48
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Polyvinylpyrrolidone Assisted One-Pot Synthesis of Size-Tunable Cocktail Nanodrug for Multifunctional Combat of Cancer

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 4339-4356 | Received 26 Jan 2024, Accepted 30 Apr 2024, Published online: 17 May 2024

References

  • Ashrafizadeh M, Delfi M, Zarrabi A, et al. Stimuli-responsive liposomal nanoformulations in cancer therapy: pre-clinical & clinical approaches. J Control Release. 2022;351:50–80. doi:10.1016/j.jconrel.2022.08.001
  • Dessale M, Mengistu G, Mengist HM. Nanotechnology: a promising approach for cancer diagnosis, therapeutics and theragnosis. Int j Nanomed. 2022;17:3735. doi:10.2147/IJN.S378074
  • Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discovery. 2022;12(1):31–46. doi:10.1158/2159-8290.CD-21-1059
  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Ca Cancer J Clin. 2023;73(1):17–48. doi:10.3322/caac.21763
  • Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: challenges and opportunities. J Control Release. 2013;170(1):15–40. doi:10.1016/j.jconrel.2013.04.020
  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–726. doi:10.1038/nrc3599
  • Chen M, Chen B, Ge X, Ma Q, Gao S. Targeted nanodrugs to destroy the tumor extracellular matrix barrier for improving drug delivery and cancer therapeutic efficacy. Mol Pharmaceut. 2023;20(5):2389–2401. doi:10.1021/acs.molpharmaceut.2c00947
  • Duan C, Yu M, Xu J, Li B-Y, Zhao Y, Kankala RK. Overcoming cancer multi-drug resistance (MDR): reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother. 2023;162:114643. doi:10.1016/j.biopha.2023.114643
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnol. 2015;33(9):941–951. doi:10.1038/nbt.3330
  • Curtis LT, Frieboes HB. The tumor microenvironment as a barrier to cancer nanotherapy. Syst Biol Tumor Microenviron. 2016;2016:165–190.
  • Kim SM, Faix PH, Schnitzer JE. Overcoming key biological barriers to cancer drug delivery and efficacy. J Control Release. 2017;267:15–30. doi:10.1016/j.jconrel.2017.09.016
  • Oberoi RK, Parrish KE, Sio TT, Mittapalli RK, Elmquist WF, Sarkaria JN. Strategies to improve delivery of anticancer drugs across the blood–brain barrier to treat glioblastoma. Neuro-Oncology. 2015;18(1):27–36. doi:10.1093/neuonc/nov164
  • Majidinia M, Mirza‐Aghazadeh‐Attari M, Rahimi M, et al. Overcoming multidrug resistance in cancer: recent progress in nanotechnology and new horizons. IUBMB Life. 2020;72(5):855–871. doi:10.1002/iub.2215
  • Park H, Otte A, Park K. Evolution of drug delivery systems: from 1950 to 2020 and beyond. J Control Release. 2022;342:53–65. doi:10.1016/j.jconrel.2021.12.030
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi:10.1038/s41573-020-0090-8
  • Li X, Zhang Y, Ma Z, He C, Wu Y, An Q. Designing cancer nanodrugs that are highly loaded, pH-responsive, photothermal, and possess a favored morphology: a hierarchical assembly of DOX and layer-by-layer modified rGO. Chin Chem Lett. 2019;30(2):489–493. doi:10.1016/j.cclet.2018.03.019
  • Barenholz YC. Doxil®—The first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134. doi:10.1016/j.jconrel.2012.03.020
  • Chen H, Zhou B, Zheng X, Wei J, Ji C, Yin M. Tumor microenvironment-activated multi-functional nanodrug with size-enlargement for enhanced cancer phototheranostics. Biomater. Sci. 2023;11(2):472–480. doi:10.1039/D2BM01604D
  • Wang W, Zhang D, Jiang Z, et al. A Nanodrug-Enabled chemosensitization of cancer stem cells against tumor progression and metastasis. Chem Eng J. 2023;477:147121. doi:10.1016/j.cej.2023.147121
  • Nakamura H, Jun F, Maeda H. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls. Expert Opin Drug Delivery. 2015;12(1):53–64. doi:10.1517/17425247.2014.955011
  • Shen Y, Bae YH. Tumour extravasation of nanomedicine: the EPR and alternative pathways. Adv Drug Delivery Rev. 2023;194:114707. doi:10.1016/j.addr.2023.114707
  • Wang C, Zhang S. Advantages of nanomedicine in cancer therapy. A Rev ACS Applied Nano Mater. 2023;6:22594–22610. doi:10.1021/acsanm.3c04487
  • Wang C. Reconstituted lipid nanoparticles from cells/tissues for drug delivery in cancer. Mol Pharmaceut. 2023;20(6):2891–2898. doi:10.1021/acs.molpharmaceut.2c01033
  • Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy–Strategies and perspectives. J Control Release. 2016;240:489–503. doi:10.1016/j.jconrel.2016.06.012
  • Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release. 2021;335:1–20. doi:10.1016/j.jconrel.2021.05.012
  • Fulfager AD, Yadav KS. Understanding the implications of co-delivering therapeutic agents in a nanocarrier to combat multidrug resistance (MDR) in breast cancer. J Drug Delivery Sci Technol. 2021;62:102405. doi:10.1016/j.jddst.2021.102405
  • Wang H, Huang Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Med Drug Discov. 2020;6:100024. doi:10.1016/j.medidd.2020.100024
  • Liu S, Li R, Qian J, et al. Combination therapy of doxorubicin and quercetin on multidrug-resistant breast cancer and their sequential delivery by reduction-sensitive hyaluronic acid-based conjugate/d-α-tocopheryl poly (ethylene glycol) 1000 succinate mixed micelles. Mol Pharmaceut. 2020;17(4):1415–1427. doi:10.1021/acs.molpharmaceut.0c00138
  • Gao Q, Feng J, Liu W, et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Delivery Rev. 2022;188:114445. doi:10.1016/j.addr.2022.114445
  • Zong L, Cheng G, Liu S, Pi Z, Liu Z, Song F. Reversal of multidrug resistance in breast cancer cells by a combination of ursolic acid with doxorubicin. J Pharmac Biomed Analy. 2019;165:268–275. doi:10.1016/j.jpba.2018.11.057
  • Wang H, Zhou J, Fu Y, et al. Deeply infiltrating iRGD‐graphene oxide for the intensive treatment of metastatic tumors through PTT‐mediated chemosensitization and strengthened integrin targeting‐based antimigration. Adv. Healthcare Mater. 2021;10(16):2100536. doi:10.1002/adhm.202100536
  • Wang C, Chen S, Yu F, et al. Dual‐channel theranostic system for quantitative self‐indication and low‐temperature synergistic therapy of cancer. Small. 2021;17(10):2007953. doi:10.1002/smll.202007953
  • Geng S, Zhao H, Zhan G, Zhao Y, Yang X. Injectable in situ forming hydrogels of thermosensitive polypyrrole nanoplatforms for precisely synergistic photothermo-chemotherapy. ACS Appl Mater Interfaces. 2020;12(7):7995–8005. doi:10.1021/acsami.9b22654
  • Niu C, Xu Y, An S, et al. Near-infrared induced phase-shifted ICG/Fe3O4 loaded PLGA nanoparticles for photothermal tumor ablation. Sci Rep. 2017;7(1):5490. doi:10.1038/s41598-017-06122-1
  • Zhang X, Ma Y, Zhang X, Pang X, Yang Z. Bio-inspired self-assembled bacteriochlorin nanoparticles for superior visualization and photothermal ablation of tumors. Biomed Pharmacother. 2023;165:115014. doi:10.1016/j.biopha.2023.115014
  • Dai X, Li L, Li M, et al. One pot preparation of muti-mode nanoplatform to combat ovarian cancer. Biomed Pharmacother. 2023;165:115172. doi:10.1016/j.biopha.2023.115172
  • Liu R, Luo C, Pang Z, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett. 2023;34(2):107518. doi:10.1016/j.cclet.2022.05.032
  • Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett. 2021;16(1):173. doi:10.1186/s11671-021-03628-6
  • Chen S, Wang Z, Liu L, et al. Redox homeostasis modulation using theranostic AIE nanoparticles results in positive-feedback drug accumulation and enhanced drug penetration to combat drug-resistant cancer. Mater Today Bio. 2022;16:100396. doi:10.1016/j.mtbio.2022.100396
  • Chang Y, Cui P, Zhou S, et al. Metal-phenolic network for cancer therapy. J Drug Delivery Sci Technol. 2023;81:104194. doi:10.1016/j.jddst.2023.104194
  • Wang C, Chen S, Bao L, Liu X, Hu F, Yuan H. Size-controlled preparation and behavior study of phospholipid–calcium carbonate hybrid nanoparticles. Int J Nanomed. 2020;Volume 15:4049–4062. doi:10.2147/IJN.S237156
  • Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673–692. doi:10.2217/nnm.16.5
  • Keyvani‐Ghamsari S, Khorsandi K, Gul A. Curcumin effect on cancer cells’ multidrug resistance: an update. Phytother Res. 2020;34(10):2534–2556. doi:10.1002/ptr.6703
  • Sagnou M, Novikov FN, Ivanova ES, et al. Novel curcumin derivatives as P-glycoprotein inhibitors: molecular modeling, synthesis and sensitization of multidrug resistant cells to doxorubicin. Eur J Med Chem. 2020;198:112331. doi:10.1016/j.ejmech.2020.112331
  • Chan LL-Y, McCulley KJ, Kessel SL. Assessment of cell viability with single-, dual-, and multi-staining methods using image cytometry. Cell Viability Assays. 2017;2017:27–41.
  • Mirzaei S, Gholami MH, Hashemi F, et al. Advances in understanding the role of P-gp in doxorubicin resistance: molecular pathways, therapeutic strategies, and prospects. Drug Discovery Today. 2022;27(2):436–455. doi:10.1016/j.drudis.2021.09.020
  • Chen S-Q, Wang C, Song Y-Q, et al. Quercetin covalently linked lipid nanoparticles: multifaceted killing effect on tumor cells. ACS omega. 2020;5(46):30274–30281. doi:10.1021/acsomega.0c04795
  • Kunjachan S, Błauż A, Möckel D, et al. Overcoming cellular multidrug resistance using classical nanomedicine formulations. Eur J Pharm Sci. 2012;45(4):421–428. doi:10.1016/j.ejps.2011.08.028
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Mater. 2013;12(11):991–1003. doi:10.1038/nmat3776
  • Yin Q, Shen J, Zhang Z, Yu H, Li Y. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv Drug Delivery Rev. 2013;65(13–14):1699–1715. doi:10.1016/j.addr.2013.04.011
  • Kulshrestha A, Katara GK, Schneiderman S, et al. Targeting the pH regulators in the tumor microenvironment for ovarian cancer treatment. Clin Cancer Res. 2020;26(13):113. doi:10.1158/1557-3265.OVCA19-B64
  • Savic LJ, Schobert IT, Peters D, et al. Molecular imaging of extracellular tumor pH to reveal effects of locoregional therapy on liver cancer microenvironment. Clin Cancer Res. 2020;26(2):428–438. doi:10.1158/1078-0432.CCR-19-1702
  • Karimi M, Eslami M, Sahandi‐Zangabad P, et al. pH‐Sensitive stimulus‐responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(5):696–716. doi:10.1002/wnan.1389
  • Fang W, Yang J, Gong J, Zheng N. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated. Pd@Ag Nanoparticles. 2012;22(4):842–848.
  • Liu X, Wang C, Ma H, Yu F, Hu F, Yuan H. Water‐responsive hybrid nanoparticles codelivering ICG and DOX effectively treat breast cancer via hyperthermia‐aided DOX functionality and drug penetration. Adv. Healthcare Mater. 2019;8(8):1801486. doi:10.1002/adhm.201801486
  • Bhatt HN, Diwan R, Borrego EA, et al. A photothermal driven chemotherapy for the treatment of metastatic melanoma. J Control Release. 2023;361:314–333. doi:10.1016/j.jconrel.2023.08.005
  • Lu H, Stenzel MH. Multicellular tumor spheroids (MCTS) as a 3D in vitro evaluation tool of nanoparticles. Small. 2018;14(13):1702858. doi:10.1002/smll.201702858
  • Wang C, Wang Z, Chen S, et al. Modulation of aggregation‐caused quenching to aggregation‐induced emission: finding a biocompatible polymeric theranostics platform for cancer therapy. Macromol Rapid Communic. 2021;42(19):2100264. doi:10.1002/marc.202100264
  • Yu J, Wang L, Xie X, et al. Multifunctional nanoparticles codelivering doxorubicin and amorphous calcium carbonate preloaded with indocyanine green for enhanced chemo-photothermal cancer therapy. Int J Nanomed. 2023;Volume 18:323–337. doi:10.2147/IJN.S394896
  • Zhou J, Li K, Zang X, Xie Y, Song J, Chen X. Ros-responsive galactosylated-nanoparticles with doxorubicin entrapment for triple negative breast cancer therapy. Int J Nanomed. 2023;Volume 18:1381–1397. doi:10.2147/IJN.S396087
  • Xiong H, Wang C, Wang Z, Lu H, Yao J. Self-assembled nano-activator constructed ferroptosis-immunotherapy through hijacking endogenous iron to intracellular positive feedback loop. J Control Release. 2021;332:539–552. doi:10.1016/j.jconrel.2021.03.007