48
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Size-Optimized Layered Double Hydroxide Nanoparticles Promote Neural Progenitor Cells Differentiation of Embryonic Stem Cells Through the Regulation of M6A Methylation

, ORCID Icon, , , , , & show all
Pages 4181-4197 | Received 06 Feb 2024, Accepted 02 May 2024, Published online: 13 May 2024

References

  • Li Y, Mao X, Zhou X, et al. An optimized method for neuronal differentiation of embryonic stem cells in vitro. J Neurosci Methods. 2020;330:108486. doi:10.1016/j.jneumeth.2019.108486
  • Wang Z, Yang H, Bai Y, et al. rBMSC osteogenic differentiation enhanced by graphene quantum dots loaded with immunomodulatory layered double hydroxide nanoparticles. Biomed Mater. 2022;17(2):024101. doi:10.1088/1748-605X/ac4324
  • Ogawa Y, Sawamoto K, Miyata T, et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res. 2002;69(6):925–933. doi:10.1002/jnr.10341
  • Iwai H, Shimada H, Nishimura S, et al. Allogeneic neural stem/progenitor cells derived from embryonic stem cells promote functional recovery after transplantation into injured spinal cord of nonhuman primates. Stem Cells Transl Medi. 2015;4(7):708–719. doi:10.5966/sctm.2014-0215
  • Chang DJ, Oh SH, Lee N, et al. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats. Exp Mol Med. 2013;45(11):e53. doi:10.1038/emm.2013.93
  • Zeevaert K, Elsafi Mabrouk MH, Wagner W, et al. Cell mechanics in embryoid bodies. Cells. 2020;9(10):2270. doi:10.3390/cells9102270
  • Shparberg RA, Glover HJ, Morris MB. Embryoid body differentiation of mouse embryonic stem cells into neurectoderm and neural progenitors. Methods Mol Biol. 2019;2019:273–285. doi:10.1007/978-1-4939-9631-5_21.
  • Joshi R, Buchanan JC, Tavana H. Self-regulatory factors of embryonic stem cells in co-culture with stromal cells enhance neural differentiation. Integr Biol. 2017;9(5):418–426. doi:10.1039/C7IB00038C
  • Rifes P, Isaksson M, Rathore GS, et al. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat Biotechnol. 2020;38(11):1265–1273. doi:10.1038/s41587-020-0525-0
  • Zhang C, Du L, Pang K, et al. Differentiation of human embryonic stem cells into corneal epithelial progenitor cells under defined conditions. PLoS One. 2017;12(8):e0183303. doi:10.1371/journal.pone.0183303
  • Kang MK, Kim TJ, Kim YJ, et al. Targeted delivery of iron oxide nanoparticle-loaded human embryonic stem cell-derived spherical neural masses for treating intracerebral hemorrhage. Int J Mol Sci. 2020;21(10):3658. doi:10.3390/ijms21103658
  • Rahimi Darehbagh R, Mahmoodi M, Amini N, et al. The effect of nanomaterials on embryonic stem cell neural differentiation: a systematic review. Eur J Med Res. 2023;28(1):576. doi:10.1186/s40001-023-01546-0
  • Pinto MC, Tonelli FM, Vieira AL, et al. Studying complex system: calcium oscillations as attractor of cell differentiation. Integr Biol. 2016;8(2):130–148. doi:10.1039/c5ib00285k
  • Marques BL, Maciel GF, Brito MRJ, et al. Regulatory mechanisms of stem cell differentiation: biotechnological applications for neurogenesis. Semin Cell Dev Biol. 2023;144:11–19. doi:10.1016/j.semcdb.2022.09.014
  • Asgari V, Landarani-Isfahani A, Salehi H, et al. The Story of Nanoparticles in Differentiation of Stem Cells into Neural Cells. Neurochem Res. 2019;44(12):2695–2707. doi:10.1007/s11064-019-02900-7
  • Qiu J, Liu XJ, You BA, et al. Application of nanomaterials in stem cell-based therapeutics for cardiac repair and regeneration. Small. 2023;19(11):e2206487. doi:10.1002/smll.202206487
  • Gupta P, Rathi P, Gupta R, et al. Neuronal maturation-dependent nano–neuro interaction and modulation. Nanoscale Horiz. 2023;8(11):1537–1555. doi:10.1039/D3NH00258F
  • da Silva VA, Bobotis BC, Correia FF, et al. The impact of biomaterial surface properties on engineering neural tissue for spinal cord regeneration. Int J Mol Sci. 2023;24(17):13642. doi:10.3390/ijms241713642
  • Sperling LE, Reis KP, Pozzobon LG, et al. Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A. 2017;105(5):1333–1345. doi:10.1002/jbm.a.36012
  • Park SJ, Kim S, Kim SY, et al. Highly efficient and rapid neural differentiation of mouse embryonic stem cells based on retinoic acid encapsulated porous nanoparticle. ACS Appl Mater Interfaces. 2017;9(40):34634–34640. doi:10.1021/acsami.7b09760
  • Zhang S, Hang Y, Wu J, et al. Dual pathway for promotion of stem cell neural differentiation mediated by gold nanocomposites. ACS Appl Mater Interfaces. 2020;12(19):22066–22073. doi:10.1021/acsami.9b22258
  • Taviot-Gueho C, Prevot V, Forano C, et al. Tailoring hybrid layered double hydroxides for the development of innovative applications. Adv Funct Mater. 2018;28(27):1703868. doi:10.1002/adfm.201703868
  • He X, Zhu Y, Yang L, et al. MgFe-LDH nanoparticles: a promising leukemia inhibitory factor replacement for self-renewal and pluripotency maintenance in cultured mouse embryonic stem cells. Adv Sci. 2021;8(9):2003535. doi:10.1002/advs.202003535
  • Zhu R, Zhu X, Zhu Y, et al. Immunomodulatory layered double hydroxide nanoparticles enable neurogenesis by targeting transforming growth factor-β Receptor 2. ACS nano. 2021;15(2):2812–2830. doi:10.1021/acsnano.0c08727
  • Yang L, Sun J, Liu Q, et al. Synergetic functional nanocomposites enhance immunotherapy in solid tumors by remodeling the immunoenvironment. Adv Sci. 2019;6(8):1802012. doi:10.1002/advs.201802012
  • Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31–42. doi:10.1038/nrm.2016.132
  • Yang Y, Hsu PJ, Chen YS, et al. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28(6):616–624. doi:10.1038/s41422-018-0040-8
  • Lee M, Kim B, Kim VN. Emerging roles of RNA modification: m(6)A and U-tail. Cell. 2014;158(5):980–987. doi:10.1016/j.cell.2014.08.005
  • Han L, Dong L, Leung K, et al. METTL16 drives leukemogenesis and leukemia stem cell self-renewal by reprogramming BCAA metabolism. Cell Stem Cell. 2023;30(1):52–68.e13. doi:10.1016/j.stem.2022.12.006
  • Tooley JG, Catlin JP, Tooley CES. METTLing in stem cell and cancer biology. Stem Cell Rev Rep. 2023;19(1):76–91. doi:10.1007/s12015-022-10444-7
  • Batista PJ, Molinie B, Wang J, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 2014;15(6):707–719. doi:10.1016/j.stem.2014.09.019
  • Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015;347(6225):1002–1006. doi:10.1126/science.1261417
  • Xu W, Li J, He C, et al. METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature. 2021;591(7849):317–321. doi:10.1038/s41586-021-03210-1
  • Wang Z, Xu Z, Jing G, et al. Layered double hydroxide eliminate embryotoxicity of chemotherapeutic drug through BMP-SMAD signaling pathway. Biomaterials. 2020;230:119602. doi:10.1016/j.biomaterials.2019.119602
  • Wu Y, Xu X, Qi M, et al. N(6)-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition. Nat Cell Biol. 2022;24(6):917–927. doi:10.1038/s41556-022-00915-x
  • Suter DM, Tirefort D, Julien S, et al. A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem Cells. 2009;27(1):49–58. doi:10.1634/stemcells.2008-0319
  • Wang Z, Yang H, Xu X, et al. Ion elemental-optimized layered double hydroxide nanoparticles promote chondrogenic differentiation and intervertebral disc regeneration of mesenchymal stem cells through focal adhesion signaling pathway. Bioact Mater. 2023;22:75–90. doi:10.1016/j.bioactmat.2022.08.023
  • Mao N, Zhou CH, Tong DS, et al. Exfoliation of layered double hydroxide solids into functional nanosheets. Appl Clay Sci. 2017;144(4):60–78. doi:10.1016/j.clay.2017.04.021
  • Zhang T, Wang Z, Wang Z, et al. LDH-doped gelatin-chitosan scaffold with aligned microchannels improves anti-inflammation and neuronal regeneration with guided axonal growth for effectively recovering spinal cord injury. Appl Mater Today. 2023;34:101884. doi:10.1016/j.apmt.2023.101884
  • Qiu J, Li J, Wang S, et al. TiO2 nanorod array constructed nanotopography for regulation of mesenchymal stem cells fate and the realization of location-committed stem cell differentiation. Small. 2016;12(13):1770–1778. doi:10.1002/smll.201503946
  • Qiu J, Li D, Mou X, et al. Effects of graphene quantum dots on the self-renewal and differentiation of mesenchymal stem cells. Adv Healthcare Mater. 2016;5(6):702–710. doi:10.1002/adhm.201500770
  • Li J, Qiu J, Guo W, et al. Cellular internalization of LiNbO3 nanocrystals for second harmonic imaging and the effects on stem cell differentiation. Nanoscale. 2016;8(14):7416–7422. doi:10.1039/C6NR00785F
  • Zhang C, Chen Y, Sun B, et al. m(6)A modulates haematopoietic stem and progenitor cell specification. Nature. 2017;549(7671):273–276. doi:10.1038/nature23883
  • Zhang ZW, Teng X, Zhao F, et al. METTL3 regulates m(6)A methylation of PTCH1 and GLI2 in Sonic hedgehog signaling to promote tumor progression in SHH-medulloblastoma. Cell Rep. 2022;41(4):111530. doi:10.1016/j.celrep.2022.111530