376
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Observational Study to Assesses the Efficacy and Safety of Microcurrent Therapy with a Portable Device in Patients Suffering from Chronic Back Pain, Skeletal System Pain, Fibromyalgia, Migraine or Depression

ORCID Icon & ORCID Icon
Pages 261-280 | Received 18 Sep 2023, Accepted 25 Oct 2023, Published online: 07 Dec 2023

References

  • Piccolino M. Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology. Trend Neurosci. 1997;20(10):443–448. doi:10.1016/S0166-2236(97)01101-6
  • Heidland A, Fazeli G, Klassen A, et al. Neuromuscular electrostimulation techniques: historical aspects and current possibilities in treatment of pain and muscle waisting. Clin Nephrol. 2013;79(Suppl 1):S12–S23.
  • Wing TW. Microcurrent Therapy, Reprints 1. Pioneering Microcurrent Research and Applied Electro-Acupoint & Therapy Articles. Available from: https://earthen.com/products/author/dr-thomas-w-wing. Accessed 06 December 2023.
  • Chaitow L, McMakin C. McMakin Frequency Specific Microcurrent in Pain Management, 2010, Churchill Livingstone (Verlag), 978-0-443-06976-5 (ISBN).
  • Cheng N, Van Hoof H, Bockx E, et al. The effects of electric currents on ATP generation, protein synthesis and membrane transport of rat skin. Clin Orthop Relat Res. 1982;171:264–272.
  • Mannheimer JS. The effect of microcurrent stimulation on ATP synthesis in the human masseter as evidenced by 31P magnetic resonance spectroscopy. Seton Hall University Dissertations and Theses (ETDs); 2005. Available from: https://scholarship.shu.edu/dissertations/1544. Accessed November 21, 2023.
  • Konstantinou E, Zagoriti Z, Pyriochou A, Poulas K. Microcurrent stimulation triggers MAPK signaling and TGF-β1 release in fibroblast and osteoblast-like cell lines. Cells. 2020;9(9):1924. doi:10.3390/cells9091924
  • Scholkmann F, Fels D, Cifra M. Non-chemical and non-contact cell-to-cell communication: a short review. Am J Transl Res. 2013;5(6):586–593.
  • Kolimechkov S, Seijo M, Swaine I, et al. Physiological effects of microcurrent and its application for maximising acute responses and chronic adaptations to exercise. Eur J Appl Physiol. 2023;123(3):451–465. doi:10.1007/s00421-022-05097-w
  • Mercola J, Kirsch D. The basis for micro current electrical therapy in conventional medical. J Adv Med. 1995;8:2.
  • Kadrya B. Efficacy of high frequency versus low frequency micro current electrical stimulation on resistivity index and blood flow volume in normal subjects. J Circ. 2018;2(1):3.
  • Park R, Son H, Kim K, Kim S, Taeyoung O. The effect of microcurrent electrical stimulation on the foot blood circulation and pain of diabetic neuropathy. J Physi Ther Sci. 2011;23:515–518. doi:10.1589/jpts.23.515
  • Sabel BA, Zhou W, Huber F, et al. Non-invasive brain microcurrent stimulation therapy of long-COVID-19 reduces vascular dysregulation and improves visual and cognitive impairment. Restor Neurol Neurosci. 2021;39(6):393–408. doi:10.3233/RNN-211249
  • Iijima H, Takahashi M. Microcurrent therapy as a therapeutic modality for musculoskeletal system pain: a systematic review accelerating the translation from clinical trials to patient care. Arch Rehabil Res Clin Transl. 2021;3(3):100145. doi:10.1016/j.arrct.2021.100145
  • Moon YS, Kwon DR, Lee YJ. Therapeutic effect of microcurrent on calf muscle atrophy in immobilized rabbit. Muscle Nerve. 2018;58(2):270–276. doi:10.1002/mus.26110
  • Ohno Y, Fujiya H, Goto A, et al. Microcurrent electrical nerve stimulation facilitates regrowth of mouse soleus muscle. Int J Med Sci. 2013;10(10):1286–1294. doi:10.7150/ijms.5985
  • Lerman I, Hauger R, Sorkin L, et al. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial. Neuromodulation. 2016;19(3):283. doi:10.1111/ner.12398
  • Yu C, Hu ZQ, Peng RY. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review. Military Med Res. 2014;1(24). doi:10.1186/2054-9369-1-24
  • Heffernan M. The effect of variable microcurrents on EEG spectrum and pain control. Can J Clin Med. 1997;4:4–11.
  • Holubec J. Cumulative response from cranial electrotherapy stimulation, (CES) for chronic pain. Pract Pain Manag. 2009;9:1.
  • Tan G, Rintala DH, Thornby JI, et al. Using cranial electrotherapy stimulation to treat pain associated with spinal cord injury. J Rehabil Res Dev. 2006;43(4):461–473. doi:10.1682/JRRD.2005.04.0066
  • Facci L, Nowotny JP, Tormem F, et al. Effects of transcutaneous electrical nerve stimulation (TENS) and interferential currents (IFC) in patients with nonspecific chronic low back pain: randomized clinical trial. São Paulo Med J. 2011;129(4):206–216. doi:10.1590/S1516-31802011000400003
  • Rajfur J, Pasternok M, Rajfur K, et al. Efficacy of selected electrical therapies on chronic low back pain: a comparative clinical pilot study. Med Sci Monit. 2017;23:85–100. doi:10.12659/MSM.899461
  • Boldt I. Non-pharmacological interventions for chronic pain in people with spinal cord injury. Cochrane Database Syst Rev. 2014;11:CD009177.
  • O’Connell N, Wand BM, Marston L, et al. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev. 2014. doi:10.1002/14651858.CD008208.pub3
  • Tan G, Alvarez JA, Jensen MP, et al. Complementary and alternative medicine approaches to pain management. J Clin Psychol. 2006;62(11):1419–1431. doi:10.1002/jclp.20321
  • Moreno-Duarte I, Morse LR, Alam M, et al. Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury. Neuroimage. 2014;85:1003–1013. doi:10.1016/j.neuroimage.2013.05.097
  • Lichtbroun A, Raicer M-MC, Smith RB, et al. The treatment of fibromyalgia with cranial electrotherapy stimulation. J Clin Rheumatol. 2001;7(2):72–78. doi:10.1097/00124743-200104000-00003
  • Cork R. The effect of cranial electrotherapy stimulation (CES) on pain associated with fibromyalgia. Internet J Anesthesiol. 2004;8:1092–1406.
  • Taylor A, Anderson JG, Riedel SL, et al. Cranial electrical stimulation improves symptoms and functional status in individuals with fibromyalgia. Pain Manag Nurs. 2013;14(4):327–335. doi:10.1016/j.pmn.2011.07.002
  • Taylor A, Anderson JG, Riedel SL, et al. A randomized, controlled, double-blind pilot study of the effects of cranial electrical stimulation on activity in brain pain processing regions in individuals with fibromyalgia. Explor J Sci Heal Heal. 2013;9:32–40.
  • Löfgren M, Norrbrink C. Pain relief in women with fibromyalgia: a cross-over study of superficial warmth stimulation and transcutaneous electrical nerve stimulation. J Rehabil Med. 2009;41(7):557–562. doi:10.2340/16501977-0371
  • Carbonario F, Matsutani LA, Yuan SLK, et al. Effectiveness of high-frequency transcutaneous electrical nerve stimulation at tender points as adjuvant therapy for patients with fibromyalgia. Eur J Phys Rehabil Med. 2013;49(2):197–204.
  • Gur A. Physical therapy modalities in management of fibromyalgia. Curr Pharm Des. 2006;12(1):29–35. doi:10.2174/138161206775193280
  • Gilula M. Cranial electrotherapy stimulation and fibromyalgia. Expert Rev Med Devices. 2007;4(4):489–495. doi:10.1586/17434440.4.4.489
  • de Silva Salazar A, Stein C, Marchese RR, et al. Electric stimulation for pain relief in patients with fibromyalgia: a systematic review and meta-analysis of randomized controlled trials. Pain Physician. 2017;20(20;2):15–25. doi:10.36076/ppj/2017/25
  • Johnson M, Claydon LS, Herbison GP, et al. Transcutaneous electrical nerve stimulation for fibromyalgia in adults. Cochrane Database Syst Rev. 2017;2017(10). doi:10.1002/14651858.CD012172.pub2
  • Benlidayi I. The effectiveness and safety of electrotherapy in the management of fibromyalgia. Rheumatol Int. 2020;40(10):1571–1580. doi:10.1007/s00296-020-04618-0
  • Rockstroh G, Schleicher W, Krummenauer F, et al. Effectiveness of microcurrent therapy as a constituent of post-hospital rehabilitative treatment in patients after total knee alloarthroplasty - a randomized clinical trial. Rehabilitation. 2010;49(03):173–179. doi:10.1055/s-0029-1246152
  • Tedesco D, Gori D, Desai KR, et al. Drug-free interventions to reduce pain OR opioid consumption after total knee arthroplasty a systematic review and meta-analysis. JAMA Surg. 2017;152(10):1–13. doi:10.1001/jamasurg.2017.2872
  • Kaya Mutlu E, Ercin E, Razak Ozdıncler A, et al. A comparison of two manual physical therapy approaches and electrotherapy modalities for patients with knee osteoarthritis: a randomized three arm clinical trial. Physiother Theory Pract. 2018;34(8):600–612. doi:10.1080/09593985.2018.1423591
  • Ranker A, Husemeyer O, Cabeza-Boeddinghaus N, et al. Microcurrent therapy in the treatment of knee osteoarthritis: could it be more than a placebo effect? A randomized controlled trial. Eur J Phys Rehabil Med. 2020;56(4):459–468. doi:10.23736/S1973-9087.20.05921-3
  • Zuim P, Garcia AR, Turcio KHL, et al. Evaluation of microcurrent electrical nerve stimulation (MENS) effectiveness on muscle pain in temporomandibular disorders patients. J Appl Oral Sci. 2006;14(1):61–66. doi:10.1590/S1678-77572006000100012
  • Rajpurohit B, Khatri S, Metgud D, et al. Effectiveness of transcutaneous electrical nerve stimulation and microcurrent electrical nerve stimulation in bruxism associated with masticatory muscle pain - a comparative study. Indian J Dent Res. 2010;21(1):104. doi:10.4103/0970-9290.62816
  • Saranya B, Ahmed J, Shenoy N, et al. Comparison of transcutaneous electric nerve stimulation (TENS) and microcurrent nerve stimulation (MENS) in the management of masticatory muscle pain: a comparative study. Pain Res Manag Nov. 2019;2019:1–5. doi:10.1155/2019/8291624
  • Kang D, Jeon J-K, Lee J-H, et al. Effects of low-frequency electrical stimulation on cumulative fatigue and muscle tone of the erector spinae. J Phys Ther Sci. 2015;27(1):105–108. doi:10.1589/jpts.27.105
  • Poltawski L, Johnson M, Watson T, et al. Microcurrent therapy in the management of chronic tennis elbow: pilot studies to optimize parameters. Physiother Res Int. 2012;17(3):157–166. doi:10.1002/pri.526
  • Brotman P. Low-intensity transcranial electrostimulation improves the efficacy of thermal biofeedback and quieting reflex training in the treatment of classical migraine headache. Am J Electromed. 1989;6:120–123.
  • Solomon S, Elkind A, Freitag F, et al. Safety and effectiveness of cranial electrotherapy in the treatment of tension headache. Headache J Head Face Pain. 1989;29(7):445–450. doi:10.1111/j.1526-4610.1989.hed2907445.x
  • Vernon H, Hagino C, Vernon H, et al. Systematic review of randomized clinical trials of complementary/alternative therapies in the treatment of tension-type and cervicogenic headache. Complement Ther Med. 1999;7(3):142–155. doi:10.1016/S0965-2299(99)80122-8
  • Perini F, De Boni A. Peripheral neuromodulation in chronic migraine. Neurol Sci. 2012;33(S1):31–33. doi:10.1007/s10072-012-1039-4
  • Tong K, Lo SK, Cheing GL, et al. Alternating frequencies of transcutaneous electric nerve stimulation: does it produce greater analgesic effects on mechanical and thermal pain thresholds? Arch Phys Med Rehabil. 2007;88(10):1344–1349. doi:10.1016/j.apmr.2007.07.017
  • Tan G, Rintala DH, Jensen MP, et al. Efficacy of cranial electrotherapy stimulation for neuropathic pain following spinal cord injury: a multi-site randomized controlled trial with a secondary 6-month open-label phase. J Spinal Cord Med. 2011;34(3):285–296. doi:10.1179/2045772311Y.0000000008
  • Nizard J, Lefaucheur J-P, Helbert M, et al. Non-invasive stimulation therapies for the treatment of refractory pain. Discov Med. 2012;14(74):21–31.
  • Gabriel A, Sobota R, Gialich S, et al. The use of targeted microcurrent therapy in postoperative pain management. Plast Surg Nurs. 2013;33(1):6–8; quiz 9–10. doi:10.1097/PSN.0b013e3182844219
  • Nardone R, Höller Y, Leis S, et al. Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: a review. J Spinal Cord Med. 2014;37(1):19–31. doi:10.1179/2045772313Y.0000000140
  • Pal U, Kumar L, Mehta G, et al. Trends in management of myofacial pain. Natl J Maxillofac Surg. 2014;5(2):109. doi:10.4103/0975-5950.154810
  • Schmitt R, Capo T, Boyd E, et al. Cranial electrotherapy stimulation as a treatment for anxiety in chemically dependent persons. Alcohol Clin Exp Res. 1986;10(2):158–160. doi:10.1111/j.1530-0277.1986.tb05064.x
  • Gibson T, O’Hair D. Cranial application of low level transcranial electrotherapy vs. relaxation instruction in anxious patients. Am J Electromed. 1987;4:18–21.
  • Winick RL. Cranial electrotherapy stimulation (CES): a safe and effective low cost means of anxiety control in a dental practice. Gen Dent. 1999;47(1):50–55.
  • Overcash S. Cranial electrotherapy stimulation in patients suffering from acute anxiety disorders. Am J Electromed. 1999;16:49–51.
  • Bystritsky A, Kerwin L, Feusner J, et al. A pilot study of cranial electrotherapy stimulation for generalized anxiety disorder. J Clin Psychiatry. 2008;69(3):412–417. doi:10.4088/JCP.v69n0311
  • Kim H, Kim WY, Lee YS, et al. The effect of cranial electrotherapy stimulation on preoperative anxiety and hemodynamic responses. Korean J Anesthesiol. 2008;55(6):657–661. doi:10.4097/kjae.2008.55.6.657
  • Lee S, Kim W-Y, Lee C-H, et al. Effects of cranial electrotherapy stimulation on preoperative anxiety, pain and endocrine response. J Int Med Res. 2013;41(6):1788–1795. doi:10.1177/0300060513500749
  • Koleoso O, Osinowo HO, Akhigbe KO. The role of relaxation therapy and cranial electrotherapy stimulation in the management of dental anxiety in Nigeria. J Dent Med Sci. 2013;10:51–57.
  • Hein E, Nowak M, Kiess O, et al. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm. 2012;120(5):821–827. doi:10.1007/s00702-012-0908-6
  • McClure D, Greenman SC, Koppolu SS, et al. A pilot study of safety and efficacy of cranial electrotherapy stimulation in treatment of bipolar II depression. J Nerv Ment Dis. 2015;203(11):827–835. doi:10.1097/NMD.0000000000000378
  • Yixin C, Lin Y, Jiuping Z, et al. Results of cranial electrotherapy stimulation to children with mixed anxiety and depressive disorder. Shanghai Arch Psych. 2007;19:203–205.
  • Barclay T, Barclay R. A clinical trial of cranial electrotherapy stimulation for anxiety and comorbid depression. J Affect Disord. 2014;164:171–177. doi:10.1016/j.jad.2014.04.029
  • Roh H, So W. Cranial electrotherapy stimulation affects mood state but not levels of peripheral neurotrophic factors or hypothalamic-pituitary-adrenal axis regulation. Technol Heal Care. 2017;25(3):403–412. doi:10.3233/THC-161275
  • Barabasz A. Treatment of insomnia in depressed patients by hypnosis and cerebral electrotherapy. Am J Clin Hypn. 1976;19(2):120–122. doi:10.1080/00029157.1976.10403850
  • Wagenseil B, Garcia C, Suvorov AV, et al. The effect of cranial electrotherapy stimulation on sleep in healthy women. Physiol Meas. 2018;39(11):114007. doi:10.1088/1361-6579/aaeafa
  • Kavirajan H, Lueck K, Chuang K. Alternating current cranial electrotherapy stimulation (CES) for depression. Cochrane Database Syst Rev. 2013;2013:1
  • Philip N, Nelson BG, Frohlich F, et al. Low-intensity transcranial current stimulation in psychiatry. Am j Psychiatry. 2017;174(7):628–639. doi:10.1176/appi.ajp.2017.16090996
  • Gilula M, Kirsch D. Cranial electrotherapy stimulation review: a safer alternative to psychopharmaceuticals in the treatment of depression. J Neurother. 2005;9(2):37–41. doi:10.1300/J184v09n02_02
  • Novakovic V, Sher L, Lapidus KB, et al. Brain stimulation in posttraumatic stress disorder. Eur J Psychotraumatol. 2011;2(1):5609. doi:10.3402/ejpt.v2i0.5609
  • Kirsch D, Nichols F. Cranial electrotherapy stimulation for treatment of anxiety, depression, and insomnia. Psychiatr Clin North Am. 2013;36(1):169–176. doi:10.1016/j.psc.2013.01.006
  • Huang Y, Lane H-Y, Lin C-H, et al. New treatment strategies of depression: based on mechanisms related to neuroplasticity. Neural Plast. 2017;2017:1–11. doi:10.1155/2017/4605971
  • O’Caoimh R, Mannion H, Sezgin D, et al. Non-pharmacological treatments for sleep disturbance in mild cognitive impairment and dementia: a systematic review and meta-analysis. Maturitas. 2019;127:82–94. doi:10.1016/j.maturitas.2019.06.007
  • Lande R, Gragnani C. Efficacy of cranial electric stimulation for the treatment of insomnia: a randomized pilot study. Complement Ther Med. 2013;21(1):8–13. doi:10.1016/j.ctim.2012.11.007
  • Carlson RV, Boyd KM, Webb DJ. The revision of the declaration of Helsinki: past, present and future. Br J Clin Pharmacol. 2004;57(6):695–713. doi:10.1111/j.1365-2125.2004.02103.x
  • Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36): i. Conceptual framework and item selection. Medical Care. 1992;30(6):473–483. doi:10.1097/00005650-199206000-00002
  • Hays RD, Shapiro MF. An overview of generic health-related quality of life measures for HIV research. Qual Life Res. 1992;1(2):91–97. doi:10.1007/BF00439716
  • Steward AL, Sherbourne C, Hayes RD, et al. Summary and discussion of MOS measures. In: Stewart AL, Ware JE, editorwebs. Measuring Functioning and Well-Being: The Medical Outcome Study Approach. Durham, NC: Duke University Press; 1992:345–371.
  • Taft C, Karlsson J, Sullivan M. Do SF-36 summary component scores accurately summarize subscale scores? Qual Life Res. 2001;10(5):395–404. doi:10.1023/A:1012552211996
  • Ware JE, Kosinski M, Bayliss MS, McHorney C, Rogers WH, Raczek A. Comparison of methods for scoring and statistical analysis of the SF-36 health profile and summary measures: summary of results from the medical outcomes study. Med Care. 1995;33:AS264–79.
  • Harris V, Hughes M, Roberts R, Dolan G, Williams EM. The development and testing of a Chemotherapy-Induced Phlebitis Severity (CIPS) scale for patients receiving anthracycline chemotherapy for breast cancer. J Clin Med. 2020;9(3):701. doi:10.3390/jcm9030701
  • Bolognese JA, Schnitzer TJ, Ehrich EW. Response relationship of VAS and Likert scales in osteoarthritis efficacy measurement. Osteoarth Cartil. 2003;11(7):499–507. doi:10.1016/S1063-4584(03)00082-7
  • Stewart WF, Lipton RB, Dowson AJ, Sawyer J. Development and testing of the Migraine Disability Assessment (MiDAS) Questionnaire to assess headache-related disability. Neurology. 2001;56(6 Suppl 1):S20–8. doi:10.1212/wnl.56.suppl_1.s20
  • Stewart WF, Lipton RB, Whyte J. An international study to assess reliability of the Migraine Disability Assessment (MiDAS) score. Neurology. 1999;53(5):S. 988–994. doi:10.1212/WNL.53.5.988
  • Agosti R, Chrubaski JE, Kohlmann T. Der MiDAS-Fragebogen. Sprachliche Validierung der deutschen Version, Veröffentlichungen des Kopfwehzentrums Hirslanden.
  • Busch M, Maske U, Ryl L, Schlack R, Hapke U. Prävalenz von depressiver Symptomatik und diagnostizierter Depression bei Erwachsenen in Deutschland, Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Publikationsserver des RKI; 2013.
  • Kroenke RL, Spitzer RL, Williams JBW. The PHQ-9. Validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):S. 606–613. doi:10.1046/j.1525-1497.2001.016009606.x
  • Spitzer RL, Kroenke K, Williams JBW, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092–1097. doi:10.1001/archinte.166.10.1092
  • Mossman SA, Luft MJ, Schroeder HK, et al. The Generalized Anxiety Disorder 7-item scale in adolescents with generalized anxiety disorder: signal detection and validation. Ann Clin Psychiatry. 2017;29(4):227–234A.
  • Morin CM, Belleville G, Bélanger L, Ivers H. The Insomnia Severity Index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep. 2011;34(5):601–608. doi:10.1093/sleep/34.5.601
  • Bastien CH, Vallières A, Morin CM. Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Med. 2001;2(4):297–307. doi:10.1016/S1389-9457(00)00065-4
  • Badhiwala JH, Witiw CD, Nassiri F, et al. Minimum clinically important difference in SF-36 Scores for use in degenerative cervical myelopathy. Spine (Phila Pa 1976). 2018;43(21):E1260–E1266. doi:10.1097/BRS.0000000000002684
  • Olsen MF, Bjerre E, Hansen MD, et al. Pain relief that matters to patients: systematic review of empirical studies assessing the minimum clinically important difference in acute pain. BMC Med. 2017;15(35). doi:10.1186/s12916-016-0775-3
  • Laigaard J, Pedersen C, Rønsbo TN, Mathiesen O, Karlsen APH. Minimal clinically important differences in randomised clinical trials on pain management after total hip and knee arthroplasty: a systematic review. Br J Anaesth. 2021;126(5):1029–1037. doi:10.1016/j.bja.2021.01.021
  • Bauer-Staeb C, Kounali D-Z, Welton NJ, et al. Effective dose 50 method as the minimal clinically important difference: evidence from depression trials. J Clin Epidemiol. 2021;137:200–208. doi:10.1016/j.jclinepi.2021.04.002
  • Toussaint A, Hüsing P, Gumz A, et al. Sensitivity to change and minimal clinically important difference of the 7-item Generalized Anxiety Disorder Questionnaire (GAD-7). J Affect Disord. 2020;265:395–401. doi:10.1016/j.jad.2020.01.032
  • Lynch CP, Cha EDK, Jenkins NW, et al. The minimum clinically important difference for patient health questionnaire-9 in minimally invasive transforaminal interbody fusion. Spine. 2021;46(9):603–609. doi:10.1097/BRS.0000000000003853
  • Yang M, Morin CM, Schaefer K, Wallenstein GV. Interpreting score differences in the insomnia severity index: using health-related outcomes to define the minimally important difference. Curr Med Res Opin. 2009;25(10):2487–2494. doi:10.1185/03007990903167415
  • Carvalho GF, Luedtke K, Braun T. Minimal important change and responsiveness of the Migraine Disability Assessment Score (MIDAS) questionnaire. J Headache Pain. 2021;22(1):126. doi:10.1186/s10194-021-01339-y
  • Buse DC, Lipton RB, Hallström Y, et al. Migraine-related disability, impact, and health-related quality of life among patients with episodic migraine receiving preventive treatment with erenumab. Cephalalgia. 2018;38(10):1622–1631. doi:10.1177/0333102418789072
  • Informationsdienst des Instituts der deutsche Wirtschaft; Der Krankenstand in Deutschland; 2023. Available from: https://www.iwd.de/artikel/krankenstand-in-deutschland-498654. Accessed November 21, 2023.
  • Ellert U. Gesundheitsbezogene Lebensqualität bei Erwachsenen in Deutschland Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1) Bundesgesundheitsbl. Robert Koch-Institut; 2013:56:643–649. doi:10.1007/s00103-013-1700-y
  • Agosti RETO, Julia C, Kohlmann E. Der MIDAS-Fragebogen. Ars Medici. 2008;16:700–701.
  • Brigden A, Parslow RM, Gaunt D, et al. Defining the minimally clinically important difference of the SF-36 physical function subscale for paediatric CFS/ME: triangulation using three different methods. Health Qual Life Outcomes. 2018;16(1):202. doi:10.1186/s12955-018-1028-2
  • Copay AG, Subach BR, Glassman SD, Schuler TC. Understanding the minimum clinically important difference: a review of concepts and methods. Spine J. 2007;7(5):541–546. doi:10.1016/j.spinee.2007.01.008
  • Cohen J. Jacob Cohen: a power primer. Psychol Bull Band. 1992;112(1):155–159. doi:10.1037/0033-2909.112.1.155
  • Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1988. ISBN 0-8058-0283-5.
  • Zhang W, Robertson J, Jones AC, Dieppe PA, Doherty M. The placebo effect and its determinants in osteoarthritis: meta-analysis of randomized controlled trials. Ann Rheum Dis. 2008;67(12):1716–1723. doi:10.1136/ard.2008.092015