81
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Antioxidant Carbon Dots Nanozyme Loaded in Thermosensitive in situ Hydrogel System for Efficient Dry Eye Disease Treatment

ORCID Icon, , , , & ORCID Icon
Pages 4045-4060 | Received 25 Dec 2023, Accepted 30 Apr 2024, Published online: 06 May 2024

References

  • Tsubota K, Yokoi N, Shimazaki J, et al. New perspectives on dry eye definition and diagnosis: a consensus report by the Asia dry eye society. Ocul Surf. 2017;15:65–76. doi:10.1016/j.jtos.2016.09.003
  • Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II Definition and Classification Report. Ocul Surf. 2017;15:276–283. doi:10.1016/j.jtos.2017.05.008
  • Barros A, Lozano-Sanroma J, Queiruga-Piñeiro J, et al. Recovery of corneal innervation after treatment in dry eye disease: a confocal microscopy study. J Clin Med. 2023;12:1841. doi:10.3390/jcm12051841
  • Alkhaldi SA, Allam KH, Radwan MA, Sweeney LE, Alshammeri S. Estimates of dry eye disease in Saudi Arabia based on a short questionnaire of prevalence, symptoms, and risk factors: the Twaiq Mountain Eye Study. Cont Lens Anterior Eye. 2023;45:763–767. doi:10.1016/j.clae.2022.101770
  • Morthen MK, Magno MS, Utheim TP, Hammond CJ, Vehof J. The work-related burden of dry eye. Ocul Surf. 2023;28:30–36. doi:10.1016/j.jtos.2023.01.006
  • Tsubota K, Yokoi N, Watanabe H, et al. A new perspective on dry eye classification: proposal by the Asia dry eye society. Eye Contact Lens. 2020;46:S2–S13. doi:10.1097/ICL.0000000000000643
  • Seen S, Tong L. Dry eye disease and oxidative stress. Acta Ophthalmol. 2017;96:4. doi:10.1111/aos.13526
  • Chu D, Zhao M, Rong S, et al. Dual-atom nanozyme eye drops attenuate inflammation and break the vicious cycle in dry eye disease. Nano-Micro Lett. 2024;16:120. doi:10.1007/s40820-024-01322-7
  • Yu F, Zheng M, Zhang A, Han Z. A cerium oxide loaded glycol chitosan nano-system for the treatment of dry eye disease. J Control Release. 2019;315:40–54. doi:10.1016/j.jconrel.2019.10.039
  • Yang D, Han Y, Wang Y, et al. Highly effective corneal permeability of reactive oxygen species-responsive nano-formulation encapsulated cyclosporine a for dry eye management. Chem Eng J. 2023;469:143968. doi:10.1016/j.cej.2023.143968
  • Wu Y, Liu Y, Li X, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019;14:1–15. doi:10.1016/j.ajps.2018.04.008
  • Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release. 2020;321:1–22. doi:10.1016/j.jconrel.2020.01.057
  • Yang C, Anand A, Huang C, Lai J. Unveiling the power of gabapentin-loaded nanoceria with multiple therapeutic capabilities for the treatment of dry eye disease. ACS Nano. 2023;17:25118–25135. doi:10.1021/acsnano.3c07817
  • Jian H, Anand A, Lai J, et al. In situ hybridization of polymeric curcumin to arginine-derived carbon quantum dots for synergistic treatment of bacterial infections. ACS Appl. Mater. Interfaces. 2023;15:26457–26471. doi:10.1021/acsami.3c04316
  • Yang C, Nguyen D, Lai J. Poly(l‐Histidine)‐mediated on‐demand therapeutic delivery of roughened ceria nanocages for treatment of chemical eye injury. Adv Sci. 2023;10:2302174. doi:10.1002/advs.202302174
  • Ger T, Yang C, Ghosh S, Lai J. Biofunctionalization of nanoceria with sperminated hyaluronan enhances drug delivery performance for corneal alkali burn therapy. Chem Eng J. 2023;476:146864. doi:10.1016/j.cej.2023.146864
  • Luo L, Lai J. Epigallocatechin gallate-loaded gelatin-g-Poly(N-Isopropylacrylamide) as a new ophthalmic pharmaceutical formulation for topical use in the treatment of dry eye syndrome. Sci Rep. 2017;7:9380. doi:10.1038/s41598-017-09913-8
  • Luo L, Nguyen D, Lai J. Long-acting mucoadhesive thermogels for improving topical treatments of dry eye disease. Mater Sci Eng C. 2020;115:111095. doi:10.1016/j.msec.2020.111095
  • Pan M, Ren Z, Ma X, et al. A biomimetic peptide–drug supramolecular hydrogel as eyedrops enables controlled release of ophthalmic drugs. Acta Biomater. 2023;167:195–204. doi:10.1016/j.actbio.2023.06.036
  • Liu H, Bi X, Wu Y, et al. Cationic self-assembled peptide-based molecular hydrogels for extended ocular drug delivery. Acta Biomater. 2021;131:162–171. doi:10.1016/j.actbio.2021.06.027
  • Yu X, Zhang Z, Yu J, Chen H, Li X. Self-assembly of a ibuprofen-peptide conjugate to suppress ocular inflammation. Nanomed Nanotechnol Biol Med. 2018;14:185–193. doi:10.1016/j.nano.2017.09.010
  • Khan N, Aqil M, Ameeduzzafar Imam S, Ali A. Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug delivery: in vitro and ex vivo characterization. Pharm Dev Technol. 2015;20:662–669. doi:10.3109/10837450.2014.910807
  • Li J, Zhao H, Okeke C, et al. Comparison of systemic absorption between ofloxacin ophthalmic in situ gels and ofloxacin conventional ophthalmic solutions administration to rabbit eyes by HPLC–MS/MS. Int J Pharm. 2013;450(1–2):104–113. doi:10.1016/j.ijpharm.2013.04.018
  • Deshmukh R, Singh R, Mishra S. Pharmaceutical in situ gel for glaucoma: recent trends and development with an update on research and patents. Crit Rev Ther Drug Carrier Syst. 2024;41:1–44.
  • Gao W, He J, Chen L, et al. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat Commun. 2023;14:160. doi:10.1038/s41467-023-35828-2
  • Sharma S, Umar A, Sood S, Mehta SK, Kansal SK. Photoluminescent C-dots: an overview on the recent development in the synthesis, physiochemical properties and potential applications. J Alloys Compd. 2018;748:818–853. doi:10.1016/j.jallcom.2018.03.001
  • Wang L, Pan H, Gu D, et al. A novel carbon dots/thermo-sensitive in situ gel for a composite ocular drug delivery system: characterization, ex-vivo imaging, and in vivo evaluation. Int J Mol Sci. 2021;22:9934. doi:10.3390/ijms22189934
  • Jian H, Wu R, Lin T, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano. 2017;11:6703–6716. doi:10.1021/acsnano.7b01023
  • Lin H, Wang S, Mao J, et al. Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis. Chem Eng J. 2021;411:128469. doi:10.1016/j.cej.2021.128469
  • Anand A, Jian H, Huang H, et al. Anti-angiogenic carbon nanovesicles loaded with bevacizumab for the treatment of age-related macular degeneration. Carbon. 2023;201:362–370. doi:10.1016/j.carbon.2022.09.045
  • Jian H, Anand A, Lai J, et al. Ultrahigh‐efficacy VEGF neutralization using carbonized nanodonuts: implications for intraocular anti‐angiogenic therapy. Adv Healthcare Mater. 2023;13:2302881. doi:10.1002/adhm.202302881
  • Patel N, Nakrani H, Raval M, Sheth N. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Deliv. 2016;23:3712–3723. doi:10.1080/10717544.2016.1223225
  • Lin P, Jian H, Li Y, et al. Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels. Acta Biomater. 2022;141:140–150. doi:10.1016/j.actbio.2022.01.044
  • Niyompanich J, Chuysinuan P, Pavasant P, Supaphol P. Development of thermoresponsive poloxamer in situ gel loaded with gentamicin sulfate for cavity wounds. J Polym Res. 2021;28:128. doi:10.1007/s10965-020-02352-6
  • Wei G, Xu H, Ding PT, Li SM, Zheng JM. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Control Release. 2002;83:65–74. doi:10.1016/s0168-3659(02)00175-x
  • Paradkar MU, Parmar M. Formulation development and evaluation of Natamycin niosomal in-situ gel for ophthalmic drug delivery. J Drug Deliv Sci Technol. 2017;39:113–122. doi:10.1016/j.jddst.2017.03.005
  • Hu Y, Wang Y, Deng J, et al. Enzyme-instructed self-assembly of peptide-drug conjugates in tear fluids for ocular drug delivery. J Control Release. 2022;344:261–271. doi:10.1016/j.jconrel.2022.03.011
  • Kang SW, Kim K-A, Lee CH, et al. A standardized extract of Rhynchosia volubilis Lour. exerts a protective effect on benzalkonium chloride-induced mouse dry eye model. J Ethnopharmacol. 2018;215:91–100. doi:10.1016/j.jep.2017.12.041
  • Yang YT, Wei BJ, Zhao Y, et al. Effects of electroacupuncture on conjunctival cell apoptosis and the expressions of apoptosis-related proteins Caspase-3, Fas and Bcl-2 in rabbits with dry eye syndrome. J Acupunct Tuina Sci. 2020;18:16–23. doi:10.1007/s11726-020-1152-5
  • Sung MS, Li Z, Cui L, et al. Effect of Topical 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside in a mouse model of experimental dry eye. Invest Opthalmol Vis Sci. 2015;56:3149–3158. doi:10.1167/iovs.14-16153
  • Wang L, Pan H, Gu D, Li P, Su Y, Pan W. A composite system combining self-targeted carbon dots and thermosensitive hydrogels for challenging ocular drug delivery. J Pharm Sci. 2022;111:1391–1400. doi:10.1016/j.xphs.2021.09.026
  • HØRven I. Corneal temperature in normal subjects and arterial occlusive disease. Acta Ophthalmol. 2009;53:863–874. doi:10.1111/j.1755-3768.1975.tb00404.x
  • Girardin F, Collum M, Erb C, Flammer J. Relationship between corneal temperature and finger temperature. Arch Ophthalmol. 1999;117:166–169. doi:10.1001/archopht.117.2.166
  • Barse R, Kokare C, Tagalpallewar A. Influence of hydroxypropyl methylcellulose and poloxamer composite on developed ophthalmic in situ gel: ex vivo and in vivo characterization. J Drug Deliv Sci Technol. 2016;33:66–74. doi:10.1016/j.jddst.2016.03.011
  • Jin K, Ge Y, Ye Z, et al. Anti-oxidative and mucin-compensating dual-functional nano eye drops for synergistic treatment of dry eye disease. Appl Mater Today. 2022:27. doi:10.1016/j.apmt.2022.101411
  • Carpena-Torres C, Pintor J, Pérez de Lara MJ, et al. Optimization of a rabbit dry eye model induced by topical instillation of benzalkonium chloride. J Ophthalmol. 2020;2020:1–10. doi:10.1155/2020/7204951
  • Yi HC, Lee YP, Shin YJ. Influence of nasal tear osmolarity on ocular symptoms related to dry eye disease. Am J Ophthalmol. 2018;189:71–76. doi:10.1016/j.ajo.2018.02.008
  • Goto E, Dogru M, Fukagawa K, et al. Successful tear lipid layer treatment for refractory dry eye in office workers by low-dose lipid application on the full-length eyelid margin. Am J Ophthalmol. 2006;142:264–270. doi:10.1016/j.ajo.2006.03.022
  • Georgiev GA, Yokoi N, Koev K, et al. Surface chemistry study of the interactions of benzalkonium chloride with films of meibum, corneal cells lipids, and whole tears. Invest Opthalmol Vis Sci. 2011;52:4645–4654. doi:10.1167/iovs.10-6271
  • O’Brien PD; FRCSI, Collum L. Dry eye: diagnosis and current treatment strategies. Curr Allergy Asthma Rep. 2004;4:314–319. doi:10.1007/s11882-004-0077-2
  • Bron AJ, Tiffany JM, Gouveia SM, Yokoi N, Voon LW. Functional aspects of the tear film lipid layer. Exp Eye Res. 2004;78:347–360. doi:10.1016/j.exer.2003.09.019
  • Ma B, Pang L, Huang P, et al. Topical delivery of levocarnitine to the cornea and anterior eye by thermosensitive in-situ gel for dry eye disease. Drug Des Devel Ther. 2021;15:2357–2373. doi:10.2147/dddt.s309648
  • Qu M, Qi X, Wang Q, et al. Therapeutic effects of STAT3 inhibition on experimental murine dry eye. Invest Opthalmol Vis Sci. 2019;60:3776–3785. doi:10.1167/iovs.19-26928
  • Yang Q, Zhang Y, Liu X, Wang N, Song Z, Wu K. A comparison of the effects of benzalkonium chloride on ocular surfaces between C57BL/6 and BALB/c Mice. Int J Mol Sci. 2017;18:509. doi:10.3390/ijms18030509
  • Li S, Lu Z, Huang Y, et al. Anti‐oxidative and anti‐inflammatory micelles: break the dry eye vicious cycle. Adv Sci. 2022;9:e2200435. doi:10.1002/advs.202200435
  • Ouyang W, Wu Y, Lin X, et al. Role of CD4+ T helper cells in the development of BAC-induced dry eye syndrome in mice. Invest Opthalmol Vis Sci. 2021;62:25. doi:10.1167/iovs.62.1.25
  • Boulton ME, Li C, Song Y, et al. Research on the Stability of a rabbit dry eye model induced by topical application of the preservative benzalkonium chloride. PLoS One. 2012;7:e33688. doi:10.1371/journal.pone.0033688