117
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Breaking Barriers: Nanomedicine-Based Drug Delivery for Cataract Treatment

, , &
Pages 4021-4040 | Received 15 Feb 2024, Accepted 27 Apr 2024, Published online: 06 May 2024

References

  • Cicinelli MV, Buchan JC, Nicholson M, Varadaraj V, Khanna RC. Cataracts. Lancet. 2023;401(10374):377–389. doi:10.1016/s0140-6736(22)01839-6
  • Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet. 2017;390(10094):600–612. doi:10.1016/s0140-6736(17)30544-5
  • Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med. 2012;18(5):273–282. doi:10.1016/j.molmed.2012.03.005
  • Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases. Int J Mol Sci. 2022;23(3). doi:10.3390/ijms23031255
  • Ghaffari Sharaf M, Cetinel S, Semenchenko V, Damji KF, Unsworth LD, Montemagno C. Peptides for targeting βB2-crystallin fibrils. Exp Eye Res. 2017;165:109–117. doi:10.1016/j.exer.2017.10.001
  • Brian G, Taylor H. Cataract blindness--challenges for the 21st century. Bull World Health Organ. 2001;79(3):249–256.
  • Nye-Wood MG, Spraggins JM, Caprioli RM, Schey KL, Donaldson PJ, Grey AC. Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging. Exp Eye Res. 2017;154:70–78. doi:10.1016/j.exer.2016.11.008
  • Zhao L, Chen XJ, Zhu J, et al. Lanosterol reverses protein aggregation in cataracts. Nature. 2015;523(7562):607–611. doi:10.1038/nature14650
  • Zierden HC, Josyula A, Shapiro RL, Hsueh HT, Hanes J, Ensign LM. Avoiding a sticky situation: bypassing the mucus barrier for improved local drug delivery. Trends Mol Med. 2021;27(5):436–450. doi:10.1016/j.molmed.2020.12.001
  • Ye Y, He J, Qiao Y, et al. Mild temperature photothermal assisted anti-bacterial and anti-inflammatory nanosystem for synergistic treatment of post-cataract surgery endophthalmitis. Theranostics. 2020;10(19):8541–8557. doi:10.7150/thno.46895
  • Wang Y, Liu CH, Ji T, et al. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat Commun. 2019;10(1):804. doi:10.1038/s41467-019-08690-4
  • Gessner I, Neundorf I. Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int J Mol Sci. 2020;21(7). doi:10.3390/ijms21072536
  • Michael R, van Marle J, Vrensen GF, van den Berg TJ. Changes in the refractive index of lens fibre membranes during maturation--impact on lens transparency. Exp Eye Res. 2003;77(1):93–99. doi:10.1016/s0014-4835(03)00065-4
  • Augusteyn RC. On the growth and internal structure of the human lens. Exp Eye Res. 2010;90(6):643–654. doi:10.1016/j.exer.2010.01.013
  • Bassnett S. On the mechanism of organelle degradation in the vertebrate lens. Exp Eye Res. 2009;88(2):133–139. doi:10.1016/j.exer.2008.08.017
  • Kaiser CJO, Peters C, Schmid PWN, et al. The structure and oxidation of the eye lens chaperone αA-crystallin. Nat Struct Mol Biol. 2019;26(12):1141–1150. doi:10.1038/s41594-019-0332-9
  • Zhu XJ, Zhang KK, He WW, Du Y, Hooi M, Lu Y. Racemization at the Asp 58 residue in αA-crystallin from the lens of high myopic cataract patients. J Cell Mol Med. 2018;22(2):1118–1126. doi:10.1111/jcmm.13363
  • Whitson JA, Sell DR, Goodman MC, Monnier VM, Fan X. Evidence of dual mechanisms of glutathione uptake in the rodent lens: a novel role for vitreous humor in lens glutathione homeostasis. Invest Ophthalmol Vis Sci. 2016;57(8):3914–3925. doi:10.1167/iovs.16-19592
  • Vorontsova I, Vallmitjana A, Torrado B, et al. In vivo macromolecular crowding is differentially modulated by aquaporin 0 in zebrafish lens: insights from a nanoenvironment sensor and spectral imaging. Sci Adv. 2022;8(7):eabj4833. doi:10.1126/sciadv.abj4833
  • Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function. Nature. 2016;531(7594):323–328. doi:10.1038/nature17181
  • Gu S, Biswas S, Rodriguez L, et al. Connexin 50 and AQP0 are essential in maintaining organization and integrity of lens fibers. Invest Ophthalmol Vis Sci. 2019;60(12):4021–4032. doi:10.1167/iovs.18-26270
  • Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–247. doi:10.1038/35041687
  • Carey JW, Pinarci EY, Penugonda S, Karacal H, Ercal N. In vivo inhibition of l-buthionine-(S,R)-sulfoximine-induced cataracts by a novel antioxidant, N-acetylcysteine amide. Free Radic Biol Med. 2011;50(6):722–729. doi:10.1016/j.freeradbiomed.2010.12.017
  • Aydin B, Yagci R, Yilmaz FM, et al. Prevention of selenite-induced cataractogenesis by N-acetylcysteine in rats. Curr Eye Res. 2009;34(3):196–201. doi:10.1080/02713680802676885
  • Rathbun WB, Killen CE, Holleschau AM, Nagasawa HT. Maintenance of hepatic glutathione homeostasis and prevention of Acetaminophen-induced cataract in mice by L-cysteine prodrugs. Biochem Pharmacol. 1996;51(9):1111–1116. doi:10.1016/0006-2952(96)00144-x
  • Tobwala S, Pınarcı EY, Maddirala Y, Ercal N. N-acetylcysteine amide protects against dexamethasone-induced cataract related changes in cultured rat lenses. Adv Biol Chem. 2014;4:26–34.
  • Babizhayev MA, Burke L, Micans P, Richer SP. N-Acetylcarnosine sustained drug delivery eye drops to control the signs of ageless vision: glare sensitivity, cataract amelioration and quality of vision currently available treatment for the challenging 50,000-patient population. Clin Interv Aging. 2009;4:31–50.
  • Dubois VD, Bastawrous A. N-acetylcarnosine (NAC) drops for age-related cataract. Cochrane Database Syst Rev. 2017;2(2):Cd009493. doi:10.1002/14651858.CD009493.pub2
  • Li G, Luna C, Navarro ID, et al. Resveratrol prevention of oxidative stress damage to lens epithelial cell cultures is mediated by forkhead box O activity. Invest Ophthalmol Vis Sci. 2011;52(7):4395–4401. doi:10.1167/iovs.10-6652
  • Chen M, Zhang C, Zhou N, Wang X, Su D, Qi Y. Metformin alleviates oxidative stress-induced senescence of human lens epithelial cells via AMPK activation and autophagic flux restoration. J Cell Mol Med. 2021;25(17):8376–8389. doi:10.1111/jcmm.16797
  • Chen M, Fu Y, Wang X, et al. Metformin protects lens epithelial cells against senescence in a naturally aged mouse model. Cell Death Discov. 2022;8(1):8. doi:10.1038/s41420-021-00800-w
  • Li X, Meng F, Li H, Hua X, Wu L, Yuan X. L‑carnitine alleviates oxidative stress‑related damage via MAPK signaling in human lens epithelial cells exposed to H2O2. Int J Mol Med. 2019;44(4):1515–1522. doi:10.3892/ijmm.2019.4283
  • Geraldine P, Sneha BB, Elanchezhian R, et al. Prevention of selenite-induced cataractogenesis by acetyl-L-carnitine: an experimental study. Exp Eye Res. 2006;83(6):1340–1349. doi:10.1016/j.exer.2006.07.009
  • Makley LN, McMenimen KA, DeVree BT, et al. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science. 2015;350(6261):674–677. doi:10.1126/science.aac9145
  • Zhou H, Yang Z, Tian X, et al. Lanosterol disrupts the aggregation of amyloid-β peptides. ACS Chem Neurosci. 2019;10(9):4051–4060. doi:10.1021/acschemneuro.9b00285
  • Chen XJ, Hu LD, Yao K, Yan YB. Lanosterol and 25-hydroxycholesterol dissociate crystallin aggregates isolated from cataractous human lens via different mechanisms. Biochem Biophys Res Commun. 2018;506(4):868–873. doi:10.1016/j.bbrc.2018.10.175
  • Sreelakshmi V, Abraham A. Polyphenols of Cassia tora leaves prevents lenticular apoptosis and modulates cataract pathology in Sprague-Dawley rat pups. Biomed Pharmacother. 2016;81:371–378. doi:10.1016/j.biopha.2016.04.018
  • Sreelakshmi V, Abraham A. Protective effects of Cassia tora leaves in experimental cataract by modulating intracellular communication, membrane co-transporters, energy metabolism and the ubiquitin-proteasome pathway. Pharm Biol. 2017;55(1):1274–1282. doi:10.1080/13880209.2017.1299769
  • Yao Q, Zhou Y, Yang Y, et al. Activation of Sirtuin1 by lyceum barbarum polysaccharides in protection against diabetic cataract. J Ethnopharmacol. 2020;261:113165. doi:10.1016/j.jep.2020.113165
  • Song XL, Li MJ, Liu Q, et al. Cyanidin-3-O-glucoside protects lens epithelial cells against high glucose-induced apoptosis and prevents cataract formation via suppressing NF-κB activation and Cox-2 expression. J Agric Food Chem. 2020;68(31):8286–8294. doi:10.1021/acs.jafc.0c03194
  • Suryanarayana P, Saraswat M, Mrudula T, Krishna TP, Krishnaswamy K, Reddy GB. Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest Ophthalmol Vis Sci. 2005;46(6):2092–2099. doi:10.1167/iovs.04-1304
  • Manikandan R, Thiagarajan R, Beulaja S, Sudhandiran G, Arumugam M. Curcumin prevents free radical-mediated cataractogenesis through modulations in lens calcium. Free Radic Biol Med. 2010;48(4):483–492. doi:10.1016/j.freeradbiomed.2009.11.011
  • Wu J, Li X, Wan W, et al. Gigantol from Dendrobium chrysotoxum Lindl. binds and inhibits aldose reductase gene to exert its anti-cataract activity: an in vitro mechanistic study. J Ethnopharmacol. 2017;198:255–261. doi:10.1016/j.jep.2017.01.026
  • Fang H, Hu X, Wang M, et al. Anti-osmotic and antioxidant activities of gigantol from Dendrobium aurantiacum var. denneanum against cataractogenesis in galactosemic rats. J Ethnopharmacol. 2015;172:238–246. doi:10.1016/j.jep.2015.06.034
  • Zhang D, Li M. Puerarin prevents cataract development and progression in diabetic rats through Nrf2/HO‑1 signaling. Mol Med Rep. 2019;20(2):1017–1024. doi:10.3892/mmr.2019.10320
  • Daszynski DM, Santhoshkumar P, Phadte AS, et al. Failure of oxysterols such as lanosterol to restore lens clarity from cataracts. Sci Rep. 2019;9(1):8459. doi:10.1038/s41598-019-44676-4
  • Onugwu AL, Nwagwu CS, Onugwu OS, et al. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release. 2023;354:465–488. doi:10.1016/j.jconrel.2023.01.018
  • Wang L, Zhou MB, Zhang H. The emerging role of topical ocular drugs to target the posterior eye. Ophthalmol Ther. 2021;10(3):465–494. doi:10.1007/s40123-021-00365-y
  • Xie G, Lin S, Wu F, Liu J. Nanomaterial-based ophthalmic drug delivery. Adv Drug Deliv Rev. 2023;200:115004. doi:10.1016/j.addr.2023.115004
  • Murgia X, Loretz B, Hartwig O, Hittinger M, Lehr CM. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev. 2018;124:82–97. doi:10.1016/j.addr.2017.10.009
  • Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Ind Pharm. 2013;39(11):1599–1617. doi:10.3109/03639045.2012.736515
  • Jünemann A, Chorągiewicz T, Ozimek M, Grieb P, Rejdak R. Drug bioavailability from topically applied ocular drops. Does drop size matter? Ophthalmol J. 2016;1(1):29–35. doi:10.5603/OJ.2016.0005
  • Castro-Balado A, Mondelo-García C, González-Barcia M, et al. Ocular biodistribution studies using molecular imaging. Pharmaceutics. 2019;11(5). doi:10.3390/pharmaceutics11050237
  • Naguib MJ, Hassan YR, Abd-Elsalam WH. 3D printed ocusert laden with ultra-fluidic glycerosomes of ganciclovir for the management of ocular cytomegalovirus retinitis. Int J Pharm. 2021;607:121010. doi:10.1016/j.ijpharm.2021.121010
  • Huang AJ, Tseng SC, Kenyon KR. Paracellular permeability of corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci. 1989;30(4):684–689.
  • Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release. 2020;321:1–22. doi:10.1016/j.jconrel.2020.01.057
  • Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev. 2018;126:96–112. doi:10.1016/j.addr.2017.09.008
  • Hornof M, Toropainen E, Urtti A. Cell culture models of the ocular barriers. Eur J Pharm Biopharm. 2005;60(2):207–225. doi:10.1016/j.ejpb.2005.01.009
  • Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of beta-blocking agents II: assessment of barrier contributions. J Pharm Sci. 1983;72(11):1272–1279. doi:10.1002/jps.2600721109
  • Freddo TF. A contemporary concept of the blood-aqueous barrier. Prog Retin Eye Res. 2013;32:181–195. doi:10.1016/j.preteyeres.2012.10.004
  • Lafond M, Aptel F, Mestas JL, Lafon C. Ultrasound-mediated ocular delivery of therapeutic agents: a review. Expert Opin Drug Deliv. 2017;14(4):539–550. doi:10.1080/17425247.2016.1198766
  • Heikkinen EM, Auriola S, Ranta VP, et al. Distribution of small molecular weight drugs into the porcine lens: studies on imaging mass spectrometry, partition coefficients, and implications in ocular pharmacokinetics. Mol Pharm. 2019;16(9):3968–3976. doi:10.1021/acs.molpharmaceut.9b00585
  • Ruiss M, Findl O, Kronschläger M. The human lens: an antioxidant-dependent tissue revealed by the role of caffeine. Ageing Res Rev. 2022;79:101664. doi:10.1016/j.arr.2022.101664
  • Thrimawithana TR, Rupenthal ID, Räsch SS, Lim JC, Morton JD, Bunt CR. Drug delivery to the lens for the management of cataracts. Adv Drug Deliv Rev. 2018;126:185–194. doi:10.1016/j.addr.2018.03.009
  • Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64. doi:10.1016/j.addr.2017.04.001
  • Afarid M, Mahmoodi S, Baghban R. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J Nanobiotechnology. 2022;20(1):361. doi:10.1186/s12951-022-01567-7
  • Farkouh A, Frigo P, Czejka M. Systemic side effects of eye drops: a pharmacokinetic perspective. Clin Ophthalmol. 2016;10:2433–2441. doi:10.2147/opth.S118409
  • Shim MK, Yang S, Park J, et al. Preclinical development of carrier-free prodrug nanoparticles for enhanced antitumor therapeutic potential with less toxicity. J Nanobiotechnology. 2022;20(1):436. doi:10.1186/s12951-022-01644-x
  • Fu Q, Shen S, Sun P, et al. Bioorthogonal chemistry for prodrug activation in vivo. Chem Soc Rev. 2023;52(22):7737–7772. doi:10.1039/d2cs00889k
  • Abdelkader H, Longman MR, Alany RG, Pierscionek B. Phytosome-hyaluronic acid systems for ocular delivery of L-carnosine. Int J Nanomed. 2016;11:2815–2827. doi:10.2147/ijn.S104774
  • Wang L, Liu W, Huang X. An approach to revolutionize cataract treatment by enhancing drug probing through intraocular cell line. Libyan J Med. 2018;13(1):1500347. doi:10.1080/19932820.2018.1500347
  • Wang Y, Xia R, Hu H, Peng T. Biosynthesis, characterization and cytotoxicity of gold nanoparticles and their loading with N-acetylcarnosine for cataract treatment. J Photochem Photobiol B. 2018;187:180–183. doi:10.1016/j.jphotobiol.2018.08.014
  • Szumała P, Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. Int J Pharm. 2022;615:121488. doi:10.1016/j.ijpharm.2022.121488
  • Abdul Nasir NA, Agarwal R, Vasudevan S, Tripathy M, Alyautdin R, Ismail NM. Effects of topically applied tocotrienol on cataractogenesis and lens redox status in galactosemic rats. Mol Vis. 2014;20:822–835.
  • Kalam MA, Alshamsan A, Aljuffali IA, Mishra AK, Sultana Y. Delivery of gatifloxacin using microemulsion as vehicle: formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Deliv. 2016;23(3):896–907. doi:10.3109/10717544.2014.920432
  • Torres-Luna C, Hu N, Koolivand A, et al. Effect of a cationic surfactant on microemulsion globules and drug release from hydrogel contact lenses. Pharmaceutics. 2019;11(6). doi:10.3390/pharmaceutics11060262
  • McGuckin MB, Wang J, Ghanma R, et al. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release. 2022;345:334–353. doi:10.1016/j.jconrel.2022.03.012
  • Goto R, Yamada S, Otake H, et al. Instillation of ophthalmic formulation containing nilvadipine nanocrystals attenuates lens opacification in shumiya cataract rats. Pharmaceutics. 2021;13(12). doi:10.3390/pharmaceutics13121999
  • Zhang J, Jiao J, Niu M, et al. Ten years of knowledge of nano-carrier based drug delivery systems in ophthalmology: current evidence, challenges, and future prospective. Int J Nanomed. 2021;16:6497–6530. doi:10.2147/ijn.S329831
  • Deguchi S, Kadowaki R, Otake H, et al. Combination of lanosterol and nilvadipine nanosuspensions rescues lens opacification in selenite-induced cataractic rats. Pharmaceutics. 2022;14(7). doi:10.3390/pharmaceutics14071520
  • Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24:3. doi:10.1186/s40824-020-0184-8
  • Cai R, Zhang L, Chi H. Recent development of polymer nanomicelles in the treatment of eye diseases. Front Bioeng Biotechnol. 2023;11:1246974. doi:10.3389/fbioe.2023.1246974
  • Xu L, Qiu W-X, Liu W-L, et al. PLA–PEG micelles loaded with a classic vasodilator for oxidative cataract prevention. ACS Biomater. Sci. Eng. 2019;5(2):407–412. doi:10.1021/acsbiomaterials.8b01089
  • Duan Y, Cai X, Du H, Zhai G. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces. 2015;128:322–330. doi:10.1016/j.colsurfb.2015.02.007
  • Lu PL, Chen YC, Ou TW, et al. Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Biomaterials. 2011;32(8):2213–2221. doi:10.1016/j.biomaterials.2010.11.051
  • Rudko M, Urbaniak T, Musiał W. Recent developments in ion-sensitive systems for pharmaceutical applications. Polymers. 2021;13(10). doi:10.3390/polym13101641
  • Moraes-Lacerda T, de Jesus MB. Mechanisms of solid lipid nanoparticles-triggered signaling pathways in eukaryotic cells. Colloids Surf B Biointerfaces. 2022;220:112863. doi:10.1016/j.colsurfb.2022.112863
  • Choudhary R, Bodakhe SH. Magnesium taurate prevents cataractogenesis via restoration of lenticular oxidative damage and ATPase function in cadmium chloride-induced hypertensive experimental animals. Biomed Pharmacother. 2016;84:836–844. doi:10.1016/j.biopha.2016.10.012
  • Iezhitsa I, Agarwal R, Saad SD, et al. Mechanism of the anticataract effect of liposomal MgT in galactose-fed rats. Mol Vis. 2016;22:734–747.
  • Botto C, Mauro N, Amore E, Martorana E, Giammona G, Bondì ML. Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles. Int J Pharm. 2017;516(1–2):334–341. doi:10.1016/j.ijpharm.2016.11.052
  • Vora D, Heruye S, Kumari D, Opere C, Chauhan H. Preparation, characterization and antioxidant evaluation of poorly soluble polyphenol-loaded nanoparticles for cataract treatment. AAPS Pharm Sci Tech. 2019;20(5):163. doi:10.1208/s12249-019-1379-y
  • Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308. doi:10.1016/j.ejpb.2018.10.017
  • Bonilla L, Espina M, Severino P, et al. Lipid nanoparticles for the posterior eye segment. Pharmaceutics. 2021;14(1). doi:10.3390/pharmaceutics14010090
  • Gomaa E, Fathi HA, Eissa NG, Elsabahy M. Methods for preparation of nanostructured lipid carriers. Methods. 2022;199:3–8. doi:10.1016/j.ymeth.2021.05.003
  • Lei C, Liu XR, Chen QB, et al. Hyaluronic acid and albumin based nanoparticles for drug delivery. J Control Release. 2021;331:416–433. doi:10.1016/j.jconrel.2021.01.033
  • Lou J, Hu W, Tian R, et al. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int J Nanomed. 2014;9:2517–2525. doi:10.2147/ijn.S60270
  • Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther. 2023;8(1):435. doi:10.1038/s41392-023-01654-7
  • Liao YT, Lee CH, Chen ST, Lai JY, Wu KC. Gelatin-functionalized mesoporous silica nanoparticles with sustained release properties for intracameral pharmacotherapy of glaucoma. J Mater Chem B. 2017;5(34):7008–7013. doi:10.1039/c7tb01217a
  • Hu C, Sun J, Zhang Y, et al. Local delivery and sustained-release of nitric oxide donor loaded in mesoporous silica particles for efficient treatment of primary open-angle glaucoma. Adv Healthc Mater. 2018;7(23):e1801047. doi:10.1002/adhm.201801047
  • Zhang Z, Zhao L, Ma Y, et al. Mechanistic study of silica nanoparticles on the size-dependent retinal toxicity in vitro and in vivo. J Nanobiotechnology. 2022;20(1):146. doi:10.1186/s12951-022-01326-8
  • Yang J, Gong X, Fang L, et al. Potential of CeCl(3)@mSiO(2) nanoparticles in alleviating diabetic cataract development and progression. Nanomedicine. 2017;13(3):1147–1155. doi:10.1016/j.nano.2016.12.021
  • Casals E, Zeng M, Parra-Robert M, et al. Cerium oxide nanoparticles: advances in biodistribution, toxicity, and preclinical exploration. Small. 2020;16(20):e1907322. doi:10.1002/smll.201907322
  • Li X, Han Z, Wang T, et al. Cerium oxide nanoparticles with antioxidative neurorestoration for ischemic stroke. Biomaterials. 2022;291:121904. doi:10.1016/j.biomaterials.2022.121904
  • Wei F, Neal CJ, Sakthivel TS, et al. A novel approach for the prevention of ionizing radiation-induced bone loss using a designer multifunctional cerium oxide nanozyme. Bioact Mater. 2023;21:547–565. doi:10.1016/j.bioactmat.2022.09.011
  • Ren S, Zhou Y, Zheng K, et al. Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioact Mater. 2022;7:242–253. doi:10.1016/j.bioactmat.2021.05.037
  • Ren X, Zhuang H, Zhang Y, Zhou P. Cerium oxide nanoparticles-carrying human umbilical cord mesenchymal stem cells counteract oxidative damage and facilitate tendon regeneration. J Nanobiotechnology. 2023;21(1):359. doi:10.1186/s12951-023-02125-5
  • Hanafy BI, Cave GWV, Barnett Y, Pierscionek B. Treatment of human lens epithelium with high levels of nanoceria leads to reactive oxygen species mediated apoptosis. Molecules. 2020;25(3). doi:10.3390/molecules25030441
  • Hanafy BI, Cave GWV, Barnett Y, Pierscionek BK. Nanoceria prevents glucose-induced protein glycation in eye lens cells. Nanomaterials. 2021;11(6). doi:10.3390/nano11061473
  • Zhou Y, Li L, Li S, et al. Autoregenerative redox nanoparticles as an antioxidant and glycation inhibitor for palliation of diabetic cataracts. Nanoscale. 2019;11(27):13126–13138. doi:10.1039/c9nr02350j
  • Gonzalez-Pizarro R, Parrotta G, Vera R, et al. Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides. Nanomedicine. 2019;14(23):3089–3104. doi:10.2217/nnm-2019-0201
  • Chen Y, Feng X. Gold nanoparticles for skin drug delivery. Int J Pharm. 2022;625:122122. doi:10.1016/j.ijpharm.2022.122122
  • Zhang R, Kiessling F, Lammers T, Pallares RM. Clinical translation of gold nanoparticles. Drug Deliv Transl Res. 2023;13(2):378–385. doi:10.1007/s13346-022-01232-4
  • Fu X, Rehman U, Wei L, et al. Silver-dendrimer nanocomposite as emerging therapeutics in anti-bacteria and beyond. Drug Resist Updat. 2023;68:100935. doi:10.1016/j.drup.2023.100935
  • Anbukkarasi M, Thomas PA, Sheu JR, Geraldine P. In vitro antioxidant and anticataractogenic potential of silver nanoparticles biosynthesized using an ethanolic extract of Tabernaemontana divaricata leaves. Biomed Pharmacother. 2017;91:467–475. doi:10.1016/j.biopha.2017.04.079
  • Zhu S, Gong L, Li Y, Xu H, Gu Z, Zhao Y. Safety assessment of nanomaterials to eyes: an important but neglected issue. Adv Sci. 2019;6(16):1802289. doi:10.1002/advs.201802289
  • Zhang Y, Wang Z, Zhao G, Liu JX. Silver nanoparticles affect lens rather than retina development in zebrafish embryos. Ecotoxicol Environ Saf. 2018;163:279–288. doi:10.1016/j.ecoenv.2018.07.079
  • Xiong T, Yang K, Zhao T, et al. Multifunctional integrated nanozymes facilitate spinal cord regeneration by remodeling the extrinsic neural environment. Adv Sci. 2023;10(7):e2205997. doi:10.1002/advs.202205997
  • Vaneev AN, Kost OA, Eremeev NL, et al. Superoxide Dismutase 1 Nanoparticles (Nano-SOD1) as a potential drug for the treatment of inflammatory eye diseases. Biomedicines. 2021;9(4). doi:10.3390/biomedicines9040396
  • Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–1076. doi:10.1039/c8cs00457a
  • Zheng T, Zhang Q, Feng S, Zhu JJ, Wang Q, Wang H. Robust nonenzymatic hybrid nanoelectrocatalysts for signal amplification toward ultrasensitive electrochemical cytosensing. J Am Chem Soc. 2014;136(6):2288–2291. doi:10.1021/ja500169y
  • Tian Z, Li J, Zhang Z, Gao W, Zhou X, Qu Y. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials. 2015;59:116–124. doi:10.1016/j.biomaterials.2015.04.039
  • Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev. 2019;144:90–111. doi:10.1016/j.addr.2019.08.004
  • Kipen HM, Laskin DL. Smaller is not always better: nanotechnology yields nanotoxicology. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L696–7. doi:10.1152/ajplung.00277.2005
  • Lin S, Ge C, Wang D, et al. Overcoming the anatomical and physiological barriers in topical eye surface medication using a peptide-decorated polymeric micelle. ACS Appl Mater Interfaces. 2019;11(43):39603–39612. doi:10.1021/acsami.9b13851
  • Varela-Fernández R, García-Otero X, Díaz-Tomé V, et al. Design, optimization, and characterization of lactoferrin-loaded chitosan/TPP and Chitosan/Sulfobutylether-β-cyclodextrin nanoparticles as a pharmacological alternative for keratoconus treatment. ACS Appl Mater Interfaces. 2021;13(3):3559–3575. doi:10.1021/acsami.0c18926
  • Chaw SY, Novera W, Chacko AM, Wong TTL, Venkatraman S. In vivo fate of liposomes after subconjunctival ocular delivery. J Control Release. 2021;329:162–174. doi:10.1016/j.jconrel.2020.11.053
  • Baran-Rachwalska P, Torabi-Pour N, Sutera FM, et al. Topical siRNA delivery to the cornea and anterior eye by hybrid silicon-lipid nanoparticles. J Control Release. 2020;326:192–202. doi:10.1016/j.jconrel.2020.07.004
  • Xin G, Zhang M, Zhong Z, et al. Ophthalmic drops with nanoparticles derived from a natural product for treating age-related macular degeneration. ACS Appl Mater Interfaces. 2020;12(52):57710–57720. doi:10.1021/acsami.0c17296
  • Ogunjimi AT, Melo SMG, Vargas-Rechia CG, Emery FS, Lopez RFV. Hydrophilic polymeric nanoparticles prepared from Delonix galactomannan with low cytotoxicity for ocular drug delivery. Carbohydr Polym. 2017;157:1065–1075. doi:10.1016/j.carbpol.2016.10.076
  • Li T, Wang Y, Chen J, et al. Co-delivery of brinzolamide and miRNA-124 by biodegradable nanoparticles as a strategy for glaucoma therapy. Drug Deliv. 2020;27(1):410–421. doi:10.1080/10717544.2020.1731861
  • Sun Z, Huang J, Fishelson Z, Wang C, Zhang S. Cell-penetrating peptide-based delivery of macromolecular drugs: development, strategies, and progress. Biomedicines. 2023;11(7). doi:10.3390/biomedicines11071971
  • Lee K, Lee G, Lee S, Park CY. Advances in ophthalmic drug delivery technology for postoperative management after cataract surgery. Expert Opin Drug Deliv. 2022;19(8):945–964. doi:10.1080/17425247.2022.2109624
  • Tang Z, Fan X, Chen Y, Gu P. Ocular nanomedicine. Adv Sci. 2022;9(15):e2003699. doi:10.1002/advs.202003699
  • Pescina S, Ostacolo C, Gomez-Monterrey IM, et al. Cell penetrating peptides in ocular drug delivery: state of the art. J Control Release. 2018;284:84–102. doi:10.1016/j.jconrel.2018.06.023
  • Li M, Han M, Sun Y, Hua Y, Chen G, Zhang L. Oligoarginine mediated collagen/chitosan gel composite for cutaneous wound healing. Int J Biol Macromol. 2019;122:1120–1127. doi:10.1016/j.ijbiomac.2018.09.061
  • Schneider AFL, Kithil M, Cardoso MC, Lehmann M, Hackenberger CPR. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat Chem. 2021;13(6):530–539. doi:10.1038/s41557-021-00661-x
  • Buyanova M, Sahni A, Yang R, Sarkar A, Salim H, Pei D. Discovery of a cyclic cell-penetrating peptide with improved endosomal escape and cytosolic delivery efficiency. Mol Pharm. 2022;19(5):1378–1388. doi:10.1021/acs.molpharmaceut.1c00924
  • Mueller NH, Ammar DA, Petrash JM. Cell penetration peptides for enhanced entry of αB-crystallin into lens cells. Invest Ophthalmol Vis Sci. 2013;54(1):2–8. doi:10.1167/iovs.12-10947
  • Johnson LN, Cashman SM, Read SP, Kumar-Singh R. Cell penetrating peptide POD mediates delivery of recombinant proteins to retina, cornea and skin. Vision Res. 2010;50(7):686–697. doi:10.1016/j.visres.2009.08.028
  • Vasconcelos A, Vega E, Pérez Y, Gómara MJ, García ML, Haro I. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int J Nanomed. 2015;10:609–631. doi:10.2147/ijn.S71198
  • Liu C, Lan Q, He W, et al. Octa-arginine modified lipid emulsions as a potential ocular delivery system for disulfiram: a study of the corneal permeation, transcorneal mechanism and anti-cataract effect. Colloids Surf B Biointerfaces. 2017;160:305–314. doi:10.1016/j.colsurfb.2017.08.037
  • Ha M, Kim JH, You M, Li Q, Fan C, Nam JM. Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem Rev. 2019;119(24):12208–12278. doi:10.1021/acs.chemrev.9b00234
  • Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 2019;14(1):93–126. doi:10.2217/nnm-2018-0120
  • Kim YC, Shin MD, Hackett SF, et al. Gelling hypotonic polymer solution for extended topical drug delivery to the eye. Nat Biomed Eng. 2020;4(11):1053–1062. doi:10.1038/s41551-020-00606-8
  • Lynch CR, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V. Hydrogel biomaterials for application in ocular drug delivery. Front Bioeng Biotechnol. 2020;8:228. doi:10.3389/fbioe.2020.00228
  • Yang X, Shah SJ, Wang Z, Agrahari V, Pal D, Mitra AK. Nanoparticle-based topical ophthalmic formulation for sustained release of stereoisomeric dipeptide prodrugs of ganciclovir. Drug Deliv. 2016;23(7):2399–2409. doi:10.3109/10717544.2014.996833
  • Baghban R, Talebnejad MR, Meshksar A, Heydari M, Khalili MR. Recent advancements in nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma, review and update. J Nanobiotechnology. 2023;21(1):402. doi:10.1186/s12951-023-02166-w
  • Nagai N, Umachi K, Otake H, et al. Ophthalmic in situ gelling system containing lanosterol nanoparticles delays collapse of lens structure in shumiya cataract rats. Pharmaceutics. 2020;12(7). doi:10.3390/pharmaceutics12070629
  • Kirchhof S, Goepferich AM, Brandl FP. Hydrogels in ophthalmic applications. Eur J Pharm Biopharm. 2015;95(Pt B):227–238. doi:10.1016/j.ejpb.2015.05.016
  • Wolf J, Rasmussen DK, Sun YJ, et al. Liquid-biopsy proteomics combined with AI identifies cellular drivers of eye aging and disease in vivo. Cell. 2023;186(22):4868–4884.e12. doi:10.1016/j.cell.2023.09.012
  • Halwani AA. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics. 2022;14(1). doi:10.3390/pharmaceutics14010106
  • van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. Nat Nanotechnol. 2019;14(11):1007–1017. doi:10.1038/s41565-019-0567-y