosomes. Front Bioeng Biotechnol. 2022;10:922570. doi:10.3389/fbioe.2022.922570
  • Russo MP, Grande-Ratti MF, Burgos MA, Molaro AA, Bonella MB. Prevalencia de diabetes, características epidemiológicas y complicaciones vasculares. ACM. 2023;93(1):8494. doi:10.24875/ACM.21000410
  • Forbes JM, Cooper ME. Mechanisms of Diabetic Complications. Physiol Rev. 2013;93(1):137–188. doi:10.1152/physrev.00045.2011
  • Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep. 2016;6(1):34842. doi:10.1038/srep34842
  • Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Invest Ophthalmol Vis Sci. 2019;60(1):294. doi:10.1167/iovs.18-25617
  • Mishra SC, Chhatbar KC, Kashikar A, Mehndiratta A. Diabetic foot. BMJ. 2017;j5064. doi:10.1136/bmj.j5064
  • Hicks CW, Selvarajah S, Mathioudakis N, et al. Burden of infected diabetic foot ulcers on hospital admissions and costs. Ann Vasc Surg. 2016;33:149–158. doi:10.1016/j.avsg.2015.11.025
  • Lv H, Liu H, Sun T, Wang H, Zhang X, Xu W. Exosome derived from stem cell: a promising therapeutics for wound healing. Front Pharmacol. 2022;13:957771. doi:10.3389/fphar.2022.957771
  • Dolati S, Yousefi M, Pishgahi A, Nourbakhsh S, Pourabbas B, Shakouri SK. Prospects for the application of growth factors in wound healing. Growth Factors. 2020;38(1):25–34. doi:10.1080/08977194.2020.1820499
  • Golchin A, Hosseinzadeh S, Roshangar L. The role of nanomaterials in cell delivery systems. Med Mol Morphol. 2018;51(1):1–12. doi:10.1007/s00795-017-0173-8
  • Dai C, Shih S, Khachemoune A. Skin substitutes for acute and chronic wound healing: an updated review. J Dermatological Treat. 2020;31(6):639–648. doi:10.1080/09546634.2018.1530443
  • Alrubaiy L. Skin substitutes: a brief review of types and clinical applications. OMJ. 2009. doi:10.5001/omj.2009.2
  • Kahroba H, Davatgaran-Taghipour Y. Exosomal Nrf2: from anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases. Biochimie. 2020;171–172:103–109. doi:10.1016/j.biochi.2020.02.011
  • Silachev D, Goryunov K, Shpilyuk M, et al. Effect of MSCs and MSC-derived extracellular vesicles on human blood coagulation. Cells. 2019;8(3):258. doi:10.3390/cells8030258
  • Medhat D, Rodríguez CI, Infante A. Immunomodulatory Effects of MSCs in Bone Healing. IJMS. 2019;20(21):5467. doi:10.3390/ijms20215467
  • Lan CCE, Wu CS, Huang SM, Wu IH, Chen GS. High-Glucose Environment Enhanced Oxidative Stress and Increased Interleukin-8 Secretion From Keratinocytes. Diabetes. 2013;62(7):2530–2538. doi:10.2337/db12-1714
  • Xiu C, Zheng H, Jiang M, et al. MSCs-Derived miR-150-5p-expressing exosomes promote skin wound healing by Activating PI3K/AKT pathway through PTEN. Int J Stem Cells. 2022;15(4):359–371. doi:10.15283/ijsc21135
  • Li M, Wang T, Tian H, Wei G, Zhao L, Shi Y. Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif Cells Nanomed Biotechnol. 2019;47(1):3793–3803. doi:10.1080/21691401.2019.1669617
  • Liu W, Yu M, Xie D, et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11(1):259. doi:10.1186/s13287-020-01756-x
  • Li X, Xie X, Lian W, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018;50(4):1–14. doi:10.1038/s12276-018-0058-5
  • Choi EW, Seo MK, Woo EY, Kim SH, Park EJ, Kim S. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts. Exp Dermatol. 2018;27(10):1170–1172. doi:10.1111/exd.13451
  • Jia Y, Zhu Y, Qiu S, Xu J, Chai Y. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res Ther. 2019;10(1):12. doi:10.1186/s13287-018-1115-7
  • Deng T, Zhang H, Yang H, et al. RETRACTED: exosome miR-155 Derived from Gastric Carcinoma Promotes Angiogenesis by Targeting the c-MYB/VEGF Axis of Endothelial Cells. Mol Ther Nucleic Acids. 2020;19:1449–1459. doi:10.1016/j.omtn.2020.01.024
  • Fang S, Xu C, Zhang Y, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal MicroRNAs Suppress myofibroblast differentiation by inhibiting the transforming growth Factor-β/SMAD2 pathway during wound healing. Stem Cells Translat Med. 2016;5(10):1425–1439. doi:10.5966/sctm.2015-0367
  • Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 2016;6(1):32993. doi:10.1038/srep32993
  • Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci Rep. 2017;7(1):13321. doi:10.1038/s41598-017-12919-x
  • Geng X, Qi Y, Liu X, Shi Y, Li H, Zhao L. A multifunctional antibacterial and self-healing hydrogel laden with bone marrow mesenchymal stem cell-derived exosomes for accelerating diabetic wound healing. Biomat Advan. 2022;133:112613. doi:10.1016/j.msec.2021.112613
  • Wang S, Zheng H, Zhou L, et al. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 2020;20(7):5149–5158. doi:10.1021/acs.nanolett.0c01371
  • Hu H, Jiang H, Ren H, Hu X, Wang X, Han C. AGEs and chronic subclinical inflammation in diabetes: disorders of immune system: aGEs and Diabetic Chronic Inflammation. Diabetes Metab Res Rev. 2015;31(2):127–137. doi:10.1002/dmrr.2560
  • Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–2443. doi:10.1093/eurheartj/eht149
  • Zhang Y, Li M, Wang Y, et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact. Mater. 2023;26:323–336. doi:10.1016/j.bioactmat.2023.01.020
  • Hu N, Cai Z, Jiang X, et al. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing. Acta Biomater. 2023;157:175–186. doi:10.1016/j.actbio.2022.11.057
  • Wang K, Dong R, Tang J, et al. Exosomes laden self-healing injectable hydrogel enhances diabetic wound healing via regulating macrophage polarization to accelerate angiogenesis. Chem Eng J. 2022;430:132664. doi:10.1016/j.cej.2021.132664
  • Huldani H, Kozlitina IA, Alshahrani M, et al. Exosomes derived from adipose stem cells in combination with hyaluronic acid promote diabetic wound healing. Tissue Cell. 2023;85:102252. doi:10.1016/j.tice.2023.102252
  • Yuan M, Liu K, Jiang T, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. J Nanobiotechnol. 2022;20(1):147. doi:10.1186/s12951-022-01354-4
  • Hu Y, Wu B, Xiong Y, et al. Cryogenic 3D printed hydrogel scaffolds loading exosomes accelerate diabetic wound healing. Chem Eng J. 2021;426:130634. doi:10.1016/j.cej.2021.130634
  • Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. IJN. 2020;15:5911–5926. doi:10.2147/IJN.S249129
  • Shi Q, Qian Z, Liu D, et al. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front Physiol. 2017;8:904. doi:10.3389/fphys.2017.00904
  • Song Y, You Y, Xu X, et al. Adipose‐derived mesenchymal stem cell‐derived exosomes biopotentiated extracellular matrix hydrogels accelerate diabetic wound healing and skin regeneration. Adv Sci. 2023;10(30):2304023. doi:10.1002/advs.202304023
  • Shi Y, Wang S, Wang K, et al. Relieving macrophage dysfunction by inhibiting SREBP2 activity: a hypoxic mesenchymal stem cells‐derived exosomes loaded multifunctional hydrogel for accelerated diabetic wound healing. Small. 2024:2309276. doi:10.1002/smll.202309276
  • Pop-Busui R, Ang L, Holmes C, Gallagher K, Feldman EL. Inflammation as a Therapeutic Target for Diabetic Neuropathies. Curr Diab Rep. 2016;16(3):29. doi:10.1007/s11892-016-0727-5
  • Tao SC, Guo SC, Li M, Ke QF, Guo YP, Zhang CQ. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Translat Med. 2017;6(3):736–747. doi:10.5966/sctm.2016-0275
  • Coll PP, Roche V, Olsen JS, Voit JH, Bowen E, Kumar M. The prevention of cardiovascular disease in older adults. J Am Geriatr Soc. 2020;68(5):1098–1106. doi:10.1111/jgs.16353
  • Townsend N, Kazakiewicz D, Lucy Wright F, et al. Epidemiology of cardiovascular disease in Europe. Nat Rev Cardiol. 2022;19(2):133–143. doi:10.1038/s41569-021-00607-3
  • Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020;141(9). doi:10.1161/CIR.0000000000000757
  • Frangogiannis NG. Pathophysiology of Myocardial Infarction. In: Terjung R, editor. Comprehensive Physiology. 1st ed. Wiley; 2015:1841–1875. doi:10.1002/cphy.c150006
  • Brower RW, Fioretti P, Simoons M, Haalebos M, Rulf EN, Hugenholtz PG. Surgical versus non-surgical management of patients soon after acute myocardial infarction. Heart. 1985;54(5):460–465. doi:10.1136/hrt.54.5.460
  • Reis LA, Chiu LLY, Feric N, Fu L, Radisic M. Biomaterials in myocardial tissue. J Tissue Eng Regen Med. 2016;10(1):11–28. doi:10.1002/term.1944
  • Cheng H, Chang S, Xu R, et al. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Res Ther. 2020;11(1):224. doi:10.1186/s13287-020-01737-0
  • He JG, Li HR, Han JX, et al. GATA-4-expressing mouse bone marrow mesenchymal stem cells improve cardiac function after myocardial infarction via secreted exosomes. Sci Rep. 2018;8(1):9047. doi:10.1038/s41598-018-27435-9
  • Huang Z, Wu S, Kong F, et al. MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J Cell Mol Med. 2017;21(3):467–474. doi:10.1111/jcmm.12990
  • Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and akt pathways. Cell Physiol Biochem. 2017;43(1):52–68. doi:10.1159/000480317
  • Ferguson SW, Wang J, Lee CJ, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep. 2018;8(1):1419. doi:10.1038/s41598-018-19581-x
  • Martins SG, Zilhão R, Thorsteinsdóttir S, Carlos AR. Linking oxidative stress and DNA damage to changes in the expression of extracellular matrix components. Front Genet. 2021;12:673002. doi:10.3389/fgene.2021.673002
  • Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–312. doi:10.1016/j.scr.2013.01.002
  • Wang Y, Zhao R, Liu D, et al. Exosomes derived from miR-214-enriched bone marrow-derived mesenchymal stem cells regulate oxidative damage in cardiac stem cells by targeting CaMKII. Oxid Med Cell Longev. 2018;2018:1–21. doi:10.1155/2018/4971261
  • Wei Z, Qiao S, Zhao J, et al. miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury. Life Sci. 2019;232:116632. doi:10.1016/j.lfs.2019.116632
  • Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovas Res. 2019;115(7):1205–1216. doi:10.1093/cvr/cvz040
  • Wang K, Jiang Z, Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21. Stem Cells Translat Med. 2017;6(1):209–222. doi:10.5966/sctm.2015-0386
  • Ma J, Zhao Y, Sun L, et al. Exosomes derived from akt -modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Translat Med. 2017;6(1):51–59. doi:10.5966/sctm.2016-0038
  • Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res. 2016;365(3):563–581. doi:10.1007/s00441-016-2431-9
  • Feng Y, Huang W, Wani M, Yu X, Ashraf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE. 2014;9(2):e88685. doi:10.1371/journal.pone.0088685
  • Shao L, Zhang Y, Lan B, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int. 2017;2017:1–9. doi:10.1155/2017/4150705
  • Lee LC, Wall ST, Klepach D, et al. Algisyl-LVRTM with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol. 2013;168(3):2022–2028. doi:10.1016/j.ijcard.2013.01.003
  • Hu W, Yang C, Guo X, et al. Research advances of injectable functional hydrogel materials in the treatment of myocardial infarction. Gels. 2022;8(7):423. doi:10.3390/gels8070423
  • Assis ACM, Carvalho JL, Jacoby BA, et al. Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant. 2010;19(2):219–230. doi:10.3727/096368909X479677
  • Han C, Zhou J, Liang C, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019;7(7):2920–2933. doi:10.1039/C9BM00101H
  • Waters R, Alam P, Pacelli S, Chakravarti AR, Ahmed RPH, Paul A. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater. 2018;69:95–106. doi:10.1016/j.actbio.2017.12.025
  • Lin S, Zhu Y, Hu T, Wang K, Chen X. Novel design of nano-selenium loaded injectable hydrogel combined with mesenchymal stem cells-derived exosomes improving cardiac repair and nursing care after acute myocardial infarction. J Drug Delivery Sci Technol. 2023;87:104711. doi:10.1016/j.jddst.2023.104711
  • Wang Y, Wang J, Liu C, et al. Injectable decellularized extracellular matrix hydrogel loaded with exosomes encapsulating curcumin for prevention of cardiac fibrosis after myocardial infarction. J Mater Sci Technol. 2023;167:50–58. doi:10.1016/j.jmst.2023.06.005
  • Wang Q, Zhang L, Sun Z, et al. HIF-1α overexpression in mesenchymal stem cell-derived exosome-encapsulated arginine-glycine-aspartate (RGD) hydrogels boost therapeutic efficacy of cardiac repair after myocardial infarction. Mater Today Bio. 2021;12:100171. doi:10.1016/j.mtbio.2021.100171
  • Zou Y, Li L, Li Y, et al. Restoring cardiac functions after myocardial infarction–ischemia/reperfusion via an exosome anchoring conductive hydrogel. ACS Appl Mater Interfaces. 2021;13(48):56892–56908. doi:10.1021/acsami.1c16481
  • Hu X, Ning X, Zhao Q, et al. Islet-1 mesenchymal stem cells-derived exosome-incorporated angiogenin-1 hydrogel for enhanced acute myocardial infarction therapy. ACS Appl Mater Interfaces. 2022;14(32):36289–36303. doi:10.1021/acsami.2c04686
  • Yan C, Wang X, Wang Q, et al. A novel conductive polypyrrole‐chitosan hydrogel containing human endometrial mesenchymal stem cell‐derived exosomes facilitated sustained release for cardiac repair. Adv Healthc Mater. 2024;13:2304207. doi:10.1002/adhm.202304207
  • Das A, Nikhil A, Shiekh PA, Yadav B, Jagavelu K, Kumar A. Ameliorating impaired cardiac function in myocardial infarction using exosome-loaded gallic-acid-containing polyurethane scaffolds. Bioact. Mater. 2024;33:324–340. doi:10.1016/j.bioactmat.2023.11.009
  • Monguió-Tortajada M, Prat-Vidal C, Martínez-Falguera D, et al. Acellular cardiac scaffolds enriched with MSC-derived extracellular vesicles limit ventricular remodelling and exert local and systemic immunomodulation in a myocardial infarction porcine model. Theranostics. 2022;12(10):4656–4670. doi:10.7150/thno.72289
  • Chen P, Ning X, Li W, et al. Fabrication of Tβ4-Exosome-releasing artificial stem cells for myocardial infarction therapy by improving coronary collateralization. Bioact. Mater. 2022;14:416–429. doi:10.1016/j.bioactmat.2022.01.029
  • Constantin M, Bucatariu SM, Doroftei F, Fundueanu G. Smart composite materials based on chitosan microspheres embedded in thermosensitive hydrogel for controlled delivery of drugs. Carbohydr Polym. 2017;157:493–502. doi:10.1016/j.carbpol.2016.10.022
  • Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bulletin of the World Health Organization. 2000;2000:1.
  • Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 2017;7(1):16214. doi:10.1038/s41598-017-15376-8
  • Rahimi M, Charmi G, Matyjaszewski K, Banquy X, Pietrasik J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater. 2021;123:31–50. doi:10.1016/j.actbio.2021.01.003
  • Hootman JM, Helmick CG, Barbour KE, Theis KA, Boring MA. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US Adults, 201–-2040: projected prevalence of arthritis in the US, 2015–2040. Arthritis Rheumatol. 2016;68(7):1582–1587. doi:10.1002/art.39692
  • Abramoff B, Caldera FE. Osteoarthritis. Med Clin North Am. 2020;104(2):293–311. doi:10.1016/j.mcna.2019.10.007
  • Lützner J, Kasten P, Günther KP, Kirschner S. Surgical options for patients with osteoarthritis of the knee. Nat Rev Rheumatol. 2009;5(6):309–316. doi:10.1038/nrrheum.2009.88
  • Ma D, Kou X, Jin J, et al. Hydrostatic compress force enhances the viability and decreases the apoptosis of condylar chondrocytes through integrin-FAK-ERK/PI3K pathway. IJMS. 2016;17(11):1847. doi:10.3390/ijms17111847
  • Wang R, Xu B. TGF-β1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6. Cell Tissue Res. 2021;384(1):113–127. doi:10.1007/s00441-020-03319-1
  • Bao C, He C. The role and therapeutic potential of MSC-derived exosomes in osteoarthritis. Arch Biochem Biophys. 2021;710:109002. doi:10.1016/j.abb.2021.109002
  • He L, He T, Xing J, et al. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther. 2020;11(1):276. doi:10.1186/s13287-020-01781-w
  • Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27. doi:10.1016/j.biomaterials.2017.11.028
  • Wang Y, Zhao X, Lotz M, Terkeltaub R, Liu-Bryan R. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α: ACTIVATION OF AMPK/SIRT-1/PGC-1α pathway reverses impaired mitochondrial biogenesis. Arthritis Rheumatol. 2015;67(8):2141–2153. doi:10.1002/art.39182
  • Ruiz-Romero C, Calamia V, Mateos J, et al. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics. Mol Cell Proteomics. 2009;8(1):172–189. doi:10.1074/mcp.M800292-MCP200
  • Liu H, Li Z, Cao Y, et al. Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration: a possible pathway for osteoarthritis pathology at the subcellular level. Mol Med Rep. 2019. doi:10.3892/mmr.2019.10559
  • Kan S, Duan M, Liu Y, Wang C, Xie J. Role of mitochondria in physiology of chondrocytes and diseases of osteoarthritis and rheumatoid arthritis. Cartilage. 2021;13(2_suppl):1102S–1121S. doi:10.1177/19476035211063858
  • Lai RC, Yeo RWY, Tan KH, Lim SK. Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation. Regen Med. 2013;8(2):197–209. doi:10.2217/rme.13.4
  • Qi H, Liu DP, Xiao DW, Tian DC, Su YW, Jin SF. Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways. Vitro Celldevbiol-Animal. 2019;55(3):203–210. doi:10.1007/s11626-019-00330-x
  • Jin Z, Ren J, Qi S. Exosomal miR-9-5p secreted by bone marrow–derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1. Cell Tissue Res. 2020;381(1):99–114. doi:10.1007/s00441-020-03193-x
  • Sang X, Zhao X, Yan L, et al. Thermosensitive Hydrogel loaded with primary chondrocyte-derived exosomes promotes cartilage repair by regulating macrophage polarization in osteoarthritis. Tissue Eng Regen Med. 2022;19(3):629–642. doi:10.1007/s13770-022-00437-5
  • Nikhil A, Kumar A. Evaluating potential of tissue‐engineered cryogels and chondrocyte derived exosomes in articular cartilage repair. Biotech & Bioengin. 2022;119(2):605–625. doi:10.1002/bit.27982
  • Shen K, Duan A, Cheng J, et al. Exosomes derived from hypoxia preconditioned mesenchymal stem cells laden in a silk hydrogel promote cartilage regeneration via the miR-205–5p/PTEN/AKT pathway. Acta Biomater. 2022;143:173–188. doi:10.1016/j.actbio.2022.02.026
  • Chen P, Zheng L, Wang Y, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 2019;9(9):2439–2459. doi:10.7150/thno.31017
  • Guan P, Liu C, Xie D, et al. Exosome-loaded extracellular matrix-mimic hydrogel with anti-inflammatory property Facilitates/promotes growth plate injury repair. Bioact. Mater. 2022;10:145–158. doi:10.1016/j.bioactmat.2021.09.010
  • Wang L, Wang J, Zhou X, et al. A new self-healing Hydrogel Containing hucMSC-derived exosomes promotes bone regeneration. Front Bioeng Biotechnol. 2020;8:564731. doi:10.3389/fbioe.2020.564731
  • Yang S, Zhu B, Yin P, et al. Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration. ACS Biomater Sci Eng. 2020;6(3):1590–1602. doi:10.1021/acsbiomaterials.9b01363
  • Zhang FX, Liu P, Ding W, et al. Injectable Mussel‐Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration. Biomaterials. 2021;278:121169. doi:10.1016/j.biomaterials.2021.121169
  • Zhang Y, Xie Y, Hao Z, et al. Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing angiogenesis. ACS Appl Mater Interfaces. 2021;13(16):18472–18487. doi:10.1021/acsami.0c22671
  • Jing X, Wang S, Tang H, et al. Dynamically bioresponsive DNA hydrogel incorporated with dual-functional stem cells from apical papilla-derived exosomes promotes diabetic bone regeneration. ACS Appl Mater Interfaces. 2022;14(14):16082–16099. doi:10.1021/acsami.2c02278