844
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Impact of Magnetic Field Inhomogeneity on the Quality of Magnetic Resonance Images and Compensation Techniques: A Review

, &
Pages 43-56 | Received 15 Apr 2022, Accepted 13 Aug 2022, Published online: 01 Oct 2022

References

  • Blasche M, Fischer D, Healthineers. Magnet Homogeneity and Shimming. In: Siemens Healthineers. Siemens Healthcare GmbH; 2017. Available from: https://cdn0.scrvt.com/39b415fb07de4d9656c7b516d8e2d907/1800000003946047/b36c69893983/mreadings_mr-in-rt_3rd-edition_magnet-homogeneity-and-shimming_blasche_v2_1800000003946047.pdf. Accessed October 30, 2021.
  • Dale BM, Brown MA, Semelka RC. MRI: Basic Principles and Applications. John Wiley & Sons; 2015.
  • Weishaupt D, Köchli VD, Marincek B. How does MRI work?: an introduction to the physics and function of magnetic resonance imaging. Springer Science & Business Media, 2008.
  • Dwihapsari Y, Asdiantoro E, Maulidiyah N. On the assessment of image inhomogeneity using T2 magnetic resonance imaging in head phantom for radiotherapy treatment planning: preliminary study. Appl Magn Reson. 2020;51(1):59–69. doi:10.1007/s00723-019-01177-x
  • Walker A, Liney G, Metcalfe P, Holloway L. MRI distortion: considerations for MRI-based radiotherapy treatment planning. Australas Phys Eng Sci Med. 2014;37(1):103–113. doi:10.1007/s13246-014-0252-2
  • Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys. 1998;15(1):7–11. doi:10.1118/1.596162
  • Wachowicz K. Evaluation of active and passive shimming in magnetic resonance imaging. Res Rep Nucl Med. 2014;4:1–12. doi:10.2147/RRNM.S46526
  • Koch KM, Rothman DL, de Graaf RA. Optimization of static magnetic field homogeneity in the human and animal brain in vivo. Prog Nucl Magn Reson Spectrosc. 2009;54(2):69. doi:10.1016/j.pnmrs.2008.04.001
  • Drew Z, Murphy A. Magnetic field homogeneity. Reference article, Radiopaedia.org; 2018. Available from: https://radiopaedia.org/articles/magnetic-field-homogeneity. Accessed on November 19, 2021.
  • Och JG, Clarke GD, Sobol WT, Rosen CW, Mun SK. Acceptance testing of magnetic resonance imaging systems: report of AAPM nuclear magnetic resonance task group No. 6. Med Phys. 1992;19(1):217–229. doi:10.1118/1.596903
  • Frollo I, Andris P, Krafčík A, Gogola D, Dermek T. Magnetic field homogeneity adjustment for magnetic resonance imaging equipment. IEEE Trans Magn. 2018;54(5):1–9. doi:10.1109/TMAG.2018.2804352
  • Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging. 2010;31(1):4–18. doi:10.1002/jmri.21895
  • Mangrum W, Hoang QB, Amrhein TJ, et al. Duke Review of MRI Principles: Case Review Series E-Book. Elsevier Health Sciences; 2018.
  • Juchem C, de Graaf RA. Bo magnetic field homogeneity and shimming for in vivo magnetic resonance spectroscopy. Anal Biochem. 2017;529:17–29. doi:10.1016/j.ab.2016.06.003
  • Chang KJ, Kamel IR. Abdominal imaging at 3T: challenges and solutions. Appl Radiol. 2010;39(10):22. doi:10.37549/AR1773
  • Vachha B, Huang SY. MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond. Eur Radiol Exp. 2021;5(1):1–8. doi:10.1186/s41747-021-00216-2
  • Yang QX, Wang J, Smith MB, et al. Reduction of magnetic field inhomogeneity artifacts in echo-planar imaging with SENSE and GESEPI at high field. Magn Reson Med. 2004;52(6):1418–1423. doi:10.1002/mrm.20303
  • Gasparotti R, Pinelli L, Liserre R. New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay. Insights into imaging. 2011 Jun;2(3):335–47.
  • Elster AD, Spoiled-GRE: Image Contrast. MRIQuestions.com; 2021. Available from: https://mriquestions.com/spoiled-gre-parameters.html. Accessed August 19, 2022.
  • Geraldes CF, Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging. 330 2009;4(1):1–23. doi:10.1002/cmmi.265
  • Elster AD, Susceptibility artifact. MRIQuestions.com; 2021. Available from: https://www.mriquestions.com/susceptibility-artifact.html. Accessed August 20, 2022.
  • Elster AD, Chemical shift Artifact. MRIQuestions.com; 2021. Available from: https://mriquestions.com/chemical-shift-artifact.html. Accessed August 18, 2022.
  • Bitar R, Leung G, Perng R, et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics. 2006;26(2):513–537. doi:10.1148/rg.262055063
  • Cornfeld D, Weinreb J. Simple changes to 1.5-T MRI abdomen and pelvis protocols to optimize results at 3 T. American Journal of Roentgenology, 2008;190(2), W140–W150.
  • Franklin KM, Dale BM, Merkle EM. Improvement in B1‐inhomogeneity artifacts in the abdomen at 3T MR imaging using a radiofrequency cushion. J Magn Reson Imaging. 2008;27(6):1443–1447. doi:10.1002/jmri.21164
  • Elster AD, Chemical Shift: Phase Effects. MRIQuestions.com; 2021. Available from: https://mriquestions.com/chemical-shift-in-phase.html. Accessed August 18, 2022.
  • Elster AD, Chemical Shift: 2nd Kind. MRIQuestions.com; 2021. Available from: https://mriquestions.com/chemical-shift-2nd-kind.html. Accessed August 20, 2022.
  • Anderson WA. Electrical current shims for correcting magnetic fields. Rev Sci Instrum. 1961;32(3):241–250. doi:10.1063/1.1717338
  • Keller P, Sommer P. Challenges in NMR magnetometry. In: Proc. 21st IMEKO World Congr. Vol. 1. Prague: Czech Republic; 2015: 909–912.
  • Frollo I, Andris P, Strolka I, Baˇ Ciak L. A least square method for measurement and optimization in selected physical experiments. Key Eng Mater. 2005;295–296:681–686. doi:10.4028/www.scientific.net/KEM.295-296.681
  • Snape-Jenkinson CJ, Crozier S, Forbes LK. NMR shim coil design utilizing a rapid spherical harmonic calculation method. ANZIAM J. 2002;43(36):375–386. doi:10.1017/S1446181100012578
  • Vadovic R. Magnetic field correction using magnetized shims. IEEE Trans Magn. 1989;25(4):3133–3139. doi:10.1109/20.34386
  • Forbes LK, Crozier S. A novel target-field method for finite length magnetic resonance shim coils: i. Zonal shims. J Phys D Appl Phys. 2001;34(24):3447–3455. doi:10.1088/0022-3727/34/24/305
  • Forbes LK, Crozier S. A novel target-field method for finite length magnetic resonance shim coils: II. Tesseral shims. J Phys D Appl Phys. 2002;35(9):839–849. doi:10.1088/0022-3727/35/9/303
  • Forbes LK, Crozier S. A novel target-field method for magnetic resonance shim coils: III. Shielded zonal and tesseral coils. J Phys D Appl Phys. 2003;36(2):68–80. doi:10.1088/0022-3727/36/2/302
  • Wald LL, Polimeni JR. High-Speed, High-Resolution Acquisitions. Brain Mapping, an Encyclopedic Reference. San Diego, CA: Academic Press; 2015. 103–116. doi:10.1016/b978-0-12-397025-1
  • Elster AD, Dielectric Pads. MRIQuestions.com; 2021. Available from: https://mriquestions.com/dielectric-pads.html. Accessed August 20, 2022.
  • Hood MN, Ho VB, Smirniotopoulos JG, Szumowski J. Chemical shift: the artifact and clinical tool revisited. Radiographics. 1999;19(2):357–371. doi:10.1148/radiographics.19.2.g99mr07357
  • Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: techniques and pitfalls. Radiographics. 1999;19(2):373–382. doi:10.1148/radiographics.19.2.g99mr03373
  • Khurram S, Wael M. Advances in magnetic resonance imaging (MRI). In: Advances in Medical and Surgical Engineering. Academic Press; 2020: 121–142. ISBN 9780128197127. doi:10.1016/B978-0-12-819712-7.00009-7