277
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identification of Sex-Specific Genetic Polymorphisms Associated with Asthma in Middle-Aged and Older Canadian Adults: An Analysis of CLSA Data

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 553-566 | Received 13 Jan 2023, Accepted 29 Apr 2023, Published online: 11 May 2023

References

  • Safiri S, Carson-Chahhoud K, Karamzad N, et al. Prevalence, deaths, and disability-adjusted life-years due to asthma and its attributable risk factors in 204 countries and territories, 1990–2019. Chest. 2022;161(2):318–329. doi:10.1016/j.chest.2021.09.042
  • Report from the Canadian Chronic Disease Surveillance System: Asthma and Chronic Obstructive Pulmonary Disease (COPD) in Canada, 2018. Available from: https://www.canada.ca/content/dam/phac-aspc/documents/services/publications/diseases-conditions/asthma-chronic-obstructive-pulmonary-disease-canada-2018/pub-eng.pdf. Accessed May 5, 2023.
  • Postma DS. Gender differences in asthma development and progression. Gend Med. 2007;4:S133–S146. doi:10.1016/S1550-8579(07)80054-4
  • Chowdhury NU, Guntur VP, Newcomb DC, Wechsler ME. Sex and gender in asthma. Eur Respir Rev. 2021;30(162):210067. doi:10.1183/16000617.0067-2021
  • Ekpruke CD, Silveyra P. Sex differences in airway remodeling and inflammation: clinical and biological factors. Front Allergy. 2022;29(3):875295. doi:10.3389/falgy.2022.875295
  • Fuseini H, Newcomb DC. Mechanisms driving gender differences in asthma. Curr Allergy Asthma Rep. 2017;17(3):19. doi:10.1007/s11882-017-0686-1
  • Koleade A, Farrell J, Mugford G, Gao Z. Female-specific risk factors associated with risk of ACO (asthma COPD overlap) in aboriginal people. J Asthma. 2020;57(9):925–932. doi:10.1080/02770903.2019.1621890
  • Wadden D, Allwood Newhook LA, Twells L, Farrell J, Gao Z. Sex-specific association between childhood BMI trajectories and asthma phenotypes. Int J Pediatr. 2018;2:e9057435.
  • Gao Z, Dosman JA, Rennie DC, et al. Gender-specific associations between polymorphisms in the Toll-like receptor (TLR) genes and lung function among workers in swine operations. J Toxicol Environ Health A. 2018;81(22):1186–1198. doi:10.1080/15287394.2018.1544523
  • Amegadzie JE, Gamble JM, Farrell J. Gender differences in inhaled pharmacotherapy utilization in patients with obstructive airway diseases (OADs): a population-based study. COPD. 2020;30(15):2355–2366. doi:10.2147/COPD.S264580
  • Pignataro FS, Bonini M, Forgione A, Melandri S, Usmani OS. Asthma and gender: the female lung. Pharmacol Res. 2017;1(119):384–390. doi:10.1016/j.phrs.2017.02.017
  • Chhabra SK, Chhabra P. Gender differences in perception of dyspnea, assessment of control, and quality of life in asthma. J Asthma. 2011;48(6):609–615. doi:10.3109/02770903.2011.587577
  • Zillmer LR, Gazzotti MR, Nascimento OA, Montealegre F, Fish J, Jardim JR. Gender differences in the perception of asthma and respiratory symptoms in a population sample of asthma patients in four Brazilian cities. J Bras Pneumol. 2014;40:591–598. doi:10.1590/S1806-37132014000600002
  • Blacquière MJ, Hylkema MN, Postma DS, Geerlings M, Timens W, Melgert BN. Airway inflammation and remodeling in two mouse models of asthma: comparison of males and females. Int Arch Allergy Immunol. 2010;153(2):173–181. doi:10.1159/000312635
  • Takeda M, Tanabe M, Ito W, et al. Gender difference in allergic airway remodelling and immunoglobulin production in mouse model of asthma. Respirology. 2013;18(5):797–806. doi:10.1111/resp.12078
  • McKenzie R, Burton MD, Royce SG, Tang MLK. Age and sex influences on airway hyperresponsiveness. J Asthma. 2010;47(6):651–654. doi:10.3109/02770901003692801
  • Gao Z, Dosman JA, Rennie DC, et al. Association of Toll-like receptor 2 gene polymorphisms with lung function in workers in swine operations. Ann Allergy Asthma Immunol. 2013;110(1):44–50.e1. doi:10.1016/j.anai.2012.11.003
  • Gao Z, Dosman JA, Rennie DC, et al. Effects of tumor necrosis factor (TNF) gene polymorphisms on the association between smoking and lung function among workers in swine operations. J Toxicol Environ Health A. 2021;84(13):536–552. doi:10.1080/15287394.2021.1896404
  • Gao Z, Rennie DC, Senthilselvan A. Allergic rhinitis and genetic components: focus on Toll-like receptors (TLRs) gene polymorphism. Appl Clin Genet. 2010;16:109–120.
  • El-Husseini ZW, Gosens R, Dekker F, Koppelman GH. The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir Med. 2020;8(10):1045–1056. doi:10.1016/S2213-2600(20)30363-5
  • Odimba U, Senthilselvan A, Farrell J, Gao Z. Current knowledge of asthma-COPD overlap (ACO) genetic risk factors, characteristics, and prognosis. COPD. 2021;18(5):585–595. doi:10.1080/15412555.2021.1980870
  • Espuela-Ortiz A, Herrera-Luis E, Lorenzo-Díaz F, et al. Role of sex on the genetic susceptibility to childhood asthma in latinos and African Americans. J Pers Med. 2021;11(11):1140. doi:10.3390/jpm11111140
  • Mersha TB, Martin LJ, Biagini Myers JM, et al. Genomic architecture of asthma differs by sex. Genomics. 2015;106(1):15–22. doi:10.1016/j.ygeno.2015.03.003
  • Gautam Y, Afanador Y, Abebe T, López JE, Mersha TB. Genome-wide analysis revealed sex-specific gene expression in asthmatics. Hum Mol Genet. 2019;28(15):2600–2614. doi:10.1093/hmg/ddz074
  • Myers RA, Scott NM, Gauderman WJ, et al. Genome-wide interaction studies reveal sex-specific asthma risk alleles. Hum Mol Genet. 2014;23(19):5251–5259. doi:10.1093/hmg/ddu222
  • Szczeklik W, Sanak M, Szczeklik A. Functional effects and gender association of COX-2 gene polymorphism G-765C in bronchial asthma. J Allergy Clin Immunol. 2004;114(2):248–253. doi:10.1016/j.jaci.2004.05.030
  • Forgetta V, Li R, Darmond-Zwaig C, et al. Cohort profile: genomic data for 26 622 individuals from the Canadian Longitudinal Study on Aging (CLSA). BMJ Open. 2022;12(3):e059021. doi:10.1136/bmjopen-2021-059021
  • Raina PS, Wolfson C, Kirkland SA, et al. The Canadian Longitudinal Study on Aging (CLSA). Can J Aging. 2009;28(3):221–229. doi:10.1017/S0714980809990055
  • Raina P, Wolfson C, Kirkland S, et al. Cohort profile: the Canadian Longitudinal Study on Aging (CLSA). Int J Epidemiol. 2019;48(6):1752–1753j. doi:10.1093/ije/dyz173
  • Purcell S, Chang C. General usage - PLINK 1.9 [Internet]; 2022. Available from: https://www.cog-genomics.org/plink/1.9/general_usage. Accessed May 5, 2023.
  • Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4:S13742. doi:10.1186/s13742-015-0047-8
  • Pruim RJ, Welch RP, Sanna S, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26(18):2336–2337. doi:10.1093/bioinformatics/btq419
  • Ivanov AI, Romanovsky AA. Putative dual role of ephrin-Eph receptor interactions in inflammation. IUBMB Life. 2006;58(7):389–394. doi:10.1080/15216540600756004
  • Wu J, Luo H. Recent advances on T-cell regulation by receptor tyrosine kinases. Curr Opin Hematol. 2005;12(4):292–297. doi:10.1097/01.moh.0000166497.26397.9f
  • Darling TK, Lamb TJ. Emerging roles for Eph receptors and ephrin ligands in immunity. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.01473
  • Wagener AH, Zwinderman AH, Luiten S, et al. The impact of allergic rhinitis and asthma on human nasal and bronchial epithelial gene expression. PLoS One. 2013;8(11):e80257. doi:10.1371/journal.pone.0080257
  • Wang Y, Thorin E, Luo H, et al. EPHB4 protein expression in vascular smooth muscle cells regulates their contractility, and EPHB4 deletion leads to hypotension in mice. J Biol Chem. 2015;290(22):14235–14244. doi:10.1074/jbc.M114.621615
  • Wang Y, Wu Z, Thorin E, et al. Estrogen and testosterone in concert with EFNB3 regulate vascular smooth muscle cell contractility and blood pressure. Am J Physiol Heart Circ Physiol. 2016;310(7):H861–H872. doi:10.1152/ajpheart.00873.2015
  • Luo H, Wu Z, Tremblay J, et al. Receptor tyrosine kinase Ephb6 regulates vascular smooth muscle contractility and modulates blood pressure in concert with sex hormones. J Biol Chem. 2012;287(9):6819–6829. doi:10.1074/jbc.M111.293365
  • Oertle T, Schwab ME. Nogo and its paRTNers. Trends Cell Biol. 2003;13(4):187–194. doi:10.1016/S0962-8924(03)00035-7
  • Wright PL, Yu J, Di YPP, et al. Epithelial reticulon 4B (Nogo-B) is an endogenous regulator of Th2-driven lung inflammation. J Exp Med. 2010;207(12):2595–2607. doi:10.1084/jem.20100786
  • Scatena R, Chupp GL, Perez MF, et al. The role of neurite outgrowth inhibitory protein-B in poorly controlled asthma. Am Thoracic Society Int Conf Abst. 2011:A1349–A1349. doi:10.1164/ajrccm-conference.2011.183.1_MeetingAbstracts.A1349
  • Kimura T, Endo S, Inui M, Saitoh SI, Miyake K, Takai T. Endoplasmic protein Nogo-B (RTN4-B) interacts with GRAMD4 and regulates TLR9-mediated innate immune responses. J Immunol. 2015;194(11):5426–5436. doi:10.4049/jimmunol.1402006
  • Xu W, Hong W, Shao Y, Ning Y, Cai Z, Li Q. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression. Respir Res. 2011;12(1):14. doi:10.1186/1465-9921-12-14
  • Ullah HMA, Elfadl AK, Park S, et al. Nogo-A is critical for pro-inflammatory gene regulation in myocytes and macrophages. Cells. 2021;10(2):282. doi:10.3390/cells10020282
  • Torcia MG, Nencioni L, Clemente AM, et al. Sex differences in the response to viral infections: TLR8 and TLR9 ligand stimulation induce higher IL10 production in males. PLoS One. 2012;7(6):e39853. doi:10.1371/journal.pone.0039853
  • Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626–638. doi:10.1038/nri.2016.90
  • Sakornsakolpat P, Prokopenko D, Lamontagne M, et al. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet. 2019;51(3):494–505. doi:10.1038/s41588-018-0342-2
  • Zhang L, Young JI, Gomez L, et al. Sex-specific DNA methylation differences in Alzheimer’s disease pathology. Acta Neuropathol Commun. 2021;9(1):77. doi:10.1186/s40478-021-01177-8
  • Fric J, Zelante T, Wong AYW, Mertes A, Yu HB, Ricciardi-Castagnoli P. NFAT control of innate immunity. Blood. 2012;120(7):1380–1389. doi:10.1182/blood-2012-02-404475
  • Han Y, Jia Q, Jahani PS, et al. Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nat Commun. 2020;11(1):1776. doi:10.1038/s41467-020-15649-3
  • Johansson Å, Rask-Andersen M, Karlsson T, Ek WE. Genome-wide association analysis of 350 000 Caucasians from the UK Biobank identifies novel loci for asthma, hay fever and eczema. Hum Mol Genet. 2019;28(23):4022–4041. doi:10.1093/hmg/ddz175
  • Waage J, Standl M, Curtin JA, et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet. 2018;50(8):1072–1080. doi:10.1038/s41588-018-0157-1
  • Ferreira MA, Vonk JM, Baurecht H, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet. 2017;49(12):1752–1757. doi:10.1038/ng.3985
  • Hinds DA, McMahon G, Kiefer AK, et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat Genet. 2013;45(8):907–911. doi:10.1038/ng.2686
  • Jakobi M, Kiefer A, Mirzakhani H, et al. Role of nuclear factor of activated T cells 2 (NFATc2) in allergic asthma. Immun Inflamm Dis. 2020;8(4):704–712. doi:10.1002/iid3.360
  • Tam A, Churg A, Wright JL, et al. Sex differences in airway remodeling in a mouse model of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;193(8):825–834. doi:10.1164/rccm.201503-0487OC
  • Tam A, Wadsworth S, Dorscheid D, Man SFP, Sin DD. Estradiol increases mucus synthesis in bronchial epithelial cells. PLoS One. 2014;9(6):e100633. doi:10.1371/journal.pone.0100633
  • Jensen RT, Battey JF, Spindel ER, Benya RV. International union of pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev. 2008;60(1):1–42. doi:10.1124/pr.107.07108
  • Kaczyńska K, Zając D, Wojciechowski P, Jampolska M. Regulatory peptides in asthma. Int J Mol Sci. 2021;22(24):13656. doi:10.3390/ijms222413656
  • Kane MA, Toi-Scott M, Johnson GL, Kelley KK, Boose D, Escobedo-Morse A. Bombesin-like peptide receptors in human bronchial epithelial cells. Peptides. 1996;17(1):111–118. doi:10.1016/0196-9781(95)02088-8
  • Shan L, Emanuel RL, Dewald D, et al. Bombesin-like peptide receptor gene expression, regulation, and function in fetal murine lung. Am J Physiol Lung Cell Mol Physiol. 2004;286(1):L165–L173. doi:10.1152/ajplung.00436.2002
  • Yang G, Huang H, Tang M, et al. Role of neuromedin B and its receptor in the innate immune responses against influenza A virus infection in vitro and in vivo. Vet Res. 2019;50(1):80. doi:10.1186/s13567-019-0695-2
  • Pujantell M, Altfeld M. Consequences of sex differences in Type I IFN responses for the regulation of antiviral immunity. Front Immunol. 2022;13. doi:10.3389/fimmu.2022.986840
  • Eni-Aganga I, Lanaghan ZM, Balasubramaniam M, Dash C, Pandhare J. PROLIDASE: a review from discovery to its role in health and disease. Front Mol Biosci. 2021;8. doi:10.3389/fmolb.2021.723003
  • Araujo BB, Dolhnikoff M, Silva LFF, et al. Extracellular matrix components and regulators in the airway smooth muscle in asthma. Eur Respir J. 2008;32(1):61–69. doi:10.1183/09031936.00147807
  • Parameswaran K, Willems-Widyastuti A, Alagappan VKT, Radford K, Kranenburg AR, Sharma HS. Role of extracellular matrix and its regulators in human airway smooth muscle biology. Cell Biochem Biophys. 2006;44(1):139–146. doi:10.1385/CBB:44:1:139
  • Alrumayyan N, Slauenwhite D, McAlpine SM, et al. Prolidase deficiency, a rare inborn error of immunity, clinical phenotypes, immunological features, and proposed treatments in twins. Allergy Asthma Clin Immunol. 2022;18(1):17. doi:10.1186/s13223-022-00658-2
  • Wang H, Kurien BT, Lundgren D, et al. A nonsense mutation of PEPD in four Amish children with prolidase deficiency. Am J Med Genet A. 2006;140(6):580–585. doi:10.1002/ajmg.a.31134
  • Kaleli S, Akkaya A, Akdogan M, Gültekin F. The effects of different treatments on prolidase and antioxidant enzyme activities in patients with bronchial asthma. Environ Toxicol Pharmacol. 2006;22(1):35–39. doi:10.1016/j.etap.2005.11.001
  • Cakmak A, Zeyrek D, Atas A, Celik H, Aksoy N, Erel O. Serum prolidase activity and oxidative status in patients with bronchial asthma. J Clin Lab Anal. 2009;23(2):132–138. doi:10.1002/jcla.20303
  • Gecit I, Aslan M, Gunes M, et al. Serum prolidase activity, oxidative stress, and nitric oxide levels in patients with bladder cancer. J Cancer Res Clin Oncol. 2012;138(5):739–743. doi:10.1007/s00432-011-1136-4
  • Pirinççi N, Kaba M, Geçit İ, et al. Serum prolidase activity, oxidative stress, and antioxidant enzyme levels in patients with renal cell carcinoma. Toxicol Ind Health. 2016;32(2):193–199. doi:10.1177/0748233713498924
  • Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci O. Oxidative stress in asthma. World Allergy Organ J. 2011;4(10):151–158. doi:10.1097/WOX.0b013e318232389e
  • Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21(5):1024–1032. doi:10.1111/jcmm.13038
  • White JH, Chiano M, Wigglesworth M, et al. Identification of a novel asthma susceptibility gene on chromosome 1qter and its functional evaluation. Hum Mol Genet. 2008;17(13):1890–1903. doi:10.1093/hmg/ddn087
  • Susman MW, Karuna EP, Kunz RC, et al. Kinesin superfamily protein Kif26b links Wnt5a-Ror signaling to the control of cell and tissue behaviors in vertebrates. eLife. 2017;6:e26509. doi:10.7554/eLife.26509
  • Li C, Smith SM, Peinado N, et al. WNT5a-ROR signaling is essential for alveologenesis. Cells. 2020;9(2):384. doi:10.3390/cells9020384
  • Chawengsaksophak K, Svingen T, Ng ET, et al. Loss of Wnt5a disrupts primordial germ cell migration and male sexual development in mice1. Biol Reprod. 2012;86(1):1–12. doi:10.1095/biolreprod.111.095232
  • Veerasingam E, Gao Z, Beach J, Senthilselvan A. Sex-specific characteristics for the coexistence of asthma and COPD in the Canadian population: a cross-sectional analysis of CLSA data. J Asthma. 2022;4:1–22.