54
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Combined ROS Sensitive Folate Receptor Targeted Micellar Formulations of Curcumin Effective Against Rheumatoid Arthritis in Rat Model

, , , , , , , & show all
Pages 4217-4234 | Received 10 Jan 2024, Accepted 29 Apr 2024, Published online: 13 May 2024

References

  • Khanna N, Kumar A, Pawar SV. A review on rheumatoid arthritis interventions and current developments. Curr Drug Targets. 2021;22(4):463–483. doi:10.2174/1389450121999201125200558
  • Sharif K, Sharif A, Jumah F, et al. Rheumatoid arthritis in review: clinical, anatomical, cellular and molecular points of view. Clin Anat. 2018;31(2):216–223. doi:10.1002/ca.22980
  • Alamanos Y, Voulgari PV, Drosos AA. Incidence and prevalence of rheumatoid arthritis, based on the 1987 American College of Rheumatology criteria: a systematic review. Semin Arthritis Rheum. 2006;36(3):182–188. doi:10.1016/j.semarthrit.2006.08.006
  • Abbasi M, Mousavi MJ, Jamalzehi S, et al. Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol. 2019;234(7):10018–10031. doi:10.1002/jcp.27860
  • Huang J, Fu X, Chen X, et al. Promising therapeutic targets for treatment of rheumatoid arthritis. Front Immunol. 2021;12:686155. doi:10.3389/fimmu.2021.686155
  • Wang Q, Qin X, Fang J, et al. Nanomedicines for the treatment of rheumatoid arthritis: state of art and potential therapeutic strategies. Acta Pharm Sin B. 2021;11(5):1158–1174. doi:10.1016/j.apsb.2021.03.013
  • Han D, Chen Q, Chen H. Food-derived nanoscopic drug delivery systems for treatment of rheumatoid arthritis. Molecules. 2020;25(15):3506. doi:10.3390/molecules25153506
  • Mishra R, Gupta S. Novel nano carriers for the treatment of progressive auto immune disease rheumatoid arthritis. Curr Pharm Des. 2021;27(21):2468–2481. doi:10.2174/1381612826666201021130146
  • Anita C, Munira M, Mural Q, et al. Topical nanocarriers for management of Rheumatoid Arthritis: a review. Biomed Pharmacother. 2021;141:111880. doi:10.1016/j.biopha.2021.111880
  • Nooreen R, Nene S, Jain H, et al. Polymer nanotherapeutics: a versatile platform for effective rheumatoid arthritis therapy. J Control Release. 2022;348:397–419. doi:10.1016/j.jconrel.2022.05.054
  • Ochoa CD, Stevens T. Studies on the cell biology of interendothelial cell gaps. Am J Physiol Lung Cell Mol Physiol. 2012;302(3):L275–L286. doi:10.1152/ajplung.00215.2011
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51. doi:10.1016/j.jconrel.2022.05.054
  • Rahman M, Beg S, Anwar F, et al. Liposome-based nanomedicine therapeutics for rheumatoid arthritis. Crit Rev Ther Drug Carrier Syst. 2017;34(4):283–316. doi:10.1615/CritRevTherDrugCarrierSyst.2017016067
  • Nogueira E, Gomes AC, Preto A, et al. Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine. 2016;12(4):1113–1126. doi:10.1016/j.nano.2015.12.365
  • Steinz MM, Ezdoglian A, Khodadust F, et al. Folate receptor beta for macrophage imaging in rheumatoid arthritis. Front Immunol. 2022;13:819163. doi:10.3389/fimmu.2022.819163
  • Guo RB, Zhang XY, Yan DK, et al. Folate-modified triptolide liposomes target activated macrophages for safe rheumatoid arthritis therapy. Biomater Sci. 2022;10(2):499–513. doi:10.1039/d1bm01520f
  • McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–2219. doi:10.1056/NEJMra1004965
  • Ferreira-Silva M, Faria-Silva C, Viana Baptista P, et al. Liposomal Nanosystems in Rheumatoid Arthritis. Pharmaceutics. 2021;13(4):454. doi:10.3390/pharmaceutics13040454
  • Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford). 2012;51 Suppl 5:v3–v11. doi:10.1093/rheumatology/kes113
  • Chen M, Amerigos J C KD, Su Z, et al. Folate receptor-targeting and reactive oxygen species-responsive liposomal formulation of methotrexate for treatment of rheumatoid arthritis. Pharmaceutics. 2019;11(11):582. doi:10.3390/pharmaceutics11110582
  • Mao C, Yeh S, Fu J, et al. Delivery of an ectonucleotidase inhibitor with ROS-responsive nanoparticles overcomes adenosine-mediated cancer immunosuppression. Sci Transl Med. 2022;14(648):eabh1261. doi:10.1126/scitranslmed.abh1261
  • Xu Q, He C, Xiao C, Chen X. Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromol Biosci. 2016;16(5):635–646. doi:10.1002/mabi.201500440
  • van der Vlies AJ, Ghasemi M, Adair BM, et al. Reactive oxygen species-triggered hydrogen sulfide release and cancer-selective antiproliferative effect of anethole dithiolethione-containing polymeric micelles. Adv Healthc Mater. 2023;12(6):e2201836. doi:10.1002/adhm.202201836
  • Zhang X, Xu X, Wang X, et al. Hepatoma-targeting and reactive oxygen species-responsive chitosan-based polymeric micelles for delivery of celastrol. Carbohydr Polym. 2023;303:120439. doi:10.1016/j.carbpol.2022.120439
  • Peng Y, Ao M, Dong B, et al. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Devel Ther. 2021;15:4503–4525. doi:10.2147/DDDT.S327378
  • Wang A, Jain S, Dia V, et al. Shellac micelles loaded with curcumin using a ph cycle to improve dispersibility, bioaccessibility, and potential for colon delivery. J Agric Food Chem. 2022;70(48):15166–15177. doi:10.1021/acs.jafc.2c04428
  • Pontes-Quero GM, Benito-Garzón L, Pérez Cano J, et al. Amphiphilic polymeric nanoparticles encapsulating curcumin: antioxidant, anti-inflammatory and biocompatibility studies. Mater Sci Eng C Mater Biol Appl. 2021;121:111793. doi:10.1016/j.msec.2020.111793
  • Zia A, Farkhondeh T, Pourbagher-Shahri AM, et al. The role of curcumin in aging and senescence: molecular mechanisms. Biomed Pharmacother. 2021;134:111119. doi:10.1016/j.biopha.2020.111119
  • Mohammadian Haftcheshmeh S, Khosrojerdi A, Aliabadi A, et al. Immunomodulatory effects of curcumin in rheumatoid arthritis: evidence from molecular mechanisms to clinical outcomes. Rev Physiol Biochem Pharmacol. 2021;179:1–29. doi:10.1007/112_2020_54
  • Tang L, Liu XX, Yang XD, et al. A compound formulation of EGF-modified paclitaxel micelles and EGF-modified emodin micelles enhance the therapeutic effect of ovarian cancer. J Liposome Res. 2023;33(1):89–101. doi:10.1080/08982104.2022.2086568
  • Yuan B, Zhang Y, Wang Q, et al. Thermosensitive vancomycin@PLGA-PEG-PLGA/HA hydrogel as an all-in-one treatment for osteomyelitis. Int J Pharm. 2022;627:122225. doi:10.1016/j.ijpharm.2022.122225
  • Kotha RR, Luthria DL. Curcumin: biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules. 2019;24(16):2930. doi:10.3390/molecules24162930
  • Peng C, Perera PK, Li YM, et al. Anti-inflammatory effects of Clematis chinensis Osbeck extract(AR-6) may be associated with NF-κB, TNF-α, and COX-2 in collagen-induced arthritis in rat. Rheumatol Int. 2012;32(10):3119–3125. doi:10.1007/s00296-011-2083-8
  • Guimarães D, Lager F, Renault G, et al. Folate-targeted liposomal formulations improve effects of methotrexate in murine collagen-induced arthritis. Biomedicines. 2022;10(2):229. doi:10.3390/biomedicines10020229
  • Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis-immune cell-fibroblast-bone interactions. Nat Rev Rheumatol. 2022;18(7):415–429. doi:10.1038/s41584-022-00793-5
  • Tateiwa D, Yoshikawa H, Kaito T. Cartilage and Bone Destruction in Arthritis: pathogenesis and Treatment Strategy: a Literature Review. Cells. 2019;8(8):818. doi:10.3390/cells8080818
  • Li C, Han Y, Luo X, et al. Immunomodulatory nano-preparations for rheumatoid arthritis. Drug Deliv. 2023;30(1):9–19. doi:10.1080/10717544.2022.2152136
  • Zhang S, Zhang M, Li X, et al. Nano-based co-delivery system for treatment of rheumatoid arthritis. Molecules. 2022;27(18):5973. doi:10.3390/molecules27185973
  • Dhule KD, Nandgude TD. Lipid nano-system based topical drug delivery for management of rheumatoid arthritis: an overview. Adv Pharm Bull. 2023;13(4):663–677. doi:10.34172/apb.2023.075
  • Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80–118. doi:10.1016/j.addr.2020.09.009
  • Zhao J, Xu Y, Wang C, et al. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy. Drug Dev Ind Pharm. 2017;43(7):1197–1204. doi:10.1080/03639045.2017.1304956
  • Wang LL, He DD, Wang SX, et al. Preparation and evaluation of curcumin-loaded self-assembled micelles. Drug Dev Ind Pharm. 2018;44(4):563–569. doi:10.1080/03639045.2017.1405431
  • Ren H, He Y, Liang J, et al. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl Mater Interfaces. 2019;11(22):20304–20315. doi:10.1021/acsami.8b22693
  • Lee ES, Sul JH, Shin JM, et al. Reactive oxygen species-responsive dendritic cell-derived exosomes for rheumatoid arthritis. Acta Biomater. 2021;128:462–473. doi:10.1016/j.actbio.2021.04.026
  • Dou Y, Li C, Li L, et al. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J Control Release. 2020;327:641–666. doi:10.1016/j.jconrel.2020.09.008
  • Xu C, Jiang Y, Wang H, et al. Arthritic Microenvironment Actuated Nanomotors for Active Rheumatoid Arthritis Therapy. Adv Sci (Weinh). 2023;10(4):e2204881. doi:10.1002/advs.202204881
  • Fearon U, Canavan M, Biniecka M, et al. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol. 2016;12(7):385–397. doi:10.1038/nrrheum.2016.69
  • Phull AR, Nasir B, Haq IU, et al. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact. 2018;281:121–136. doi:10.1016/j.cbi.2017.12.024
  • Wilson DS, Dalmasso G, Wang L, et al. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater. 2010;9(11):923–928. doi:10.1038/nmat2859
  • Xia W, Hilgenbrink AR, Matteson EL, et al. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood. 2009;113(2):438–446. doi:10.1182/blood-2008-04-150789
  • Alturaiki W, Alhamad A, Alturaiqy M, et al. Assessment of IL-1β, IL-6, TNF-α, IL-8, and CCL 5 levels in newly diagnosed Saudi patients with rheumatoid arthritis. Int J Rheum Dis. 2022;25(9):1013–1019. doi:10.1111/1756-185X.14373
  • Pourhabibi-Zarandi F, Shojaei-Zarghani S, Rafraf M. Curcumin and rheumatoid arthritis: a systematic review of literature. Int J Clin Pract. 2021;75(10):e14280. doi:10.1111/ijcp.14280
  • Samarpita S, Doss HM, Ganesan R, et al. Majoon Chobchini attenuates arthritis disease severity and RANKL-mediated osteoclastogenesis in rheumatoid arthritis. 3 Biotech. 2021;11(10):436. doi:10.1007/s13205-021-02985-4
  • Lee KA, Kim KW, Kim BM, et al. Promotion of osteoclastogenesis by IL-26 in rheumatoid arthritis. Arthritis Res Ther. 2019;21(1):283. doi:10.1186/s13075-019-2070-0
  • Ross FP, Teitelbaum SL. alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev. 2005;208:88–105. doi:10.1111/j.0105-2896.2005.00331.x
  • Shang W, Zhao LJ, Dong XL, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14(4):3620–3626. doi:10.3892/mmr.2016.5674
  • Siebert S, Tsoukas A, Robertson J, et al. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev. 2015;67(2):280–309. doi:10.1124/pr.114.009639
  • Grillet B, Pereira RVS, Van Damme J, et al. Matrix metalloproteinases in arthritis: towards precision medicine. Nat Rev Rheumatol. 2023;19(6):363–377. doi:10.1038/s41584-023-00966-w