134
Views
5
CrossRef citations to date
0
Altmetric
Clinical Trial Report

The Hypnotic Analgesia Suggestion Mitigated the Effect of the Transcranial Direct Current Stimulation on the Descending Pain Modulatory System: A Proof of Concept Study

, , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 2297-2311 | Published online: 16 Sep 2020

References

  • Fillingim RB, King CD, Ribeiro-Dasilva MC, Rahim-Williams B, Riley JL. Sex, gender, and pain: a review of recent clinical and experimental findings. J Pain. 2009;10(5):447–485. doi:10.1016/j.jpain.2008.12.001
  • Gupta A, Mayer EA, Fling C, et al. Sex-based differences in brain alterations across chronic pain conditions. J Neurosci Res. 2017;95(12):604–616. doi:10.1002/jnr.23856
  • Kong J, Tu P, Zyloney C, Su T. Intrinsic functional connectivity of the periaqueductal gray, a resting fMRI study. Behav Brain Res. 2010;211(2):215–219. doi:10.1016/j.bbr.2010.03.042
  • Gasparin A, Zortea M, Dos Santos VS, et al. Brain-derived neurotrophic factor modulates the effect of sex on the descending pain modulatory system in healthy volunteers. Pain Med. 2020. doi:10.1093/pm/pnaa027
  • Bajic D, Proudfit HK. Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol. 1999;405(3):359–379. doi:10.1002/(SICI)1096-9861(19990315)405:3<359::AID-CNE6>3.0.CO;2-W
  • Bruinstroop E, Cano G, Vanderhorst VGJM, et al. Spinal projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell groups in rats. J Comp Neurol. 2012;520(9):1985–2001. doi:10.1002/cne.23024
  • Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol. 2006;80(2):53–83. doi:10.1016/j.pneurobio.2006.08.001
  • Botelho LM, Morales-Quezada L, Rozisky JR, et al. A framework for understanding the relationship between descending pain modulation, motor corticospinal, and neuroplasticity regulation systems in chronic myofascial pain. Front Hum Neurosci. 2016;10:308. doi:10.3389/fnhum.2016.00308
  • Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain. 1979;6(3):283–304. doi:10.1016/0304-3959(79)90049-6
  • Yarnitsky D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): its relevance for acute and chronic pain states. Curr Opin Anaesthesiol. 2010;23(5):611–615. doi:10.1097/ACO.0b013e32833c348b
  • Nitsche MA, Cohen LG, Wassermann EM, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1:206–223. doi:10.1016/j.brs.2008.06.004
  • Stagg CJ, Best JG, Stephenson MC, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29(16):5202–5206. doi:10.1523/JNEUROSCI.4432-08.2009
  • Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–639. doi:10.1109/ICC.1999.765531
  • Vaseghi B, Zoghi M, Jaberzadeh S. How does anodal transcranial direct current stimulation of the pain neuromatrix affect brain excitability and pain perception? A randomised, double-blind, sham-control study. Langguth Bed. PLoS One. 2015;10(3):e0118340. doi:10.1371/journal.pone.0118340
  • Krause B, Márquez-Ruiz J, Kadosh RC. The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci. 2013;7:1001–1004. doi:10.3389/fnhum.2013.00602
  • Moreno-Duarte I, Morse LR, Alam M, Bikson M, Zafonte R, Fregni F. Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury. Neuroimage. 2014;85:1003–1013. doi:10.1016/j.neuroimage.2013.05.097
  • Ribeiro H, Sesterhenn RB, Souza AD, et al. Preoperative transcranial direct current stimulation: exploration of a novel strategy to enhance neuroplasticity before surgery to control postoperative pain. A randomized sham-controlled study. Avenanti A ed. PLoS One. 2017;12(11):e0187013. doi:10.1371/journal.pone.0187013
  • Russell MJ, Goodman TA, Visse JM, et al. Sex and electrode configuration in transcranial electrical stimulation. Front Psychiatry. 2017. doi:10.3389/fpsyt.2017.00147
  • Martin AK, Huang J, Hunold A, Meinzer M. Sex mediates the effects of high-definition transcranial direct current stimulation on “mind-reading.”. Neuroscience. 2017;366:84–94. doi:10.1016/j.neuroscience.2017.10.005
  • da Graca-tarragó M, Deitos A, Patrícia Brietzke A, et al. Electrical intramuscular stimulation in osteoarthritis enhances the inhibitory systems in pain processing at cortical and cortical spinal system. Pain Med. 2015;3(1):n/a-n/a. doi:10.1111/pme.12930
  • Silva AF, Zortea M, Carvalho S, et al. Anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex modulates attention and pain in fibromyalgia: randomized clinical trial. Sci Rep. 2017;7(1):135. doi:10.1038/s41598-017-00185-w
  • Brietzke AP. Large treatment effect with extended home-based transcranial direct current stimulation over dorsolateral prefrontal cortex in fibromyalgia: a proof of concept sham-randomized clinical study. J Pain. 2020. 21:212–224
  • Mariano TY, Van’t Wout M, Jacobson BL, et al. Effects of Transcranial Direct Current Stimulation (tDCS) on pain distress tolerance: a preliminary study. Pain Med. 2015;16:1580–1588. doi:10.1111/pme.12798
  • Nitsche MA, Koschack J, Pohlers H, Hullemann S, Paulus W, Happe S. Effects of frontal transcranial direct current stimulation on emotional state and processing in healthy humans. Front Psychiatry. 2012;3:58. doi:10.3389/fpsyt.2012.00058
  • Benwell CSY, Learmonth G, Miniussi C, Harvey M, Thut G. Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: evidence from biparietal tDCS influence on lateralized attention bias. Cortex. 2015;69:152–165. doi:10.1016/j.cortex.2015.05.007
  • Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010;75(24):2176–2184. doi:10.1212/WNL.0b013e318202013a
  • Jiang H, White MP, Greicius MD, Waelde LC, Spiegel D. Brain activity and functional connectivity associated with hypnosis. Cereb Cortex. 2017. doi:10.1093/cercor/bhw220
  • Beltran Serrano G, Rodrigues LP, Schein B, et al. Comparison of hypnotic suggestion and transcranial direct-current stimulation effects on pain perception and the descending pain modulating system: a crossover randomized clinical trial. Front Neurosci. 2019;13:662. doi:10.3389/fnins.2019.00662
  • Kihlstrom J. Hypnosis. Elsevier; 2016.
  • Oakley DA, Halligan PW. Hypnotic suggestion: opportunities for cognitive neuroscience. Nat Rev Neurosci. 2013;14(8):565–576. doi:10.1038/nrn3538
  • Montgomery GH, Duhamel KN, Redd WH. A meta-analysis of hypnotically induced analgesia: how effective is hypnosis? Int J Clin Exp Hypn. 2000;48(2):138–153. doi:10.1080/00207140008410045
  • Zeev-Wolf M, Goldstein A, Bonne O, Abramowitz EG. Hypnotically induced somatosensory alterations: toward a neurophysiological understanding of hypnotic anaesthesia. Neuropsychologia. 2016;87:182–191. doi:10.1016/j.neuropsychologia.2016.05.020
  • Wik G, Fischer H, Bragée B, Finer B, Fredrikson M. Functional anatomy of hypnotic analgesia: a PET study of patients with fibromyalgia. Eur J Pain. 1999;3(1):7–12. doi:10.1016/S1090-3801(99)90183-0
  • Carvalho C, Kirsch I, Mazzoni G, Leal I. Portuguese norms for the Waterloo-Stanford Group C (WSGC) scale of hypnotic susceptibility. Int J Clin Exp Hypn. 2008;56(3):295–305. doi:10.1080/00207144.2012.675299
  • Warmenhoven F, van Rijswijk E, Engels Y, et al. The Beck Depression Inventory (BDI-II) and a single screening question as screening tools for depressive disorder in Dutch advanced cancer patients. Support Care Cancer. 2012;20(2):319–324. doi:10.1007/s00520-010-1082-8
  • Derbyshire SWG, Jones AKP, Gyulai F, Clark S, Townsend D, Firestone LL. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain. 1997;73(3):431–445. doi:10.1016/S0304-3959(97)00138-3
  • Homan RW, Herman J, Purdy P. Cerebral location of international 10-20 system electrode placement. Electroencephalogr Clin Neurophysiol. 1987;66(4):376–382. doi:10.1016/0013-4694(87)90206-9
  • Jensen MP, Patterson DR. Hypnotic approaches for chronic pain management clinical implications of recent research findings. Am Psychol. 2014;69(2):167–177. doi:10.1037/a0035644
  • Patterson DR, Jensen MP. Hypnosis and clinical pain. Psychol Bull. 2003;129(4):495–521. doi:10.1037/0033-2909.129.4.495
  • Kaipper MB, Chachamovich E, Hidalgo MPL, da Silva Torres IL, Caumo W. Evaluation of the structure of Brazilian State-trait anxiety inventory using a rasch psychometric approach. J Psychosom Res. 2010;68(3):223–233. doi:10.1016/j.jpsychores.2009.09.013
  • Schestatsky P, Stefani LC, Sanches PR, et al. Validation of a Brazilian quantitative sensory testing (QST) device for the diagnosis of small fiber neuropathies. Arq Neuropsiquiatr. 2011;69:943–948. doi:10.1590/S0004-282X2011000700019
  • Von Baeyer CL, Piira T, Chambers CT, Trapanotto M, Zeltzer LK. Guidelines for the cold pressor task as an experimental pain stimulus for use with children. J Pain. 2005;6:218–227. doi:10.1016/j.jpain.2005.01.349
  • Randell EW, Yenice S. Delta checks in the clinical laboratory. Crit Rev Clin Lab Sci. 2019;56:75–97. doi:10.1080/10408363.2018.1540536
  • Lakshminarayanan MY, Horton R. The general linear model. Technometrics. 1988;30(1):130. doi:10.2307/1270349
  • Caumo W, Deitos A, Carvalho S, et al. Motor cortex excitability and BDNF levels in chronic musculoskeletal pain according to structural pathology. Front Hum Neurosci. 2016;10(2016JULY). doi:10.3389/fnhum.2016.00357
  • Zortea M, Ramalho L, Alves RL, et al. Transcranial direct current stimulation to improve the dysfunction of descending pain modulatory system related to opioids in chronic non-cancer pain: an integrative review of neurobiology and meta-analysis. Front Neurosci. 2019:13. doi:10.3389/fnins.2019.01218.
  • Fuster JM. The Prefrontal Cortex. Elsevier. Epub ahead of print 2008. doi:10.1016/B978-0-12-373644-4.X0001-1
  • Lorenz J, Cross DJ, Minoshima S, Morrow TJ, Paulson PE, Casey KL. A unique representation of heat allodynia in the human brain. Neuron. 2002;35:383–393. doi:10.1016/S0896-6273(02)00767-5
  • Jensen MP, Day MA, Miró J. Neuromodulatory treatments for chronic pain: efficacy and mechanisms. Nat Rev Neurol. 2014;10(3):167–178. doi:10.1038/nrneurol.2014.12
  • Valet M, Sprenger T, Boecker H, et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain. 2004;109(3):399–408. doi:10.1016/j.pain.2004.02.033
  • Dienes Z, Hutton S. Understanding hypnosis metacognitively: RTMS applied to left DLPFC increases hypnotic suggestibility. Cortex. 2013;49:386–392. doi:10.1016/j.cortex.2012.07.009
  • Braulio G, Passos SC, Leite F, et al. Effects of transcranial direct current stimulation block remifentanil-induced hyperalgesia: a randomized, double-blind clinical trial. Front Pharmacol. 2018;9. doi:10.3389/fphar.2018.00094
  • da Graca-tarragó M, Lech M, Angoleri LDM, et al. Intramuscular electrical stimulus potentiates motor cortex modulation effects on pain and descending inhibitory systems in knee osteoarthritis: a randomized, factorial, sham-controlled study. J Pain Res. 2019:209–221. doi:10.2147/JPR.S181019.
  • Thompson T, Terhune DB, Oram C, et al. The effectiveness of hypnosis for pain relief: a systematic review and meta-analysis of 85 controlled experimental trials. Neurosci Biobehav Rev. 2019;99:298–310. doi:10.1016/j.neubiorev.2019.02.013
  • Morin C, Bushnell CM. Temporal and qualitative properties of cold pain and heat pain: a psychophysical study. Pain. 1998;74(1):67–73. doi:10.1016/S0304-3959(97)00152-8
  • Duerden EG, Albanese MC. Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp. 2013. doi:10.1002/hbm.21416
  • Rainville P. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277(5328):968–971. doi:10.1126/science.277.5328.968
  • Powers A, Madan A, Hilbert M, et al. Effects of combining a brief cognitive intervention with transcranial direct current stimulation on pain tolerance: a randomized controlled pilot study. Pain Med. 2018;19:677–685. doi:10.1093/pm/pnx098
  • Mylius V, Jung M, Menzler K, et al. Effects of transcranial direct current stimulation on pain perception and working memory. Eur J Pain. 2012;16(7):974–982. doi:10.1002/j.1532-2149.2011.00105.x
  • Stefani LC, Torres ILDS, De SICC, Rozisky JR, Fregni F, Caumo W. BDNF as an effect modifier for gender effects on pain thresholds in healthy subjects. Neurosci Lett. 2012;514:62–66. doi:10.1016/j.neulet.2012.02.057
  • Cardinal TM, Antunes LC, Brietzke AP, et al. Differential neuroplastic changes in fibromyalgia and depression indexed by up-regulation of motor cortex inhibition and disinhibition of the descending pain system: an exploratory study. Front Hum Neurosci. 2019;13. doi:10.3389/fnhum.2019.00138
  • Almeida TF, Roizenblatt S, Tufik S. Afferent pain pathways: a neuroanatomical review. Brain Res. 2004;1000(12):40–56. doi:10.1016/j.brainres.2003.10.073
  • da Graca-tarragó M, Deitos A, Patrícia Brietzke A, et al. Electrical intramuscular stimulation in osteoarthritis enhances the inhibitory systems in pain processing at cortical and cortical spinal system. Pain Med. 2016;17(5):877–891. doi:10.1111/pme.12930
  • Sorge RE, Totsch SK. Sex differences in pain. J Neurosci Res. 2017;95(6):1271–1281. doi:10.1002/jnr.23841
  • Colby F. An analogue study of the initial carryover effects of meditation, hypnosis, and relaxation using naive college students. Biofeedback Self Regul. 1991;16:157–165. doi:10.1007/BF01000190
  • Fregni F, Nitsche MA, Loo CK, et al. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff. 2015;32(1):22–35. doi:10.3109/10601333.2015.980944
  • Freeman PR. The performance of the two-stage analysis of two-treatment, two-period crossover trials. Stat Med. 1989;8(12):1421–1432. doi:10.1002/sim.4780081202