383
Views
2
CrossRef citations to date
0
Altmetric
Review

Cognitive Impairment in Parkinson’s Disease: What We Know so Far

&
Pages 7-17 | Published online: 02 Jul 2020

References

  • Aarsland D, Larsen JP, Karlsen K, Lim NG, Tandberg E. Mental symptoms in Parkinson’s disease are important contributors to caregiver distress. Int J Geriat Psychiatry. 1999;14:866–874. doi:10.1002/(SICI)1099-1166(199910)14:10Ã866::AID-GPS38>3.0.CO;2-Z
  • Aarsland D, Larsen JP, Tandberg E, Laake K. Predictors of nursing home placement in Parkinson’s disease: a population-based, prospective study. J Am Geritatr Soc. 2000;48(8):938–942. doi:10.1111/j.1532-5415.2000.tb06891.x
  • Levy G, Tang MX, Louis ED, et al. The association of incident dementia with mortality in PD. Neurology. 2002;59:1708–1713. doi:10.1212/01.WNL.0000036610.36834.E0
  • Santangelo G, Vitale C, Picillo M, et al. Mild cognitive impairment in newly diagnosed Parkinson’s disease: a longitudinal prospective study. Parkinsonism Relat Disord. 2015;21(10):1219–1226. doi:10.1016/j.parkreldis.2015.08.024
  • Hely A, Morris JG, Reid WG, Traffificante R. Sydney multicenter study of Parkinson’s disease: non-L-dopa-responsive problems dominate at 15 years. Mov Disord. 2005;20(2):190–199. doi:10.1002/mds.20324
  • Williams-Gray CH, Mason SL, Evans JR, et al. The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort. J Neurol Neurosurg Psychiatry. 2013;84(11):1258–1264. doi:10.1136/jnnp-2013-305277
  • Aarsland D, Creese B, Politis M, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017;13(4):217–231. doi:10.1038/nrneurol.2017.27
  • Dalrymple-Alford JC, Livingston L, MacAskill MR, et al. Characterizing mild cognitive impairment in Parkinson’s disease. Mov Disord. 2011;26(4):629–636. doi:10.1002/mds.23592
  • Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Mov Disord. 2012;27:349–356. doi:10.1002/mds.24893
  • Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22(12):1689–1707. doi:10.1002/mds.21507
  • Litvan I, Aarsland D, Adler CH, et al. MDS task force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord. 2011;26(10):1814–1824. doi:10.1002/mds.23823
  • Marras C, Armstrong MJ, Meaney CA, et al. Measuring mild cognitive impairment in patients with Parkinson’s disease. Mov Disord. 2013;28:626–633. doi:10.1002/mds.25426
  • Lawrence BJ, Gasson N, Loftus AM. Prevalence and subtypes of mild cognitive impairment in Parkinson’s disease. Sci Rep. 2016;6:33929. doi:10.1038/srep33929
  • Aarsland D, Bronnick K, Williams-Gray C, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology. 2010;75(12):1062–1069. doi:10.1212/WNL.0b013e3181f39d0e
  • Aarsland D, Zaccai J, Brayne C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord. 2005;20(10):1255–1263. doi:10.1002/mds.20527
  • Williams-Gray CH, Evans JR, Goris A, et al. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain. 2009;132(11):2958–2969. doi:10.1093/brain/awp245
  • Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23(6):837–844. doi:10.1002/mds.21956
  • Jozwiak N, Postuma RB, Montplaisir J, et al. REM sleep behavior disorder and cognitive impairment in Parkinson’s disease. Sleep. 2017;40:8. doi:10.1093/sleep/zsx101
  • Vendette M, Gagnon JF, Décary A, et al. REM sleep behavior disorder predicts cognitive impairment in Parkinson disease without dementia. Neurology. 2007;69(19):1843–1849. doi:10.1212/01.wnl.0000278114.14096.74
  • Goldman JG, Ghode RA, Ouyang B, Bernard B, Goetz CG, Stebbins GT. Dissociations among daytime sleepiness, night time sleep, and cognitive status in Parkinson’s disease. Parkinsonism Relat Disord. 2013;19:806–811. doi:10.1016/j.parkreldis.2013.05.006
  • Goldman JG, Stebbins GT, Leung V, Tilley BC, Goetz CG. Relationships among cognitive impairment, sleep, and fatigue in Parkinson’s disease using the MDS-UPDRS. Parkinsonism Relat Disord. 2014;20(11):1135–1139. doi:10.1016/j.parkreldis.2014.08.001
  • Mata IF, Leverenz JB, Weintraub D, et al. APOE, MAPT, and SNCA genes and cognitive performance in parkinson disease. JAMA Neurol. 2014;71(11):1405–1412. doi:10.1001/jamaneurol.2014.1455
  • Morley JF, Xie SX, Hurtig HI, et al. Genetic influences on cognitive decline in Parkinson’s disease. Mov Disord. 2012;27:512–518. doi:10.1002/mds.24946
  • Piredda R, Desmarais P, Masellis M, Gasca-Salas C. Cognitive and psychiatric symptoms in genetically determined Parkinson’s disease: a systematic review. Eur J Neurol. 2020;27(2):229–234. doi:10.1111/ene.14115
  • Smith C, Malek N, Grosset K, Cullen B, Gentleman S, Grosset DG. Neuropathology of dementia in patients with Parkinson’s disease: a systematic review of autopsy studies. J Neurol Neurosurg Psychiatry. 2019;90(11):1234–1243. doi:10.1136/jnnp-2019-321111
  • Masliah E, Rockenstein E, Veinbergs I, et al. Beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci U S A. 2001;98(21):12245–12250. doi:10.1073/pnas.211412398
  • Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM. Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci. 2010;30(21):7281–7289. doi:10.1523/JNEUROSCI.0490-10.2010
  • Horvath J, Herrmann FR, Burkhard PR, Bouras C, Kövari E. Neuropathology of dementia in a large cohort of patients with Parkinson’s disease. Parkinsonism Relat Disord. 2013;19(10):864. doi:10.1016/j.parkreldis.2013.05.010
  • Ruffmann C, Calboli FC, Bravi I, et al. Cortical Lewy bodies and Aβ burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathol Appl Neurobiol. 2016;42(5):436–450. doi:10.1111/nan.12294
  • Sabbagh MN, Adler CH, Lahti TJ, et al. Parkinson disease with dementia: comparing patients with and without Alzheimer pathology. Alzheimer Dis Assoc Disord. 2009;23(3):295–297. doi:10.1097/WAD.0b013e31819c5ef4
  • Kotzbauer PT, Cairns NJ, Campbell MC, et al. Pathologic accumulation of α-synuclein and Aβ in Parkinson disease patients with dementia. Arch Neurol. 2012;69(10):1326–1331. doi:10.1001/archneurol.2012.1608
  • Compta Y, Parkkinen L, O’Sullivan SS, et al. Lewy- and Alzheimer type pathologies in Parkinson’s disease dementia: which is more important? Brain. 2011;134(5):1493–1505. doi:10.1093/brain/awr031
  • Perry EK, Curtis M, Dick DJ. Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1985;48:413–421. doi:10.1136/jnnp.48.5.413
  • Whitehouse PJ, Hedreen JC, White CL, Price DL. Basal forebrain neurons in the dementia of Parkinson’s disease. Ann Neurol. 1983;13:243–248. doi:10.1002/ana.410130304
  • Perry RH, Tomlinson BE, Candy JM, et al. Cortical cholinergic deficit in mentally impaired Parkinsonian patients. Lancet. 1983;2:789–790. doi:10.1016/S0140-6736(83)92317-6
  • Mattila PM, Roytta M, Lonnberg P, Marjamäki P, Helenius H, Rinne JO. Choline acetyltransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol. 2001;102:160–166. doi:10.1007/s004010100372
  • Pillon J, Kahan J, Zrinzo L, et al. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev. 2013;37(10):2676–2688. doi:10.1016/j.neubiorev.2013.09.003
  • Silbert LC, Kaye J. Neuroimaging and cognition in Parkinson’s disease dementia. Brain Pathol. 2010;20(3):646–653. doi:10.1111/j.1750-3639.2009.00368.x
  • Kuhl DE, Minoshima S, Fessleretal JA. Invivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol. 1996;40(3):399–410. doi:10.1002/ana.410400309
  • Christopher L. Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain. 2014;137(2):565–575. doi:10.1093/brain/awt337
  • Siepel FJ, Brønnick KS, Booijetal J. Cognitive executive impairment and dopaminergic deficits in de novo Parkinson’s disease. Mov Disord. 2014;29(14):1802–1808. doi:10.1002/mds.26051
  • Christopher L, Duff-Canning S, Koshimori Y, et al. Salience network and parahippocampal dopamine dysfunction in memory-impaired Parkinson disease. Ann Neurol. 2015;77(2):269–280. doi:10.1002/ana.24323
  • Compta Y, Buongiorno M, Bargalló N, et al. White matter hyperintensities, cerebrospinal amyloid-β and dementia in Parkinson’s disease. J Neurol Sci. 2016;367:284–290. doi:10.1016/j.jns.2016.06.009
  • González-Redondo R, Toledo J, Clavero P, et al. The impact of silent vascular brain burden in cognitive impairment in Parkinson’ disease. Eur J Neurol. 2012;19(8):1100–1107. doi:10.1111/j.1468-1331.2012.03682.x
  • Sunwoo MK, Jeon S, Ham JH, et al. The burden of white matter hyperintensities is a predictor of progressive mild cognitive impairment in patients with Parkinson’s disease. Eur J Neurol. 2014;21(6):922–e50. doi:10.1111/ene.12412
  • Chahine LM, Dos SC, Fullard M, et al. Modifiable vascular risk factors, white matter disease, and cognition in early Parkinson’s disease. Eur J Neurol. 2019;26(2):246–e18. doi:10.1111/ene.13797
  • Dalaker TO, Larsen JP, Dwyer MG, et al. White matter hyperintensities do not impact cognitive function in patients with newly diagnosed Parkinson’s disease. Neuroimage. 2009;47(4):2083–2089. doi:10.1016/j.neuroimage.2009.06.020
  • Schwartz RS, Halliday GM, Soh D, Cordato DJ, Kril JJ. Impact of small vessel disease on severity of motor and cognitive impairment in Parkinson’s disease. J Clin Neurosci. 2018;58:70–74. doi:10.1016/j.jocn.2018.10.029
  • Compta Y, Martí MJ, Ibarretxe-Bilbao N, et al. Cerebrospinal tau, phospho-tau, and beta-amyloid and neuropsychological functions in Parkinson’s disease. Mov Disord. 2009;24(15):2203–2210. doi:10.1002/mds.22594
  • Gmitterová K, Gawinecka J, Llorens F, Varges D, Valkovi˘c P, ZI. Cerebrospinal fluid markers analysis in the differential diagnosis of dementia with Lewy bodies and Parkinson’s disease dementia. Eur Arch Psychiatry Clin Neurosci. 2020;270(4):461–470. doi:10.1007/s00406-018-0928-9
  • Maetzler W, Liepelt I, Reimold M, et al. Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. Neurobiol Dis. 2009;34:107–112. doi:10.1016/j.nbd.2008.12.008
  • Modreanu R, Cerquera SC, Martí MJ, et al. Cross-sectional and longitudinal associations of motor fluctuations and non-motor predominance with cerebrospinal τ and Aβ as well as dementia-risk in Parkinson’s disease. J Neurol Sci. 2017;373:223–229. doi:10.1016/j.jns.2016.12.064
  • Hall S, Öhrfelt A, Constantinescu R, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol. 2012;69(11):1445–1452. doi:10.1001/archneurol.2012.1654
  • Vranová HP, Hényková E, Kaiserová M, et al. Tau protein, beta-amyloid 1−42 and clusterin CSF levels in the differential diagnosis of Parkinsonian syndrome with dementia. J Neurol Sci. 2014;343:120–124. doi:10.1016/j.jns.2014.05.052
  • Parnetti L, Tiraboschi P, Lanari A, et al. Cerebrospinal fluid biomarkers in Parkinson’s disease with dementia and dementia with Lewy bodies. Biol Psychiatry. 2008;64:850–855. doi:10.1016/j.biopsych.2008.02.016
  • Johar I, Mollenhauer B, Aarsland D. Cerebrospinal fluid biomarkers of cognitive decline in Parkinson’s disease. Int Rev Neurobiol. 2017;132:275–294.
  • Siderowf A, Xie SX, Hurtig H, et al. CSF amyloid 1-42 predicts cognitive decline in Parkinson disease. Neurology. 2010;75(12):1055–1061. doi:10.1212/WNL.0b013e3181f39a78
  • Terrelonge M, Marder KS, Weintraub D, Alcalay RN. CSF β-amyloid 1-42 predicts progression to cognitive impairment in newly diagnosed Parkinson disease. J Mol Neurosci. 2016;58(1):88–92. doi:10.1007/s12031-015-0647-x
  • Schrag A, Siddiqui UF, Anastasiou Z, Weintraub D, Schott JM. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson’s disease: a cohort study. Lancet Neurol. 2016;16(1):66–75. doi:10.1016/S1474-4422(16)30328-3
  • Compta Y, Pereira JB, Ríos J, et al. Combined dementia-risk biomarkers in Parkinson’s disease: a prospective longitudinal study. Parkinsonism Relat Disord. 2013;19(8):717–724. doi:10.1016/j.parkreldis.2013.03.009
  • Bäckström DC, Eriksson Domellöf M, Linder J, et al. Cerebrospinal fluid patterns and the risk of future dementia in early, incident Parkinson disease. JAMA Neurol. 2015;72:1175–1182. doi:10.1001/jamaneurol.2015.1449
  • Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB. Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain. 2017;140(7):1959–1976. doi:10.1093/brain/awx118
  • Eusebi P, Giannandrea D, Biscetti L, et al. Diagnostic utility of cerebrospinal fluid α-synuclein in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2017;32(10):1389–1400. doi:10.1002/mds.27110
  • Hall S, Surova Y, Ohrfelt A, et al. CSF biomarkers and clinical progression of Parkinson disease. Neurology. 2015;84:57–63. doi:10.1212/WNL.0000000000001098
  • Stewart T, Liu C, Ginghina C, et al. Cerebrospinal fluid α-Synuclein predicts cognitive decline in Parkinson disease progression in the DATATOP cohort. Am J Pathol. 2014;184:966–975. doi:10.1016/j.ajpath.2013.12.007
  • Pagano G, De Micco R, Yousaf T, Wilson H, Chandra A, Politis M. REM behavior disorder predicts motor progression and cognitive decline in Parkinson disease. Neurology. 2018;91(10):894–906. doi:10.1212/WNL.0000000000006134
  • Hansson O, Hall S, Ohrfelt A, et al. Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res Ther. 2014;6:25. doi:10.1186/alzrt255
  • Compta Y, Valente T, Saura J, et al. Correlates of cerebrospinal fluid levels of oligomeric- and total-α-synuclein in premotor, motor and dementia stages of Parkinson’s disease. J Neurol. 2015;262(2):294–306. doi:10.1007/s00415-014-7560-z
  • Cammisuli DM, Crowe S. Spatial disorientation andexecutive dysfunction in elderly nondemented patients with Parkinson’s disease. Neuropsychiatr Dis Treat. 2018;14:2531–2539. doi:10.2147/NDT.S173820
  • Kalbe E, Rehberg SP, Heber I, et al. Subtypes of mild cognitive impairment in patients with Parkinson’s disease: evidence from the LANDSCAPE study. J Neurol Neurosurg Psychiatry. 2016;87:1099–1105. doi:10.1136/jnnp-2016-313838
  • Peran P, Rascol O, Demonet JF, et al. Deficit of verb generation in nondemented patients with Parkinson’s disease. Mov Disord. 2003;18:150–156. doi:10.1002/mds.10306
  • Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain. 2007;130(7):1787–1798. doi:10.1093/brain/awm111
  • Kehagia AA, Barker RA, Robbins TW. Cognitive impairment in Parkinson’s disease: the dual syndrome hypothesis. Neurodegener Dis. 2013;11(2):79–92. doi:10.1159/000341998
  • Wood KL, Myall DJ, Livingston L, et al. Different PD-MCI criteria and risk of dementia. NPJ Parkinsons Dis. 2016;2(1):15027. doi:10.1038/npjparkd.2015.27
  • Domellof ME, Ekman U, Forsgren L, Elgh E. Cognitive function in the early phase of Parkinson’s disease, a five-year follow-up. Acta Neurol Scand. 2015;132:79–88. doi:10.1111/ane.12375
  • Pedersen KF, Larsen JP, Tysnes OB, Alves G. Natural course of mild cognitive impairment in Parkinson disease: a 5-year population-based study. Neurology. 2017;88(8):767–774. doi:10.1212/WNL.0000000000003634
  • Saredakis D, Collins-Praino LE, Gutteridge DS, Stephan BCM, Keage HAD. Conversion to MCI and dementia in Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2019;65:20–31. doi:10.1016/j.parkreldis.2019.04.020
  • Kempster PA, O’Sullivan SS, Holton JL, Revesz T, Lees AJ. Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain. 2010;133(6):1755–1762. doi:10.1093/brain/awq059
  • Bronnick K, Ehrt U, Emre M, et al. Attentional deficits affect activities of daily living in dementia-associated with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2006;77(10):1136–1142. doi:10.1136/jnnp.2006.093146
  • Weintraub D, Moberg PJ, Culbertson WC, Duda JE, Stern MB. Evidence for impaired encoding and retrieval memory profiles in Parkinson disease. Cogn Behav Neurol. 2004;17(4):195–200.
  • Cumming JL, Huber SJ. Visuospatial abnormalities in Parkinson’s disease. In: Huber SJ, Cummings JL, editors. Parkinson’s Disease. Neurobehavioral Aspects. New York: Oxford University Press; 1992:59–73.
  • Aarsland D, Brønnick K, Ehrt U, et al. Neuropsychiatric symptoms in patients with Parkinson’s disease and dementia: frequency, profile and associated care giver stress. J Neurol Neurosurg Psychiatry. 2007;78(1):36–42. doi:10.1136/jnnp.2005.083113
  • McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65:1863–1872. doi:10.1212/01.wnl.0000187889.17253.b1
  • Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–1601. doi:10.1002/mds.26424
  • Skorvanek M, Goldman JG, Jahanshahi M, et al. Global scales for cognitive screening in Parkinson’s disease: critique and recommendations. Mov Disord. 2018;33(2):208–218. doi:10.1002/mds.27233
  • Nasreddine Z, Phillips N, BÃcdirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699. doi:10.1111/j.1532-5415.2005.53221.x
  • Dalrymple-Alford JC, MacAskill MR, Nakas CT, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717–1725. doi:10.1212/WNL.0b013e3181fc29c9
  • Jurica PJ, Leitten CL, Mattis S. Psychological assessment resources, 2001. Dementia Rating Scale-2 (DRS-2). Arch Clin Neuropsychol. 2004;19:145–147. doi:10.1016/j.acn.2003.07.003
  • Matteau E, Dupre N, Langlois M, Provencher P, Simard M. Clinical validity of the Mattis Dementia Rating Scale-2 in Parkinson disease with MCI and dementia. J Geriatr Psychiatry Neurol. 2012;25:100e6.
  • Bezdicek O, Michalec J, Nikolai T, et al. Clinical validity of the Mattis Dementia Rating Scale in differentiating mild cognitive impairment in Parkinson’s disease and normative data. Dement Geriatr Cogn Disord. 2015;39(5–6):303–311. doi:10.1159/000375365
  • Pagonabarraga J, Kulisevsky J, Llebaria G, García-Sanchez C, Pascual-Sedano B, Gironell A. Parkinson’s disease-cognitive rating scale: a new cognitive scale specifific for Parkinson’s disease. Mov Disord. 2008;23:998–1005. doi:10.1002/mds.22007
  • Nie K, Zhang Y, Wang L, et al. A pilot study of psychometric properties of the Beijing version of Montreal Cognitive Assessment in patients with idiopathic Parkinson’s disease in China. J Clin Neurosci. 2012;19:1497–1500. doi:10.1016/j.jocn.2011.11.039
  • Beyer MK, Larsen JP, Aarsland D. Gray matter atrophy in Parkinson disease with dementia and dementia with Lewy bodies. Neurology. 2007;69(8):747–754. doi:10.1212/01.wnl.0000269666.62598.1c
  • Sanchez-Castaneda C, Rene R, Ramirez-Ruiz B, et al. Correlations between gray matter reductions and cognitive deficits in dementia with Lewy bodies and Parkinson’s disease with dementia. Mov Disord. 2009;24(12):1740–1746. doi:10.1002/mds.22488
  • Junqué C, Ramírez-Ruiz B, Tolosa E, et al. Amygdalar and hippocampal MRI volumetric reductions in Parkinson’s disease with dementia. Mov Disord. 2005;20(5):540–544. doi:10.1002/mds.20371
  • Pagonabarraga J, Corcuera-Solano I, Vives-Gilabert Y, et al. Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson’s disease. PLoS One. 2013;8(1):e54980. doi:10.1371/journal.pone.0054980
  • Burton EJ, McKeith IG, Burn DJ, Williams ED, O’Brien JT. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain. 2004;127(Pt 4):791–800. doi:10.1093/brain/awh088
  • Rektorova I, Biundo R, Marecek R, Weis L, Aarsland D, Antonini A. Grey matter changes in cognitively impaired Parkinson’s disease patients. PLoS One. 2014;9(01):e85595. doi:10.1371/journal.pone.0085595
  • Segura B, Baggio HC, Marti MJ, et al. Cortical thinning associated with mild cognitive impairment in Parkinson’s disease. Mov Disord. 2014;29(12):1495–1503. doi:10.1002/mds.25982
  • Gasca-Salas C, García-Lorenzo D, Garcia-Garcia D, et al. Parkinson’s disease with mild cognitive impairment: severe cortical thinning antedates dementia. Brain Imaging Behav. 2019;13:180–188. doi:10.1007/s11682-017-9751-6
  • Zarei M, Ibarretxe-Bilbao N, Compta Y, et al. Cortical thinning is associated with disease stages and dementia in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2013;84(8):875–881. doi:10.1136/jnnp-2012-304126
  • Mak E, Su L, Williams GB, et al. Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain. 2015;138(10):2974–2986. doi:10.1093/brain/awv211
  • Olde Dubbelink KT, Schoonheim MM, Deijen JB, Twisk JW, Barkhof F, Berendse HW. Functional connectivity and cognitive decline over 3 years in Parkinson disease. Neurology. 2014;83(22):2046–2053. doi:10.1212/WNL.0000000000001020
  • Wolters AF, SCF VDW, Leentjens AFG, Duits AA, Jacobs HIL, Kuijf ML. Resting-state fMRI in Parkinson’s disease patients with cognitive impairment: a meta-analysis. Parkinsonism Relat Disord. 2019;62:16–27. doi:10.1016/j.parkreldis.2018.12.016
  • Rolinski M, Fox C, Maidment I, McShane R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson’s disease dementia and cognitive impairment in Parkinson’s disease. Cochrane Database Syst Rev. 2012;(3):CD006504.
  • Wang HF, Yu JT, Tang SW, et al. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis. J Neurol Neurosurg Psychiatry. 2015;86:135–143. doi:10.1136/jnnp-2014-307659
  • Meng YH, Wang PP, Song YX, Wang JH. Cholinesterase inhibitors and memantine for Parkinson’s disease dementia and Lewy body dementia: a meta-analysis. Exp Ther Med. 2019;17(3):1611–1624. doi:10.3892/etm.2018.7129
  • Dubois B, Tolosa E, Katzenschlager R, et al. Donepezil in Parkinson’s disease dementia: a randomized, double-blind efficacy and safety study. Mov Disord. 2012;27(10):1230–1238. doi:10.1002/mds.25098
  • Aarsland D, Laake K, Larsen JP, Janvin C. Donepezil for cognitive impairment in parkinson’s disease: a randomised controlled study. J Neurol Neurosurg Psychiatry. 2002;72(6):708–712.
  • Mamikonyan E, Xie SX, Melvin E, Weintraub D. Rivastigmine for mild cognitive impairment in Parkinson disease: a placebo-controlled study. Mov Disord. 2015;30(7):912–918. doi:10.1002/mds.26236
  • Emre M, Aarsland D, Albanese A, et al. Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med. 2004;351(24):2509–2518. doi:10.1056/NEJMoa041470
  • Seppi K, Ray Chaudhuri K, Coelho M, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov Disord. 2019;34(2):180–198. doi:10.1002/mds.27602
  • Leroi I, Overshott R, Byrne EJ, Daniel E, Burns A. Randomized controlled trial of memantine in dementia associated with Parkinson’s disease. Mov Disord. 2009;24(8):1217–1221. doi:10.1002/mds.22495
  • Aarsland D, Ballard C, Walker Z, et al. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2009;8(7):613–618. doi:10.1016/S1474-4422(09)70146-2
  • Caballol N, Martí MJ, Tolosa E. Cognitive dysfunction and dementia in Parkinson disease. Mov Disord. 2007;22(17):S358–366. doi:10.1002/mds.21677
  • Factor S, Friedman J, Lannon M, Oakes D, Bourgeois K, Group PS. Clozapine for the treatment of drug-induced psychosis in Parkinson’s disease: results of the 12 week open label extension in the PSYCLOPS trial. Mov Disord. 2001;16:135–139. doi:10.1002/1531-8257(200101)16:1<135::AID-MDS1006>3.0.CO;2-Q
  • Pollak P, Tison F, Rascol O, et al. Clozapine in drug induced psychosis in Parkinson’s disease: a randomised, placebo controlled study with open follow up. J Neurol Neurosurg Psychiatry. 2004;75(5):689–695. doi:10.1136/jnnp.2003.029868
  • Morgante L, Epifanio A, Spina E, et al. Quetiapine and clozapine in parkinsonian patients with dopaminergic psychosis. Clin Neuropharmacol. 2004;27:153–156. doi:10.1097/01.wnf.0000136891.17006.ec
  • Merims D, Balas M, Peretz C, Shabtai H, Giladi N. Rater-blinded, prospective comparison: quetiapine versus clozapine for Parkinson’s disease psychosis. Clin Neuropharmacol. 2006;29(6):331–337. doi:10.1097/01.WNF.0000236769.31279.19
  • Ondo W, Tintner R, Voung K, Lai D, Ringholz G. Double-blind, placebo-controlled, unforcedtitration parallel trial of quetiapine for dopaminergic-induced hallucinations in Parkinson’s disease. Mov Disord. 2005;20:958–963. doi:10.1002/mds.20474
  • Rabey J, Prokhorov T, Miniovitz A, Dobronevsky E, Klein C. Effect of quetiapine in psychoticParkinson’s disease patients: a double-blind labeled study of 3 months’ duration. Mov Disord. 2007;22(3):313–318. doi:10.1002/mds.21116
  • Fernandez HH, Okun MS, Rodriguez RL, et al. Quetiapine improves visual hallucinations in Parkinson disease but not through normalization of sleep architecture: results from a double-blind clinical-polysomnography study. Int J Neurosci. 2009;119:2196–2205. doi:10.3109/00207450903222758
  • Schneider RB, Iourinets J, Richard IH. Parkinson’s disease psychosis: presentation, diagnosis and management. Neurodegener Dis Manag. 2017;7(6):365–376. doi:10.2217/nmt-2017-0028
  • Meltzer HY, Mills R, Revell S, et al. Pimavanserin, a serotonin (2A) receptor inverse agonist, for the treatment of Parkinson’s disease psychosis. Neuropsychopharmacology. 2010;35(4):881–892. doi:10.1038/npp.2009.176
  • Cummings J, Isaacson S, Mills R, et al. Pimavanserin for patients with Parkinson’s disease psychosis: a randomized, placebo-controlled Phase 3 trial. Lancet. 2014;383(9916):533–540. doi:10.1016/S0140-6736(13)62106-6
  • Leung IH, Walton CC, Hallock H, Lewis SJ, Valenzuela M, Lampit A. Cognitive training in Parkinson disease: a systematic review and meta-analysis. Neurology. 2015;85(21):1843–1851. doi:10.1212/WNL.0000000000002145
  • da Silva FC, Iop RDR, de Oliveira LC, et al. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: a systematic review of randomized controlled trials of the last 10 years. PLoS One. 2018;13(2):e0193113. doi:10.1371/journal.pone.0193113
  • Rektorová I, Anderková Ľ. Noninvasive brain stimulation and implications for nonmotor symptoms in Parkinson’s disease. Int Rev Neurobiol. 2017;134:1091–1110.
  • Dinkelbach L, Brambilla M, Manenti R, Brem AK. Non-invasive brain stimulation in Parkinson’s disease: exploiting crossroads of cognition and mood. Neurosci Biobehav Rev. 2017;75:407–418. doi:10.1016/j.neubiorev.2017.01.021