36
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Single Atom-Dispersed Silver Incorporated in ZIF-8-Derived Porous Carbon for Enhanced Photothermal Activity and Antibacterial Activities

, , , , , & show all
Pages 4253-4261 | Received 11 Jan 2024, Accepted 06 May 2024, Published online: 15 May 2024

References

  • Pettinari C, Pettinari R, Di Nicola C, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs. Coord Chem Rev. 2021;446:214121. doi:10.1016/j.ccr.2021.214121
  • Khan SA, Shakoor A. Recent Strategies and Future Recommendations for the Fabrication of Antimicrobial, Antibiofilm, and Antibiofouling Biomaterials. Int j Nanomed. 2023;2023(18).
  • Routy B, Chatelier E, Derosa L, CpM D, Daillère M. Gut microbiome influences efficacy of pd-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–97. doi:10.1126/science.aan3706
  • Li X, Bai H, Yang Y, Yoon J, Wang S, Zhang X. Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. Adv Mater. 2019;31(5):1805092. doi:10.1002/adma.201805092
  • Fan W, Han H, Lu Z. ε-poly-L-lysine-modified polydopamine nanoparticles for targeted photothermal therapy of drug-resistant bacterial keratitis. Bioeng Transl Med. 2022;8(1):1.
  • He X, Koo S, Obeng E, Sharma A, Shen J, Kim JS. Emerging 2D MXenes for antibacterial applications: current status, challenges, and prospects. Coor Chem Rev. 2023;492:215275. doi:10.1016/j.ccr.2023.215275
  • Hu B, Owh C, Chee PL, et al. Supramolecular hydrogels for antimicrobial therapy. Chem Soc Rev. 2018;47(18):6917–6929. doi:10.1039/C8CS00128F
  • Gupta A, Mumtaz S, Li C-H, Hussain I, Rotello VM. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48(2):415–427. doi:10.1039/C7CS00748E
  • He X, Qian Y, Wu C, et al. Entropy-Mediated High-Entropy MXenes Nanotherapeutics: NIR-II-Enhanced Intrinsic Oxidase Mimic Activity to Combat Methicillin-Resistant Staphylococcus Aureus Infection. Adv Mater. 2023;35(26):2211432. doi:10.1002/adma.202211432
  • Yang Y, Ma L, Cheng C, et al. Nonchemotherapic and robust dual-responsive nanoagents with on-demand bacterial trapping, ablation, and release for efficient wound disinfection. Adv Funct Mater. 2018;28(21):1705708. doi:10.1002/adfm.201705708
  • Zhu K, Qian S, Guo H, et al. pH-Activatable Organic Nanoparticles for Efficient Low-Temperature Photothermal Therapy of Ocular Bacterial Infection. ACS Nano. 2022;16(7):11136–11151. doi:10.1021/acsnano.2c03971
  • Zhou J, Wang W, Zhang Q, Zhang Z, Guo J, Yan F. Oxygen-supplied mesoporous carbon nanoparticles for enhanced photothermal/photodynamic synergetic therapy against antibiotic-resistant bacterial infections. Chem. Sci. 2022;13(23):6967–6981. doi:10.1039/D2SC01740G
  • He X, Hou J-T, Sun X, et al. NIR-II Photo-Amplified Sonodynamic Therapy Using Sodium Molybdenum Bronze Nanoplatform against Subcutaneous Staphylococcus Aureus Infection. Adv Funct Mater. 2022;32(38):2203964. doi:10.1002/adfm.202203964
  • Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv Mater. 2017;29(6):1604894. doi:10.1002/adma.201604894
  • Cheng Y, Chang Y, Feng Y, Jian H, Tang Z, Zhang H. Deep-level defect enhanced photothermal performance of bismuth sulfide–gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew Chem Int Ed. 2018;57(1):246–251. doi:10.1002/anie.201710399
  • Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Control Release. 2020;328(10):251–262. doi:10.1016/j.jconrel.2020.08.055
  • He X, Dai L, Ye L, et al. A Vehicle-Free Antimicrobial Polymer Hybrid Gold Nanoparticle as Synergistically Therapeutic Platforms for Staphylococcus aureus Infected Wound Healing. Adv Sci. 2022;9(14):2105223. doi:10.1002/advs.202105223
  • He X, Lv Y, Lin Y, et al. Platinum Nanoparticles Regulated V2C MXene Nanoplatforms with NIR-II Enhanced Nanozyme Effect for Photothermal and Chemodynamic Anti-Infective Therapy. Adv Mater. 2024;3:2400366. doi:10.1002/adma.202400366
  • Hashemi M, Omidi M, Muralidharan B, et al. Correction to “Evaluation of the Photothermal Properties of a Reduced Graphene Oxide/Arginine Nanostructure for Near-Infrared Absorption”. ACS Appl Mater Inter. 2017;9(45):39872. doi:10.1021/acsami.7b15455
  • J-W X, Yao K, Z-K X. Nanomaterials with a photothermal effect for antibacterial activities: an overview. Nanoscale. 2019;11(18):8680–8691. doi:10.1039/C9NR01833F
  • Karahan HE, Wiraja C, Xu C, et al. Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv Healthcare Mater. 2018;7(13):1701406. doi:10.1002/adhm.201701406
  • Zhang Y, Wu M, Wu M, Zhu J, Zhang X. Multifunctional Carbon-Based Nanomaterials: applications in Biomolecular Imaging and Therapy. ACS Omega. 2018;3(8):9126–9145. doi:10.1021/acsomega.8b01071
  • Rajakumar G, Zhang X-H, Gomathi T, et al. Current use of carbon-based materials for biomedical applications—a prospective and review. Processes. 2020;8(3):355. doi:10.3390/pr8030355
  • Chen Y-Z, Zhang R, Jiao L, Jiang H-L. Metal-organic framework-derived porous materials for catalysis. Coord Chem Rev. 2018;362:1–23. doi:10.1016/j.ccr.2018.02.008
  • Zhang -N-N, Bigdeli F, Miao Q, M-L H, Morsali A. Ultrasonic-assisted synthesis, characterization and DNA binding studies of Ru(II) complexes with the chelating N-donor ligand and preparing of RuO2 nanoparticles by the easy method of calcination. J Organomet Chem. 2018;878(30):11–18. doi:10.1016/j.jorganchem.2018.09.024
  • Guo H, Xia Y, Feng K, Qu X, Wan FJIJo N. Surface Engineering of Metal-Organic Framework as pH-/NIR-Responsive Nanocarrier for Imaging-Guided Chemo-Photothermal Therapy. Int j Nanomed. 2020;15:3235–3250. doi:10.2147/IJN.S239910
  • Rong L. The preparation of metal-organic frameworks and their biomedical application. Int J Nanomed. 2016;11:1187–1200. doi:10.2147/IJN.S100877
  • Li Y, Xia X, Hou W, Lv H, Liu J, Li X. How Effective are Metal Nanotherapeutic Platforms Against Bacterial Infections? A Comprehensive Review of Literature. Int j Nanomed. 2023;18:1109–1128. doi:10.2147/IJN.S397298
  • Huo M, Wang L, Zhang H, Zhang L, Chen Y, Shi J. Construction of Single-Iron-Atom Nanocatalysts for Highly Efficient Catalytic Antibiotics. Small. 2019;15(31):1901834. doi:10.1002/smll.201901834
  • Chang M, Hou Z, Wang M, et al. Single-atom pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew Chem Int Ed. 2021;60(23):12971–12979. doi:10.1002/anie.202101924
  • Zhu Y, Wang W, Cheng J, et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew Chem Int Ed. 2021;60(17):9480–9488. doi:10.1002/anie.202017152
  • Chen Y, Ji S, Wang Y, et al. Isolated single iron atoms anchored on n-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem. 2017;129(24):7041–7045. doi:10.1002/ange.201702473
  • Yin Q, Tan L, Lang Q, et al. Plasmonic molybdenum oxide nanosheets supported silver nanocubes for enhanced near-infrared antibacterial activity: synergism of photothermal effect, silver release and photocatalytic reactions. Appl Catal B. 2018;224:671–680. doi:10.1016/j.apcatb.2017.11.024
  • Kandathil V, Patil SA. Single-atom nanozymes and environmental catalysis: a perspective. Adv Colloid Interface Sci. 2021;294:102485. doi:10.1016/j.cis.2021.102485
  • Xu B, Wang H, Wang W, et al. A single-atom nanozyme for wound disinfection applications. Angew Chem Int Ed. 2019;58(15):4911–4916. doi:10.1002/anie.201813994
  • Shi Q, Yu T, Wu R, Liu J. Metal–Support Interactions of Single-Atom Catalysts for Biomedical Applications. ACS Appl Mater Interfaces. 2021;13(51):60815–60836. doi:10.1021/acsami.1c18797
  • Zhang M, Wang Y-G, Chen W, et al. Metal (Hydr)oxides@Polymer core–shell strategy to metal single-atom materials. J Am Chem Soc. 2017;139(32):10976–10979. doi:10.1021/jacs.7b05372
  • Lee SY, Jang HW, Lee HR, Joh H-I. Size effect of metal–organic frameworks with iron single-atom catalysts on oxygen–reduction reactions. Carbon Lett. 2021;31(6):1349–1355. doi:10.1007/s42823-021-00292-9
  • Abbasi Z, Shamsaei E, Leong SK, Ladewig B, Zhang X, Wang H. Effect of carbonization temperature on adsorption property of zif-8 derived nanoporous carbon for water treatment. Microporous Mesopo Mater. 2016;236(1):28–37. doi:10.1016/j.micromeso.2016.08.022
  • He Z, Yang H, Gu Y, et al. Green Synthesis of MOF-Mediated pH-Sensitive Nanomaterial AgNPs@ZIF-8 and Its Application in Improving the Antibacterial Performance of AgNPs. Int j Nanomed. 2023;18:4857–4870. doi:10.2147/IJN.S418308
  • Jing Y, Wang J, Yu B, et al. A MOF-derived ZIF-8@Zn1−xNixO photocatalyst with enhanced photocatalytic activity. RSC Adv. 2017;7(67):42030–42035. doi:10.1039/C7RA08763B
  • Roper DK, Ahn W, Hoepfner M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J Phys Chem C. 2007;111(9):3636–3641. doi:10.1021/jp064341w
  • Zyoud A, Dwikat M, Al-Shakhshir S, et al. Natural dye-sensitized ZnO nano-particles as photo-catalysts in complete degradation of E. coli bacteria and their organic content. J Photochem Photobiol a Chem. 2016;328(1):207–216. doi:10.1016/j.jphotochem.2016.05.020
  • Bustamante EL, Fernández JL, Zamaro JM. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J Colloid Interface Sci. 2014;424(15):37–43. doi:10.1016/j.jcis.2014.03.014
  • Wang F, Wang Y, Li Y, et al. The facile synthesis of a single atom-dispersed silver-modified ultrathin g-C3N4 hybrid for the enhanced visible-light photocatalytic degradation of sulfamethazine with peroxymonosulfate. Dalton Trans. 2018;47(20):6924–6933. doi:10.1039/C8DT00919H
  • Wang K-L, Li Y, Sun T, Mao F, J-K W, Xue B. Ultrafine silver nanoparticles deposited on sodium-doped graphitic carbon nitride towards enhanced photocatalytic degradation of dyes and antibiotics under visible light irradiation. Appl Surf Sci. 2019;476(15):741–748. doi:10.1016/j.apsusc.2019.01.168
  • Han P, Mao X, Jin Y, et al. Plasmonic Silver-Nanoparticle-Catalysed Hydrogen Abstraction from the C(sp3)−H Bond of the Benzylic Cα atom for Cleavage of Alkyl Aryl Ether Bonds. Angew Chem Int Ed. 2023;62(4):e202215201. doi:10.1002/anie.202215201
  • Chang M, Wang M, Chen Y, Shu M, Zhao Y, Ding B. Self-assembled CeVO4/Ag nanohybrid as photoconversion agents with enhanced solar-driven photocatalysis and NIR-responsive photothermal/photodynamic synergistic therapy performance. Nanoscale. 2019;11(20):10129–10136. doi:10.1039/C9NR02412C
  • Yang J, Sun L, Hui S, et al. Ag functionalized SnS2 with enhanced photothermal activity for safe and efficient wound disinfection. Biomater Sci. 2021;9(13):4728–4736. doi:10.1039/D1BM00429H
  • Yang Y, Sun J, Wen J, et al. Single-atom doping in carbon black nanomaterials for photothermal antibacterial applications. Cell Rep Phy Sci. 2021;2(8):100535. doi:10.1016/j.xcrp.2021.100535