1,412
Views
9
CrossRef citations to date
0
Altmetric
Review

Sarcopenia in Menopausal Women: Current Perspectives

&
Pages 805-819 | Published online: 23 Jun 2022

References

  • Peacock K, Ketvertis KM. Menopause, in StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC; 2021.
  • Rodriguez M, Shoupe D. Surgical menopause. Endocrinol Metab Clin North Am. 2015;44(3):531–542. doi:10.1016/j.ecl.2015.05.003
  • Geraci A, Calvani R, Ferri E, et al. Sarcopenia and menopause: the role of estradiol. Front Endocrinol. 2021;12:682012. doi:10.3389/fendo.2021.682012
  • Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018;48(1):16–31. doi:10.1093/ageing/afy169
  • Chen L-K, Woo J, Assantachai P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21(3):300–307.e2. doi:10.1016/j.jamda.2019.12.012
  • Muscaritoli M, Anker SD, Argilés J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29(2):154–159. doi:10.1016/j.clnu.2009.12.004
  • Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–256. doi:10.1016/j.jamda.2011.01.003
  • Pion CH, Barbat-Artigas S, St-Jean-Pelletier F, et al. Muscle strength and force development in high- and low-functioning elderly men: influence of muscular and neural factors. Exp Gerontol. 2017;96:19–28. doi:10.1016/j.exger.2017.05.021
  • Morley JE. Hormones and Sarcopenia. Curr Pharm Des. 2017;23(30):4484–4492. doi:10.2174/1381612823666161123150032
  • Dhillon RJ, Hasni S. Pathogenesis and management of sarcopenia. Clin Geriatr Med. 2017;33(1):17–26. doi:10.1016/j.cger.2016.08.002
  • Pascual-Fernández J, Fernández-Montero A, Córdova-Martínez A, et al. Sarcopenia: molecular pathways and potential targets for intervention. Int J Mol Sci. 2020;21(22):8844. doi:10.3390/ijms21228844
  • Alcazar J, Frandsen U, Prokhorova T, et al. Changes in systemic GDF15 across the adult lifespan and their impact on maximal muscle power: the Copenhagen Sarcopenia Study. J Cachexia Sarcopenia Muscle. 2021;12(6):1418–1427. doi:10.1002/jcsm.12823
  • St-Jean-Pelletier F, Pion CH, Leduc-Gaudet J-P, et al. The impact of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men. J Cachexia Sarcopenia Muscle. 2017;8(2):213–228. doi:10.1002/jcsm.12139
  • Nishikawa H, Fukunishi S, Asai A, et al. Pathophysiology and mechanisms of primary sarcopenia (Review). Int J Mol Med. 2021;48(2). doi:10.3892/ijmm.2021.4989
  • Rolland Y, Vellas B. [Sarcopenia]. Rev Med Interne. 2009;30(2):150–160. French. doi:10.1016/j.revmed.2008.08.013
  • Holloszy JO. The biology of aging. Mayo Clin Proc. 2000;75(Suppl):S3–S8. doi:10.1016/S0025-6196(19)30634-2
  • Melton LJ 3rd, Khosla S, Crowson CS, et al. Epidemiology of sarcopenia. J Am Geriatr Soc. 2000;48(6):625–630. doi:10.1111/j.1532-5415.2000.tb04719.x
  • Mitchell WK, Williams J, Atherton P, et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260. doi:10.3389/fphys.2012.00260
  • Mayhew AJ, Amog K, Phillips S, et al. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age Ageing. 2019;48(1):48–56. doi:10.1093/ageing/afy106
  • Volpato S, Bianchi L, Cherubini A, et al. Prevalence and clinical correlates of sarcopenia in community-dwelling older people: application of the EWGSOP definition and diagnostic algorithm. J Gerontol a Biol Sci Med Sci. 2014;69(4):438–446. doi:10.1093/gerona/glt149
  • Papadopoulou SK, Tsintavis P, Potsaki G, et al. Differences in the prevalence of sarcopenia in community-dwelling, nursing home and hospitalized individuals. a systematic review and meta-analysis. J Nutr Health Aging. 2020;24(1):83–90. doi:10.1007/s12603-019-1267-x
  • Shafiee G, Keshtkar A, Soltani A, et al. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord. 2017;16(1):21. doi:10.1186/s40200-017-0302-x
  • McBreairty LE, Chilibeck PD, Gordon JJ, et al. Polycystic ovary syndrome is a risk factor for sarcopenic obesity: a case control study. BMC Endocr Disord. 2019;19(1):70. doi:10.1186/s12902-019-0381-4
  • Kim SW, Kim R. The association between hormone therapy and sarcopenia in postmenopausal women: the Korea National Health and Nutrition Examination Survey, 2008–2011. Menopause. 2020;27(5):506–511. doi:10.1097/GME.0000000000001509
  • Greendale GA, Sternfeld B, Huang M, et al. Changes in body composition and weight during the menopause transition. JCI Insight. 2019;4(5). doi:10.1172/jci.insight.124865
  • Sipilä S, Törmäkangas T, Sillanpää E, et al. Muscle and bone mass in middle-aged women: role of menopausal status and physical activity. J Cachexia Sarcopenia Muscle. 2020;11(3):698–709. doi:10.1002/jcsm.12547
  • Monterrosa-Castro A, Ortiz-Banquéz M, Mercado-Lara M. Prevalence of sarcopenia and associated factors in climacteric women of the Colombian Caribbean. Menopause. 2019;26(9):1038–1044. doi:10.1097/GME.0000000000001347
  • Zanchetta MB, Abdala R, Massari F, et al. Postmenopausal women with sarcopenia have higher prevalence of falls and vertebral fractures. Medicina. 2021;81(1):47–53.
  • Orprayoon N, Wainipitapong P, Champaiboon J, et al. Prevalence of pre-sarcopenia among postmenopausal women younger than 65 years. Menopause. 2021;28(12):1351–1357. doi:10.1097/GME.0000000000001866
  • Onambélé-Pearson GL, Tomlinson DJ, Morse CI, et al. A prolonged hiatus in postmenopausal HRT, does not nullify the therapy’s positive impact on ageing related sarcopenia. PLoS One. 2021;16(5):e0250813. doi:10.1371/journal.pone.0250813
  • Greeves JP, Cable NT, Reilly T, et al. Changes in muscle strength in women following the menopause: a longitudinal assessment of the efficacy of hormone replacement therapy. Clin Sci. 1999;97(1):79–84. doi:10.1042/CS19980406
  • Kenny AM, Dawson L, Kleppinger A, et al. Prevalence of sarcopenia and predictors of skeletal muscle mass in nonobese women who are long-term users of estrogen-replacement therapy. J Gerontol a Biol Sci Med Sci. 2003;58(5):M436–40. doi:10.1093/gerona/58.5.M436
  • Habermehl TL, Mason JB. Decreased sarcopenia in aged females with young ovary transplants was preserved in mice that received germ cell-depleted young ovaries. J Clin Med. 2019;8(1):40. doi:10.3390/jcm8010040
  • Maltais ML, Desroches J, Dionne IJ. Changes in muscle mass and strength after menopause. J Musculoskelet Neuronal Interact. 2009;9(4):186–197.
  • Lang T, Streeper T, Cawthon P, et al. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int. 2010;21(4):543–559. doi:10.1007/s00198-009-1059-y
  • Kuhl H. Pharmacology of estrogens and progestogens: influence of different routes of administration. Climacteric. 2005;8(Suppl 1):3–63. doi:10.1080/13697130500148875
  • Ali ES, Mangold C, Peiris AN. Estriol: emerging clinical benefits. Menopause. 2017;24(9):1081–1085. doi:10.1097/GME.0000000000000855
  • Holinka CF, Diczfalusy E, Coelingh Bennink HJ. Estetrol: a unique steroid in human pregnancy. J Steroid Biochem Mol Biol. 2008;110(1–2):138–143. doi:10.1016/j.jsbmb.2008.03.027
  • Lemoine S, Granier P, Tiffoche C, et al. Estrogen receptor alpha mRNA in human skeletal muscles. Med Sci Sports Exerc. 2003;35(3):439–443. doi:10.1249/01.MSS.0000053654.14410.78
  • D’Eon T, Braun B. The roles of estrogen and progesterone in regulating carbohydrate and fat utilization at rest and during exercise. J Womens Health Gend Based Med. 2002;11(3):225–237. doi:10.1089/152460902753668439
  • Messier V, Rabasa-Lhoret R, Barbat-Artigas S, et al. Menopause and sarcopenia: a potential role for sex hormones. Maturitas. 2011;68(4):331–336. doi:10.1016/j.maturitas.2011.01.014
  • Roubenoff R. Catabolism of aging: is it an inflammatory process? Curr Opin Clin Nutr Metab Care. 2003;6(3):295–299. doi:10.1097/01.mco.0000068965.34812.62
  • Lowe DA, Baltgalvis KA, Greising SM. Mechanisms behind estrogen’s beneficial effect on muscle strength in females. Exerc Sport Sci Rev. 2010;38(2):61–67. doi:10.1097/JES.0b013e3181d496bc
  • Phillips SK, Rook KM, Siddle NC, et al. Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci. 1993;84(1):95–98. doi:10.1042/cs0840095
  • Freeman EW, Sammel MD, Lin H, et al. Obesity and reproductive hormone levels in the transition to menopause. Menopause. 2010;17(4):718–726. doi:10.1097/gme.0b013e3181cec85d
  • Jones ME, Schoemaker M, Rae M, et al. Changes in estradiol and testosterone levels in postmenopausal women after changes in body mass index. J Clin Endocrinol Metab. 2013;98(7):2967–2974. doi:10.1210/jc.2013-1588
  • Colleluori G, Chen R, Napoli N, et al. Fat mass follows a U-shaped distribution based on estradiol levels in postmenopausal women. Front Endocrinol. 2018;9:315. doi:10.3389/fendo.2018.00315
  • Kim C, Golden SH, Mather KJ, et al. Racial/ethnic differences in sex hormone levels among postmenopausal women in the diabetes prevention program. J Clin Endocrinol Metab. 2012;97(11):4051–4060. doi:10.1210/jc.2012-2117
  • Setiawan VW, Haiman CA, Stanczyk FZ, et al. Racial/ethnic differences in postmenopausal endogenous hormones: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2006;15(10):1849–1855. doi:10.1158/1055-9965.EPI-06-0307
  • Figueroa A, Going SB, Milliken LA, et al. Body composition modulates the effects of hormone replacement therapy on growth hormone and insulin-like growth factor-I levels in postmenopausal women. Gynecologic and Obstetric Investigation. 2002;54(4):201–206. doi:10.1159/000068383
  • Tyagi V, Scordo M, Yoon RS, et al. Revisiting the role of testosterone: are we missing something? Rev Urol. 2017;19(1):16–24. doi:10.3909/riu0716
  • Herbst KL, Bhasin S. Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care. 2004;7(3):271–277. doi:10.1097/00075197-200405000-00006
  • Shea JL, Wong PY, Chen Y. Free testosterone: clinical utility and important analytical aspects of measurement. Adv Clin Chem. 2014;63:59–84.
  • van den Beld AW, de Jong FH, Grobbee DE, et al. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab. 2000;85(9):3276–3282. doi:10.1210/jcem.85.9.6825
  • Lee CE, McArdle A, Griffiths RD. The role of hormones, cytokines and heat shock proteins during age-related muscle loss. Clin Nutr. 2007;26(5):524–534. doi:10.1016/j.clnu.2007.05.005
  • Stanikova D, Zsido RG, Luck T, et al. Testosterone imbalance may link depression and increased body weight in premenopausal women. Transl Psychiatry. 2019;9(1):160. doi:10.1038/s41398-019-0487-5
  • Janssen I, Powell LH, Kazlauskaite R, et al. Testosterone and visceral fat in midlife women: the Study of Women’s Health Across the Nation (SWAN) fat patterning study. Obesity. 2010;18(3):604–610. doi:10.1038/oby.2009.251
  • Samaras N, Samaras D, Frangos E, et al. A review of age-related dehydroepiandrosterone decline and its association with well-known geriatric syndromes: is treatment beneficial? Rejuvenation Res. 2013;16(4):285–294. doi:10.1089/rej.2013.1425
  • Labrie F, Luu-The V, Labrie C, et al. DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front Neuroendocrinol. 2001;22(3):185–212. doi:10.1006/frne.2001.0216
  • Webb SJ, Geoghegan TE, Prough RA, et al. The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev. 2006;38(1–2):89–116. doi:10.1080/03602530600569877
  • Vieira-Marques C, Arbo BD, Cozer AG, et al. Sex-specific effects of dehydroepiandrosterone (DHEA) on glucose metabolism in the CNS. J Steroid Biochem Mol Biol. 2017;171:1–10. doi:10.1016/j.jsbmb.2016.11.014
  • de Menezes KJ, Peixoto C, Nardi AE, et al. Dehydroepiandrosterone, its sulfate and cognitive functions. Clin Pract Epidemiol Ment Health. 2016;12(1):24–37. doi:10.2174/1745017901612010024
  • Yanagita I, Fujihara Y, Kitajima Y, et al. A high serum cortisol/DHEA-S ratio is a risk factor for sarcopenia in elderly diabetic patients. J Endocr Soc. 2019;3(4):801–813. doi:10.1210/js.2018-00271
  • Labrie F, Luu-The V, Belanger A, et al. Is dehydroepiandrosterone a hormone? J Endocrinol. 2005;187(2):169–196. doi:10.1677/joe.1.06264
  • Maggio M, Lauretani F, Ceda GP. Sex hormones and sarcopenia in older persons. Curr Opin Clin Nutr Metab Care. 2013;16(1):3–13. doi:10.1097/MCO.0b013e32835b6044
  • De Pergola G, Giagulli VA, Garruti G, et al. Low dehydroepiandrosterone circulating levels in premenopausal obese women with very high body mass index. Metabolism. 1991;40(2):187–190. doi:10.1016/0026-0495(91)90172-S
  • Saruç M, Yüceyar H, Ayhan S, et al. The association of dehydroepiandrosterone, obesity, waist-Hip ratio and insulin resistance with fatty liver in postmenopausal women–a hyperinsulinemic euglycemic insulin clamp study. Hepatogastroenterology. 2003;50(51):771–774.
  • Lasley BL, Santoro N, Randolf JF, et al. The relationship of circulating dehydroepiandrosterone, testosterone, and estradiol to stages of the menopausal transition and ethnicity. J Clin Endocrinol Metab. 2002;87(8):3760–3767. doi:10.1210/jcem.87.8.8741
  • Cable JK, Grider MH. Physiology, Progesterone, in StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC; 2022.
  • Roeca C, Al-Safi Z, Santoro N, et al. MDText.com. In: Feingold KR, editor. The Postmenopausal Women, in Endotext. South Dartmouth (MA): Inc.Copyright © 2000–2022 MDText.com; 2022.
  • Kim YJ, Tamadon A, Park HT, et al. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia. 2016;2(3):140–155. doi:10.1016/j.afos.2016.06.002
  • Pinheiro SP, et al. Racial differences in premenopausal endogenous hormones. Cancer Epidemiol Biomarkers Prev. 2005;14(9):2147–2153. doi:10.1158/1055-9965.EPI-04-0944
  • Brinkman JE, Holmes MD, Pollak MN, et al. Physiology, Growth Hormone. Treasure Island (FL): StatPearls PublishingCopyright © 2022, StatPearls Publishing LLC; 2022.
  • Fanciulli G, Delitala A, Delitala G. Growth hormone, menopause and ageing: no definite evidence for ‘rejuvenation’ with growth hormone. Hum Reprod Update. 2009;15(3):341–358. doi:10.1093/humupd/dmp005
  • Nasu M, Sugimoto T, Chihara M, et al. Effect of natural menopause on serum levels of IGF-I and IGF-binding proteins: relationship with bone mineral density and lipid metabolism in perimenopausal women. Eur J Endocrinol. 1997;136(6):608–616. doi:10.1530/eje.0.1360608
  • McKee A, Morley JE, Matsumoto AM, et al. Sarcopenia: an endocrine disorder? Endocr Pract. 2017;23(9):1140–1149. doi:10.4158/EP171795.RA
  • Bian A, Ma Y, Zhou X, et al. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskelet Disord. 2020;21(1):214. doi:10.1186/s12891-020-03236-y
  • Nindl BC, Santtila M, Vaara J, et al. Circulating IGF-I is associated with fitness and health outcomes in a population of 846 young healthy men. Growth Horm IGF Res. 2011;21(3):124–128. doi:10.1016/j.ghir.2011.03.001
  • Jung SY, Hursting SD, Guindani M, et al. Bioavailable insulin-like growth factor-I inversely related to weight gain in postmenopausal women regardless of exogenous estrogen. Cancer Epidemiol Biomarkers Prev. 2014;23(3):534–544. doi:10.1158/1055-9965.EPI-13-1053
  • Thau L, Gandhi J, Sharma S. Physiology, Cortisol, in StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC; 2022.
  • Woods NF, Mitchell ES, Smith-Dijulio K. Cortisol levels during the menopausal transition and early postmenopause: observations from the Seattle Midlife Women’s Health Study. Menopause. 2009;16(4):708–718. doi:10.1097/gme.0b013e318198d6b2
  • Woods NF, Carr MC, Tao EY, et al. Increased urinary cortisol levels during the menopausal transition. Menopause. 2006;13(2):212–221. doi:10.1097/01.gme.0000198490.57242.2e
  • Schorr M, Lawson EA, Dichtel LE, et al. Cortisol measures across the weight spectrum. J Clin Endocrinol Metab. 2015;100(9):3313–3321. doi:10.1210/JC.2015-2078
  • Mårin P, Darin N, Amemiya T, et al. Cortisol secretion in relation to body fat distribution in obese premenopausal women. Metabolism. 1992;41(8):882–886. doi:10.1016/0026-0495(92)90171-6
  • Nappi RE, Simoncini T. Menopause transition: a golden age to prevent cardiovascular disease. Lancet Diabetes Endocrinol. 2021;9(3):135–137. doi:10.1016/S2213-8587(21)00018-8
  • Rizzoli R, Stevenson JC, Bauer JM, et al. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: a consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas. 2014;79(1):122–132. doi:10.1016/j.maturitas.2014.07.005
  • Duval K, Prud’homme D, Rabasa-Lhoret R, et al. Effects of the menopausal transition on dietary intake and appetite: a MONET Group Study. Eur J Clin Nutr. 2014;68(2):271–276. doi:10.1038/ejcn.2013.171
  • Abdulnour J, Doucet É, Brochu M, et al. The effect of the menopausal transition on body composition and cardiometabolic risk factors: a Montreal-Ottawa New Emerging Team group study. Menopause. 2012;19(7):760–767. doi:10.1097/gme.0b013e318240f6f3
  • Paddon-Jones D, Westman E, Mattes RD, et al. Protein, weight management, and satiety. Am J Clin Nutr. 2008;87(5):1558s–1561s. doi:10.1093/ajcn/87.5.1558S
  • Gregorio L, Brindisi J, Kleppinger A, et al. Adequate dietary protein is associated with better physical performance among post-menopausal women 60–90 years. J Nutr Health Aging. 2014;18(2):155–160. doi:10.1007/s12603-013-0391-2
  • Trumbo P, Schlicker S, Yates AA, et al. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621–1630. doi:10.1016/S0002-8223(02)90346-9
  • Rossato LT, Nahas P, de Branco F, et al. Higher protein intake does not improve lean mass gain when compared with RDA recommendation in postmenopausal women following resistance exercise protocol: a randomized clinical trial. Nutrients. 2017;9(9):1007. doi:10.3390/nu9091007
  • Bopp MJ, Houston DK, Lenchik L, et al. Lean mass loss is associated with low protein intake during dietary-induced weight loss in postmenopausal women. J Am Diet Assoc. 2008;108(7):1216–1220. doi:10.1016/j.jada.2008.04.017
  • Englert I, Bosy-Westphal A, Bischoff S, et al. Impact of protein intake during weight loss on preservation of fat-free mass, resting energy expenditure, and physical function in overweight postmenopausal women: a randomized controlled trial. Obes Facts. 2021;14(3):259–270. doi:10.1159/000514427
  • Silva TR, Lago SC, Yavorivski A, et al. Effects of high protein, low-glycemic index diet on lean body mass, strength, and physical performance in late postmenopausal women: a randomized controlled trial. Menopause. 2021;28(3):307–317. doi:10.1097/GME.0000000000001692
  • Nahas PC, Rossato LT, Martins FM, et al. Moderate increase in protein intake promotes a small additional improvement in functional capacity, but not in muscle strength and lean mass quality, in postmenopausal women following resistance exercise: a randomized clinical trial. Nutrients. 2019;11(6):1323. doi:10.3390/nu11061323
  • Longland TM, Oikawa SY, Mitchell CJ, et al. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. Am J Clin Nutr. 2016;103(3):738–746. doi:10.3945/ajcn.115.119339
  • Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009;12(1):86–90. doi:10.1097/MCO.0b013e32831cef8b
  • Aubertin-Leheudre M, Adlercreutz H. Relationship between animal protein intake and muscle mass index in healthy women. Br J Nutr. 2009;102(12):1803–1810. doi:10.1017/S0007114509991310
  • Andrich DE, Filion M-E, Woods M, et al. Relationship between essential amino acids and muscle mass, independent of habitual diets, in pre- and post-menopausal US women. Int J Food Sci Nutr. 2011;62(7):719–724. doi:10.3109/09637486.2011.573772
  • Toth MJ, Sites CK, Matthews DE. Role of ovarian hormones in the regulation of protein metabolism in women: effects of menopausal status and hormone replacement therapy. Am J Physiol Endocrinol Metab. 2006;291(3):E639–E646. doi:10.1152/ajpendo.00050.2006
  • Capatina C, Carsote M, Caragheorgheopol A, et al. Vitamin d deficiency in postmenopausal women - biological correlates. Maedica. 2014;9(4):316–322.
  • Bruyère O, Malaise O, Neuprez A, et al. Prevalence of vitamin D inadequacy in European postmenopausal women. Curr Med Res Opin. 2007;23(8):1939–1944. doi:10.1185/030079907X219562
  • Tandon VR, Sharma S, Mahajan S, et al. Prevalence of vitamin d deficiency among Indian menopausal women and its correlation with diabetes: a first Indian cross sectional data. J Midlife Health. 2014;5(3):121–125. doi:10.4103/0976-7800.141188
  • Li S, Ou Y, Zhang H, et al. Vitamin D status and its relationship with body composition, bone mineral density and fracture risk in urban central south Chinese postmenopausal women. Ann Nutr Metab. 2014;64(1):13–19. doi:10.1159/000358340
  • Chlebowski RT, Johnson KC, Lane D, et al. 25-hydroxyvitamin D concentration Vitamin D intake and joint symptoms in postmenopausal women. Maturitas. 2011;68(1):73–78.
  • Buchanan JR, Santen R, Cauffman S, et al. The effect of endogenous estrogen fluctuation on metabolism of 25-hydroxyvitamin D. Calcif Tissue Int. 1986;39(3):139–144. doi:10.1007/BF02555109
  • LeBlanc ES, Desai M, Perrin N, et al. Vitamin D levels and menopause-related symptoms. Menopause. 2014;21(11):1197–1203. doi:10.1097/GME.0000000000000238
  • Rizzoli R, Boonen S, Brandi M-L, et al. Vitamin D supplementation in elderly or postmenopausal women: a 2013 update of the 2008 recommendations from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Curr Med Res Opin. 2013;29(4):305–313. doi:10.1185/03007995.2013.766162
  • Anagnostis P, Dimopoulou C, Karras S, et al. Sarcopenia in post-menopausal women: is there any role for vitamin D? Maturitas. 2015;82(1):56–64. doi:10.1016/j.maturitas.2015.03.014
  • Park S, Ham JO, Lee BK. A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr. 2014;33(5):900–905. doi:10.1016/j.clnu.2013.09.016
  • Petroni ML, Caletti MT, Dalle Grave R, et al. Prevention and treatment of sarcopenic obesity in women. Nutrients. 2019;11(6):1302. doi:10.3390/nu11061302
  • Pérez-López FR, Chedraui P, Pilz S. Vitamin D supplementation after the menopause. Ther Adv Endocrinol Metab. 2020;11:2042018820931291. doi:10.1177/2042018820931291
  • Buckinx F, Aubertin-Leheudre M. Nutrition to prevent or treat cognitive impairment in older adults: a GRADE recommendation. J Prev Alzheimers Dis. 2021;8(1):110–116. doi:10.14283/jpad.2020.40
  • Granic A, Sayer AA, Robinson SM. Dietary patterns, skeletal muscle health, and sarcopenia in older adults. Nutrients. 2019;11(4):745. doi:10.3390/nu11040745
  • Baumann CW, Kwak D, Liu HM, et al. Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality? J Appl Physiol. 2016;121(5):1047–1052. doi:10.1152/japplphysiol.00321.2016
  • Cruz-Jentoft AJ, Romero-Yuste S, Chamizo Carmona E, et al. Sarcopenia, immune-mediated rheumatic diseases, and nutritional interventions. Aging Clin Exp Res. 2021;33(11):2929–2939. doi:10.1007/s40520-021-01800-7
  • Francaux M, Demeulder B, Naslain D, et al. Aging reduces the activation of the mTORC1 pathway after resistance exercise and protein intake in human skeletal muscle: potential role of REDD1 and Impaired Anabolic Sensitivity. Nutrients. 2016;8(1):47. doi:10.3390/nu8010047
  • Silva TR, Oppermann K, Reis FM, et al. Nutrition in menopausal women: a narrative review. Nutrients. 2021;13(7):2149. doi:10.3390/nu13072149
  • Barrea L, Pugliese G, Laudisio D, et al. Mediterranean diet as medical prescription in menopausal women with obesity: a practical guide for nutritionists. Crit Rev Food Sci Nutr. 2021;61(7):1201–1211. doi:10.1080/10408398.2020.1755220
  • Sayón-Orea C, Santiago S, Cuervo M, et al. Adherence to Mediterranean dietary pattern and menopausal symptoms in relation to overweight/obesity in Spanish perimenopausal and postmenopausal women. Menopause. 2015;22(7):750–757. doi:10.1097/GME.0000000000000378
  • Zhang Y, Guo H, Liang J, et al. Relationship between dietary omega-3 and omega-6 polyunsaturated fatty acids level and sarcopenia. A meta-analysis of observational studies. Front Nutr. 2021;8:738083. doi:10.3389/fnut.2021.738083
  • Tachtsis B, Camera D, Lacham-Kaplan O. Potential roles of n-3 PUFAs during skeletal muscle growth and regeneration. Nutrients. 2018;10(3):309. doi:10.3390/nu10030309
  • Chae M, Park K. Association between dietary omega-3 fatty acid intake and depression in postmenopausal women. Nutr Res Pract. 2021;15(4):468–478. doi:10.4162/nrp.2021.15.4.468
  • Cybulska AM, Skonieczna-żydecka K, Drozd A, et al. Fatty acid profile of postmenopausal women receiving, and not receiving, hormone replacement therapy. Int J Environ Res Public Health. 2019;16(21):4273. doi:10.3390/ijerph16214273
  • Jeromson S, Gallagher I, Galloway S, et al. Omega-3 fatty acids and skeletal muscle health. Mar Drugs. 2015;13(11):6977–7004. doi:10.3390/md13116977
  • Dupont J, Dedeyne L, Dalle S, et al. The role of omega-3 in the prevention and treatment of sarcopenia. Aging Clin Exp Res. 2019;31(6):825–836. doi:10.1007/s40520-019-01146-1
  • Bird JK, Troesch B, Warnke I, et al. The effect of long chain omega-3 polyunsaturated fatty acids on muscle mass and function in sarcopenia: a scoping systematic review and meta-analysis. Clin Nutr ESPEN. 2021;46:73–86. doi:10.1016/j.clnesp.2021.10.011
  • Aubree Hawley AT, Sam W, Xinya L, Jamie B, Baum J. The Impact of whey protein and/or omega-3 fatty acid supplementation on body composition, energy expenditure and metabolic health in postmenopausal women (SHAPE Study). Curr Dev Nutr. 2021;5(2):500. doi:10.1093/cdn/nzab041_015
  • Duval K, Prud’homme D, Rabasa-Lhoret R, et al. Effects of the menopausal transition on energy expenditure: a MONET Group Study. Eur J Clin Nutr. 2013;67(4):407–411. doi:10.1038/ejcn.2013.33
  • Cunningham JJ. Body composition and resting metabolic rate: the myth of feminine metabolism. Am J Clin Nutr. 1982;36(4):721–726. doi:10.1093/ajcn/36.4.721
  • Abildgaard J, Pedersen AT, Green CJ, et al. Menopause is associated with decreased whole body fat oxidation during exercise. Am J Physiol Endocrinol Metab. 2013;304(11):E1227–E1236. doi:10.1152/ajpendo.00492.2012
  • Evans WJ. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr. 2010;91(4):1123s–1127s. doi:10.3945/ajcn.2010.28608A
  • Mishra N, Mishra VN. Devanshi exercise beyond menopause: Dos and Don’ts . J Midlife Health. 2011;2(2):51–56.
  • Juppi H-K, Sipilä S, Cronin NJ, et al. Role of menopausal transition and physical activity in loss of lean and muscle mass: a follow-up study in middle-aged Finnish women. J Clin Med. 2020;9(5):1588. doi:10.3390/jcm9051588
  • Nunes PR, Barcelos LC, Oliveira AA, et al. Effect of resistance training on muscular strength and indicators of abdominal adiposity, metabolic risk, and inflammation in postmenopausal women: controlled and randomized clinical trial of efficacy of training volume. Age. 2016;38(2):40. doi:10.1007/s11357-016-9901-6
  • Botero JP, Shiguemoto GE, Prestes J, et al. Effects of long-term periodized resistance training on body composition, leptin, resistin and muscle strength in elderly post-menopausal women. J Sports Med Phys Fitness. 2013;53(3):289–294.
  • Vasconcelos KS, Dias JMD, Araújo MC, et al. Effects of a progressive resistance exercise program with high-speed component on the physical function of older women with sarcopenic obesity: a randomized controlled trial. Braz J Phys Ther. 2016;20(5):432–440. doi:10.1590/bjpt-rbf.2014.0174
  • Thiebaud RS, Loenneke JP, Fahs CA, et al. The effects of elastic band resistance training combined with blood flow restriction on strength, total bone-free lean body mass and muscle thickness in postmenopausal women. Clin Physiol Funct Imaging. 2013;33(5):344–352. doi:10.1111/cpf.12033
  • de Oliveira Silva A, Dutra M, De Moraes WM, et al. Resistance training-induced gains in muscle strength, body composition, and functional capacity are attenuated in elderly women with sarcopenic obesity. Clin Interv Aging. 2018;13:411–417. doi:10.2147/CIA.S156174
  • Huang SW, Ku J-W, Lin L-F, et al. Body composition influenced by progressive elastic band resistance exercise of sarcopenic obesity elderly women: a pilot randomized controlled trial. Eur J Phys Rehabil Med. 2017;53(4):556–563. doi:10.23736/S1973-9087.17.04443-4
  • Liao CD, Tsauo J-Y, Lin L-F, et al. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity: a CONSORT-compliant prospective randomized controlled trial. Medicine. 2017;96(23):e7115. doi:10.1097/MD.0000000000007115
  • Asikainen TM, Kukkonen-Harjula K, Miilunpalo S. Exercise for health for early postmenopausal women: a systematic review of randomised controlled trials. Sports Med. 2004;34(11):753–778. doi:10.2165/00007256-200434110-00004
  • Wu PY, Huang K-S, Chen K-M, et al. Exercise, nutrition, and combined exercise and nutrition in older adults with sarcopenia: a systematic review and network meta-analysis. Maturitas. 2021;145:38–48. doi:10.1016/j.maturitas.2020.12.009
  • Kim HK, Suzuki T, Saito K, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc. 2012;60(1):16–23. doi:10.1111/j.1532-5415.2011.03776.x
  • Orsatti FL, Maestá N, de Oliveira EP, et al. Adding soy protein to milk enhances the effect of resistance training on muscle strength in postmenopausal women. J Diet Suppl. 2018;15(2):140–152. doi:10.1080/19390211.2017.1330794
  • Maesta N, Nahas EAP, Nahas-Neto J, et al. Effects of soy protein and resistance exercise on body composition and blood lipids in postmenopausal women. Maturitas. 2007;56(4):350–358. doi:10.1016/j.maturitas.2006.10.001
  • Kim H, Suzuki T, Saito K, et al. Effects of exercise and tea catechins on muscle mass, strength and walking ability in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. Geriatr Gerontol Int. 2013;13(2):458–465. doi:10.1111/j.1447-0594.2012.00923.x
  • Nabuco HCG, Tomeleri CM, Fernandes RR, et al. Effect of whey protein supplementation combined with resistance training on body composition, muscular strength, functional capacity, and plasma-metabolism biomarkers in older women with sarcopenic obesity: a randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN. 2019;32:88–95. doi:10.1016/j.clnesp.2019.04.007
  • Mason C, Xiao L, Imayama I, et al. Influence of diet, exercise, and serum vitamin d on sarcopenia in postmenopausal women. Med Sci Sports Exerc. 2013;45(4):607–614. doi:10.1249/MSS.0b013e31827aa3fa
  • Josse AR, Atkinson SA, Tarnopolsky MA, et al. Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J Nutr. 2011;141(9):1626–1634. doi:10.3945/jn.111.141028
  • Barbat-Artigas S, Garnier S, Joffroy S, et al. Caloric restriction and aerobic exercise in sarcopenic and non-sarcopenic obese women: an observational and retrospective study. J Cachexia Sarcopenia Muscle. 2016;7(3):284–289. doi:10.1002/jcsm.12075
  • Tiidus PM. Benefits of estrogen replacement for skeletal muscle mass and function in post-menopausal females: evidence from human and animal studies. Eurasian J Med. 2011;43(2):109–114. doi:10.5152/eajm.2011.24
  • Sørensen MB, Rosenfalck AM, Højgaard L, et al. Obesity and sarcopenia after menopause are reversed by sex hormone replacement therapy. Obes Res. 2001;9(10):622–626. doi:10.1038/oby.2001.81
  • Kenny AM, Kleppinger A, Wang Y, et al. Effects of ultra-low-dose estrogen therapy on muscle and physical function in older women. J Am Geriatr Soc. 2005;53(11):1973–1977. doi:10.1111/j.1532-5415.2005.53567.x
  • Aubertin-Leheudre M, Audet M, Goulet EDB, et al. HRT provides no additional beneficial effect on sarcopenia in physically active postmenopausal women: a cross-sectional, observational study. Maturitas. 2005;51(2):140–145. doi:10.1016/j.maturitas.2004.06.017
  • Mintziori G, Lambrinoudaki I, Goulis DG, et al. EMAS position statement: non-hormonal management of menopausal vasomotor symptoms. Maturitas. 2015;81(3):410–413. doi:10.1016/j.maturitas.2015.04.009
  • Glisic M, Kastrati N, Musa J, et al. Phytoestrogen supplementation and body composition in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Maturitas. 2018;115:74–83. doi:10.1016/j.maturitas.2018.06.012
  • Tang S, Du Y, Oh C, et al. Effects of soy foods in postmenopausal women: a focus on osteosarcopenia and obesity. J Obes Metab Syndr. 2020;29(3):180–187. doi:10.7570/jomes20006
  • Adlercreutz H. Phytoestrogens: epidemiology and a possible role in cancer protection. Environ Health Perspect. 1995;103(Suppl 7):103–112. doi:10.1289/ehp.95103s7103
  • Galleano M, Calabro V, Prince PD, et al. Flavonoids and metabolic syndrome. Ann N Y Acad Sci. 2012;1259(1):87–94. doi:10.1111/j.1749-6632.2012.06511.x
  • Aubertin-Leheudre M, Lord C, Khalil A, et al. Six months of isoflavone supplement increases fat-free mass in obese-sarcopenic postmenopausal women: a randomized double-blind controlled trial. Eur J Clin Nutr. 2007;61(12):1442–1444. doi:10.1038/sj.ejcn.1602695
  • Choquette S, Dion T, Brochu M, et al. Soy isoflavones and exercise to improve physical capacity in postmenopausal women. Climacteric. 2013;16(1):70–77. doi:10.3109/13697137.2011.643515
  • Smith-Ryan AE, Cabre HE, Eckerson JM, et al. Creatine supplementation in women’s health: a lifespan perspective. Nutrients. 2021;13(3):877. doi:10.3390/nu13030877
  • Lobo DM, Tritto AC, da Silva LR, et al. Effects of long-term low-dose dietary creatine supplementation in older women. Exp Gerontol. 2015;70:97–104. doi:10.1016/j.exger.2015.07.012
  • Gualano B, Macedo AR, Alves CRR, et al. Creatine supplementation and resistance training in vulnerable older women: a randomized double-blind placebo-controlled clinical trial. Exp Gerontol. 2014;53:7–15. doi:10.1016/j.exger.2014.02.003
  • Chilibeck PD, Kaviani M, Candow D, et al. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J Sports Med. 2017;8:213–226. doi:10.2147/OAJSM.S123529
  • Fragala MS, Dam T-TL, Barber V, et al. Strength and function response to clinical interventions of older women categorized by weakness and low lean mass using classifications from the Foundation for the National Institute of Health sarcopenia project. J Gerontol a Biol Sci Med Sci. 2015;70(2):202–209. doi:10.1093/gerona/glu110