401
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Regenerative Power of Stem Cells: Treating Bleomycin-Induced Lung Fibrosis

& ORCID Icon
Pages 43-59 | Received 01 May 2023, Accepted 06 Sep 2023, Published online: 12 Sep 2023

References

  • Gonzales JN, Lucas R, Verin AD. The acute respiratory distress syndrome: mechanisms and perspective therapeutic approaches. Austin J Vascular Med. 2015;2(1):1009.
  • Eldridge L. Alveoli function, structure, and lung disorders that affect them. Lung Heal. 2022.
  • Carcaterra M, Caruso C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: a physio-pathological theory. Med Hypotheses. 2021;146:110412. doi:10.1016/j.mehy.2020.110412
  • Wang Y, Tang Z, Huang H, et al. Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate. Proc Natl Acad Sci. 2018;115(10):2407–2412. doi:10.1073/pnas.1719474115
  • Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013;123(7):3025–3036. doi:10.1172/JCI68782
  • Jain R, Barkauskas CE, Takeda N, et al. Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat Commun. 2015;6:6727. doi:10.1038/ncomms7727
  • Adamson IY. Pulmonary toxicity of bleomycin. Environ Health Perspect. 1976;16:119–125. doi:10.1289/ehp.7616119
  • Álvarez D, Levine M, Rojas M. Regenerative medicine in the treatment of idiopathic pulmonary fibrosis: current position. Stem Cells Cloning. 2015;8:61–65. doi:10.2147/SCCAA.S49801
  • Confalonieri P, Volpe MC, Jacob J, et al. Regeneration or Repair? The Role of Alveolar Epithelial Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis (IPF). Cells. 2022;11(13). doi:10.3390/cells11132095
  • Saito M, Mitani A, Ishimori T, et al. Active mTOR in Lung epithelium promotes epithelial–mesenchymal transition and enhances lung fibrosis. Am J Respir Cell Mol Biol. 2020;62(6):699–708. doi:10.1165/rcmb.2019-0255OC
  • Yuan S, Zuo B, Zhou S-C, et al. Integrating Network pharmacology and experimental validation to explore the pharmacological mechanism of astragaloside iv in treating bleomycin-induced pulmonary fibrosis. Drug Des Devel Ther. 2023;17:1289–1302. doi:10.2147/DDDT.S404710
  • Hama Amin BJ, Kakamad FH, Ahmed GS, et al. Post COVID-19 pulmonary fibrosis; a meta-analysis study. Ann Med Surg. 2022;77:103590. doi:10.1016/j.amsu.2022.103590
  • Hirawat R, Jain N, Aslam Saifi M, Rachamalla M, Godugu C. Lung fibrosis: post-COVID-19 complications and evidences. Int Immunopharmacol. 2023;116:109418. doi:10.1016/j.intimp.2022.109418
  • Moore B, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal Models of Fibrotic Lung Disease. Am J Respir Cell Mol Biol. 2013;49(2):167–179. doi:10.1165/rcmb.2013-0094TR
  • Helling BA, Yang IV. Epigenetics in lung fibrosis: from pathobiology to treatment perspective. Curr Opin Pulm Med. 2015;21(5):454–462. doi:10.1097/MCP.0000000000000191
  • Tashiro J, Rubio GA, Limper AH, et al. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis. Front Med. 2017:4. doi:10.3389/fmed.2017.00118
  • Snider GL, Celli BR, Goldstein RH, O’Brien JJ, Lucey EC. Chronic interstitial pulmonary fibrosis produced in hamsters by endotracheal bleomycin. Lung volumes, volume-pressure relations, carbon monoxide uptake, and arterial blood gas studied. Am Rev Respir Dis. 1978;117(2):289–297. doi:10.1164/ARRD.1978.117.2.289
  • Adamson IYR, Young L, Bowden DH. Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. Am J Pathol. 1988;130(2):377.
  • Kuhn C, Boldt J, King TE, Crouch E, Vartio T, McDonald JA. An Immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis. 2012;140(6):1693–1703. doi:10.1164/AJRCCM/140.6.1693
  • Zhang K, Rekhter MD, Gordon D, Phan SH. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol. 1994;145(1):114.
  • Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest. 1997;100(4):768–776. doi:10.1172/JCI119590
  • Hagimoto N, Kuwano K, Inoshima I, et al. TGF-β1 as an Enhancer of Fas-Mediated Apoptosis of Lung Epithelial Cells. J Immunol. 2002;168(12):6470–6478. doi:10.4049/JIMMUNOL.168.12.6470
  • Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol. 2002;83(3):111–119. doi:10.1046/J.1365-2613.2002.00220.X
  • Moodley YP, Misso NLA, Scaffidi AK, et al. Inverse Effects of Interleukin-6 on Apoptosis of Fibroblasts from Pulmonary Fibrosis and Normal Lungs. Am Rev Respir Dis. 2003;29(4):490–498. doi:10.1165/RCMB.2002-0262OC
  • Kim KK, Kugler MC, Wolters PJ, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006;103(35):13180–13185. doi:10.1073/PNAS.0605669103/SUPPL_FILE/05669FIG_9.JPG
  • Alder JK, Chen JJL, Lancaster L, et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13051–13056. doi:10.1073/PNAS.0804280105/SUPPL_FILE/0804280105SI.PDF
  • Sisson TH, Mendez M, Choi K, et al. Targeted injury of type ii alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med. 2010;181(3):254–263. doi:10.1164/rccm.200810-1615OC
  • Marmai C, Sutherland RE, Kim KK, et al. Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. Am J Physiol - Lung Cell Mol Physiol. 2011;301(1):71–78. doi:10.1152/AJPLUNG.00212.2010/SUPPL_FILE/SUPPDATA.PDF
  • Raghu G, Collard HR, Egan JJ, et al. An Official ATS/ERS/JRS/ALAT Statement: idiopathic Pulmonary Fibrosis: evidence-based Guidelines for Diagnosis and Management. Am J Respir Crit Care Med. 2011;183(6):788. doi:10.1164/RCCM.2009-040GL
  • Rock JR, Barkauskas CE, Cronce MJ, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A. 2011;108(52):E1475–E1483. doi:10.1073/PNAS.1117988108/SUPPL_FILE/PNAS.201117988SI.PDF
  • Huang SXL, Islam MN, O’Neill J, et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. 2013;32(1):84–91. doi:10.1038/nbt.2754
  • Brandt JP, Gerriets V. Bleomycin. xPharm Compr Pharmacol Ref. 2022;1–6. doi:10.1016/B978-008055232-3.61328-5
  • Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol. 2008;40(3):362–382. doi:10.1016/j.biocel.2007.08.011
  • Schuster DP. Acute lung injury and predictors of mortality. Am J Physiol Lung Cell Mol Physiol. 2003;285(1):L18–9. doi:10.1152/ajplung.00052.2003
  • Degryse AL, Tanjore H, Xu XC, et al. Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2010;299(4):L442–L452. doi:10.1152/ajplung.00026.2010
  • Chaudhary NI, Schnapp A, Park JE. Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am J Respir Crit Care Med. 2006;173(7):769–776. doi:10.1164/rccm.200505-717OC
  • Laurent GJ. Lung collagen: more than scaffolding. Thorax. 1986;41(6):418–428. doi:10.1136/thx.41.6.418
  • Tan W, Wang Y, Chen Y, Chen C. Cell tracing reveals the transdifferentiation fate of mouse lung epithelial cells during pulmonary fibrosis in vivo. Exp Ther Med. 2021;22(4):1188. doi:10.3892/etm.2021.10622
  • Redente EF, Black BP, Backos DS, et al. Persistent, progressive pulmonary fibrosis and epithelial remodeling in mice. Am J Respir Cell Mol Biol. 2021;64(6):669–676. doi:10.1165/rcmb.2020-0542MA
  • Habiel DM, Hogaboam CM. Heterogeneity of fibroblasts and myofibroblasts in pulmonary fibrosis. Curr Pathobiol Rep. 2017;5(2):101–110. doi:10.1007/s40139-017-0134-x
  • Hogan BL, Barkauskas CE, Chapman HA, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 2014;15(2):123–138. doi:10.1016/j.stem.2014.07.012
  • Walkin L, Herrick SE, Summers A, et al. The role of mouse strain differences in the susceptibility to fibrosis: a systematic review. Fibrogenesis Tissue Repair. 2013;6(1):18. doi:10.1186/1755-1536-6-18
  • Hoyt DG, Lazo JS. Alterations in pulmonary mRNA encoding procollagens, fibronectin and transforming growth factor-beta precede bleomycin-induced pulmonary fibrosis in mice. J Pharmacol Exp Ther. 1988;246(2):765 LP–771.
  • Antonini JM, Hemenway DR, Davis GS. Quantitative image analysis of lung connective tissue in murine silicosis. Exp Lung Res. 2000;26(2):71–88. doi:10.1080/019021400269880
  • Hartmann W, Blankenhaus B, Brunn M-L, Meiners J, Breloer M. Elucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny. Sci Rep. 2021;11(1):1536. doi:10.1038/s41598-020-79477-7
  • VanSeggelen H, Hammill JA, Dvorkin-Gheva A, et al. T Cells Engineered With Chimeric Antigen Receptors Targeting NKG2D Ligands Display Lethal Toxicity in Mice. Mol Ther. 2015;23(10):1600–1610. doi:10.1038/mt.2015.119
  • Mehta AJ, Guidot DM. Alcohol and the Lung. Alcohol Res. 2017;38(2):243–254.
  • Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med. 2001;345(7):517–525. doi:10.1056/NEJMra003200
  • Vyalov SL, Gabbiani G, Kapanci Y. Rat alveolar myofibroblasts acquire alpha-smooth muscle actin expression during bleomycin-induced pulmonary fibrosis. Am J Pathol. 1993;143(6):1754–1765.
  • Rock JR, Hogan BLM. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol. 2011;27(1):493–512. doi:10.1146/annurev-cellbio-100109-104040
  • Huang E, Peng N, Xiao F, Hu D, Wang X, Lu L. The roles of immune cells in the pathogenesis of fibrosis. Int J Mol Sci. 2020;21(15):5203. doi:10.3390/ijms21155203
  • Moog MT, Hinze C, Bormann T, et al. B cells are not involved in the regulation of adenoviral tgf-β1– or bleomycin-induced lung fibrosis in mice. J Immunol. 2022;208(5):1259–1271. doi:10.4049/jimmunol.2100767
  • Pociask DA, Chen K, Choi SM, Oury TD, Steele C, Kolls JK. γδ T cells attenuate bleomycin-induced fibrosis through the production of CXCL10. Am J Pathol. 2011;178(3):1167–1176. doi:10.1016/j.ajpath.2010.11.055
  • Wilson MS, Madala SK, Ramalingam TR, et al. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med. 2010;207(3):535–552. doi:10.1084/jem.20092121
  • Choi J, Park JE, Tsagkogeorga G, et al. Inflammatory Signals Induce AT2 Cell-Derived Damage-Associated Transient Progenitors that Mediate Alveolar Regeneration. Cell Stem Cell. 2020;27(3):366–382.e7. doi:10.1016/j.stem.2020.06.020
  • Riise R, Odqvist L, Mattsson J, et al. Bleomycin hydrolase regulates the release of chemokines important for inflammation and wound healing by keratinocytes. Sci Rep. 2019;9(1):20407. doi:10.1038/s41598-019-56667-6
  • Clarke DL, Carruthers AM, Mustelin T, Murray LA. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. Fibrogenesis Tissue Repair. 2013;6(1):20. doi:10.1186/1755-1536-6-20
  • Adair-Kirk TL, Senior RM. Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol. 2008;40(6–7):1101–1110. doi:10.1016/j.biocel.2007.12.005
  • Hettiarachchi SU, Y-H L, Roy J, et al. Targeted inhibition of PI3 kinase/mTOR specifically in fibrotic lung fibroblasts suppresses pulmonary fibrosis in experimental models. Sci Transl Med. 2020;12(567):eaay3724. doi:10.1126/scitranslmed.aay3724
  • Salton F, Ruaro B, Confalonieri P, Confalonieri M. Epithelial–mesenchymal transition: a major pathogenic driver in idiopathic pulmonary fibrosis? Medicina. 2020;56(11). doi:10.3390/medicina56110608
  • Salton F, Volpe MC, Confalonieri M. Epithelial–mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis. Medicina. 2019;55(4). doi:10.3390/medicina55040083
  • Dai H, Zhu M, Li W, Si G, Xing Y. Activation of PI3K/p110α in the Lung mesenchyme affects branching morphogenesis and club cell differentiation. Front Cell Dev Biol. 2022;10. doi:10.3389/fcell.2022.880206
  • Jolly MK, Ward C, Eapen MS, et al. Epithelial–mesenchymal transition, a spectrum of states: role in lung development, homeostasis, and disease. Dev Dyn. 2018;247(3):346–358. doi:10.1002/dvdy.24541
  • Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest. 2004;113(2):243–252. doi:10.1172/jci18847
  • Willis BC, Liebler JM, Luby-Phelps K, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol. 2005;166(5):1321–1332. doi:10.1016/s0002-9440(10)62351-6
  • Wu H, Yu Y, Huang H, et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell. 2020;180(1):107–121.e17. doi:10.1016/j.cell.2019.11.027
  • Tropea KA, Leder E, Aslam M, et al. Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2012;302(9):L829–L837. doi:10.1152/ajplung.00347.2011
  • Chen L-J, Ye H, Zhang Q, et al. Bleomycin induced epithelial–mesenchymal transition (EMT) in pleural mesothelial cells. Toxicol Appl Pharmacol. 2015;283(2):75–82. doi:10.1016/j.taap.2015.01.004
  • Fuchs E. Scratching the surface of skin development. Nature. 2007;445(7130):834–842. doi:10.1038/nature05659
  • Vaughan AE, Brumwell AN, Xi Y, et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature. 2015;517(7536):621–625. doi:10.1038/nature14112
  • Kumar PA, Hu Y, Yamamoto Y, et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell. 2011;147(3):525–538. doi:10.1016/j.cell.2011.10.001
  • Ye R, Wang M, Wang QA, et al. Autonomous interconversion between adult pancreatic α-cells and β-cells after differential metabolic challenges. Mol Metab. 2016;5(7):437–448. doi:10.1016/j.molmet.2016.05.001
  • Tata PR, Mou H, Pardo-Saganta A, et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature. 2013;503(7475):218–223. doi:10.1038/nature12777
  • Bergmann A, Steller H. Apoptosis, stem cells, and tissue regeneration. Sci Signal. 2010;3(145):re8. doi:10.1126/scisignal.3145re8
  • Kobayashi Y, Tata A, Konkimalla A, et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat Cell Biol. 2020;22(8):934–946. doi:10.1038/s41556-020-0542-8
  • Chung M-I, Bujnis M, Barkauskas CE, Kobayashi Y, Hogan BLM. Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation. Development. 2018;145(9):dev163014. doi:10.1242/dev.163014
  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–689. doi:10.1016/j.cell.2006.06.044
  • Sucre JMS, Bock F, Negretti NM, et al. Alveolar epithelial cell differentiation during lung repair requires cell-extracellular matrix interactions. bioRxiv. 2022. doi:10.1101/2022.08.05.502988
  • Parnaik VK, Chaturvedi P. Fluorescence recovery after photobleaching studies reveal complexity of nuclear architecture. Int J Chem. 2015;4(4):297–302.
  • Muralikrishna B, Chaturvedi P, Sinha K, Parnaik VK. Lamin misexpression upregulates three distinct ubiquitin ligase systems that degrade ATR kinase in HeLa cells. Mol Cell Biochem. 2012;365(1–2):323–332. doi:10.1007/s11010-012-1272-4
  • Chaturvedi P, Parnaik VK. Lamin A rod domain mutants target heterochromatin protein 1α and β for proteasomal degradation by activation of F-box protein, FBXW10. PLoS One. 2010;5(5):e10620. doi:10.1371/journal.pone.0010620
  • Thanumalayan S, Sehgal P, Muralikrishna B, et al. A rare mutation in lamin A gene is associated with dilated cardiomyopathy in Indian patients. Eur J Mol Biol Biochem. 2015;2(5):190–196.
  • Sehgal P, Chaturvedi P, Kumaran RI, Kumar S, Parnaik VK. Lamin A/C haploinsufficiency modulates the differentiation potential of mouse embryonic stem cells. PLoS One. 2013;8(2):e57891. doi:10.1371/journal.pone.0057891
  • Neumark N, Cosme C, Rose K-A, Kaminski N. The Idiopathic Pulmonary Fibrosis Cell Atlas. Am J Physiol Cell Mol Physiol. 2020;319(6):L887–L892. doi:10.1152/ajplung.00451.2020
  • Habermann AC, Gutierrez AJ, Bui LT, et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1972. doi:10.1126/sciadv.aba1972
  • Strunz M, Simon LM, Ansari M, et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat Commun. 2020;11(1):3559. doi:10.1038/s41467-020-17358-3
  • Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 2020;19(1):39–56. doi:10.1038/s41573-019-0044-1
  • Sehgal P, Chaturvedi P. Chromatin and cancer: implications of disrupted chromatin organization in tumorigenesis and its diversification. Cancers. 2023;15(2). doi:10.3390/cancers15020466
  • Potten CS, Morris RJ. Epithelial stem cells in vivo. J Cell Sci. 1988;1988(Supplement_10):45–62. doi:10.1242/jcs.1988.Supplement_10.4
  • Verheyden JM, Sun X. A transitional stem cell state in the lung. Nat Cell Biol. 2020;22(9):1025–1026. doi:10.1038/s41556-020-0561-5
  • Parimon T, Yao C, Stripp BR, Noble PW, Chen P. Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. Int J Mol Sci. 2020;21(7):2269. doi:10.3390/ijms21072269
  • Shen M, Luo Z, Zhou Y. Regeneration-Associated Transitional State Cells in Pulmonary Fibrosis. Int J Mol Sci. 2022;23(12). doi:10.3390/ijms23126757
  • Chen Q, Suresh Kumar V, Finn J, et al. CD44(high) alveolar type II cells show stem cell properties during steady-state alveolar homeostasis. Am J Physiol Lung Cell Mol Physiol. 2017;313(1):L41–L51. doi:10.1152/ajplung.00564.2016
  • Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11(4):254–267. doi:10.1038/nrc3023
  • Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science. 2018;359(6380):1118–1123. doi:10.1126/science.aam6603
  • Zacharias WJ, Frank DB, Zepp JA, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555(7695):251–255. doi:10.1038/nature25786
  • Liu Y, Kumar VS, Zhang W, Rehman J, Malik AB. Activation of type II cells into regenerative stem cell antigen-1(+) cells during alveolar repair. Am J Respir Cell Mol Biol. 2015;53(1):113–124. doi:10.1165/rcmb.2013-0497OC
  • Liu Y, Sadikot RT, Adami GR, et al. FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa. J Exp Med. 2011;208(7):1473–1484. doi:10.1084/jem.20102041
  • Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature. 2022;604(7904):111–119. doi:10.1038/s41586-022-04541-3
  • Paris AJ, Hayer KE, Oved JH, et al. STAT3–BDNF–TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nat Cell Biol. 2020;22(10):1197–1210. doi:10.1038/s41556-020-0569-x
  • Levy DE. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–662. doi:10.1038/nrm909
  • Finn J, Sottoriva K, Pajcini KV, et al. Dlk1-Mediated Temporal Regulation of Notch Signaling Is Required for Differentiation of Alveolar Type II to Type I Cells during Repair. Cell Rep. 2019;26(11):2942–2954.e5. doi:10.1016/j.celrep.2019.02.046
  • Olajuyin AM, Zhang X, Ji H-L. Alveolar type 2 progenitor cells for lung injury repair. Cell Death Discov. 2019;5(1):63. doi:10.1038/s41420-019-0147-9
  • Geiger H, Zheng Y. Cdc42 and aging of hematopoietic stem cells. Curr Opin Hematol. 2013;20(4):295–300. doi:10.1097/MOH.0b013e3283615aba
  • Xie T, Lynn H, Parks WC, et al. Abnormal respiratory progenitors in fibrotic lung injury. Stem Cell Res Ther. 2022;13(1):64. doi:10.1186/s13287-022-02737-y
  • Yin Z, Gonzales L, Kolla V, et al. Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. Am J Physiol Lung Cell Mol Physiol. 2006;291(2):L191–9. doi:10.1152/ajplung.00385.2005
  • Saul D, Kosinsky RL, Atkinson EJ, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022;13(1):4827. doi:10.1038/s41467-022-32552-1
  • Woodcock HV, Eley JD, Guillotin D, et al. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun. 2019;10(1):6. doi:10.1038/s41467-018-07858-8
  • Allen RJ, Guillen-Guio B, Oldham JM, et al. Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2019;201(5):564–574. doi:10.1164/rccm.201905-1017OC
  • Richeldi L, du Bois RM, Raghu G, et al. Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. N Engl J Med. 2014;370(22):2071–2082. doi:10.1056/NEJMoa1402584
  • Miceli V, Pampalone M, Vella S, Carreca AP, Amico G, Conaldi PG. Comparison of Immunosuppressive and Angiogenic Properties of Human Amnion-Derived Mesenchymal Stem Cells between 2D and 3D Culture Systems. Stem Cells Int. 2019;2019:7486279. doi:10.1155/2019/7486279
  • Shu J, He X, Li H, et al. The Beneficial Effect of Human Amnion Mesenchymal Cells in Inhibition of Inflammation and Induction of Neuronal Repair in EAE Mice. J Immunol Res. 2018;2018:5083797. doi:10.1155/2018/5083797
  • Weng Z, Zhang B, Wu C, et al. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J Hematol Oncol. 2021;14(1):136. doi:10.1186/s13045-021-01141-y
  • Sang L, Guo X, Fan H, Shi J, Hou S, Lv Q. Mesenchymal stem cell-derived extracellular vesicles as idiopathic pulmonary fibrosis microenvironment targeted delivery. Cells. 2022;11(15):2322. doi:10.3390/cells11152322
  • Periera‐Simon S, Xia X, Catanuto P, et al. Anti-fibrotic effects of different sources of MSC in bleomycin-induced lung fibrosis in C57BL6 male mice. Respirology. 2021;26(2):161–170. doi:10.1111/resp.13928
  • Rubio GA, Elliot SJ, Wikramanayake TC, et al. Mesenchymal stromal cells prevent bleomycin-induced lung and skin fibrosis in aged mice and restore wound healing. J Cell Physiol. 2018;233(8):5503–5512. doi:10.1002/jcp.26418
  • Duan F, Guo L, Yang L, et al. Modeling COVID-19 with Human Pluripotent Stem Cell-Derived Cells Reveals Synergistic Effects of Anti-inflammatory Macrophages with ACE2 Inhibition Against SARS-CoV-2. Res Sq. 2020. doi:10.21203/rs.3.rs-62758/v1
  • Coraux C, Nawrocki-Raby B, Hinnrasky J, et al. Embryonic stem cells generate airway epithelial tissue. Am J Respir Cell Mol Biol. 2005;32(2):87–92. doi:10.1165/rcmb.2004-0079RC
  • Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther. 2010;18(3):625–634. doi:10.1038/mt.2009.317
  • Soh BS, Zheng D, Li Yeo JS, et al. CD166(pos) subpopulation from differentiated human ES and iPS cells support repair of acute lung injury. Mol Ther. 2012;20(12):2335–2346. doi:10.1038/mt.2012.182
  • Glassberg MK, Minkiewicz J, Toonkel RL, et al. Allogeneic Human Mesenchymal Stem Cells in Patients With Idiopathic Pulmonary Fibrosis via Intravenous Delivery (AETHER): a Phase I Safety Clinical Trial. Chest. 2017;151(5):971–981. doi:10.1016/j.chest.2016.10.061
  • Vats A, T-C H, Puc I, et al. Evidence that hematopoietic stem cells in human umbilical cord blood is infectable by dengue virus: proposing a vertical transmission candidate. Heliyon. 2021;7(4). doi:10.1016/j.heliyon.2021.e06785
  • Varghese B, Ling Z, Ren X. Reconstructing the pulmonary niche with stem cells: a lung story. Stem Cell Res Ther. 2022;13(1):161. doi:10.1186/s13287-022-02830-2
  • Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011;184(8):957–963. doi:10.1164/rccm.201104-0655oc
  • Fries KM, Blieden T, Looney RJ, et al. Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin Immunol Immunopathol. 1994;72(3):283–292. doi:10.1006/clin.1994.1144
  • Chaturvedi P, Zhao B, Zimmerman DL, Belmont AS. Stable and reproducible transgene expression independent of proliferative or differentiated state using BAC TG-EMBED. Gene Ther. 2018;25(5):376–391. doi:10.1038/s41434-018-0021-z
  • Zhao B, Chaturvedi P, Zimmerman DL, Belmont AS. Efficient and reproducible multigene expression after single-step transfection using improved bac transgenesis and engineering toolkit. ACS Synth Biol. 2020;9(5):1100–1116. doi:10.1021/acssynbio.9b00457
  • Moodley Y, Atienza D, Manuelpillai U, et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol. 2009;175(1):303–313. doi:10.2353/ajpath.2009.080629
  • Hiemstra PS, Tetley TD, Janes SM. Airway and alveolar epithelial cells in culture. Eur Respir J. 2019;54(5):1900742. doi:10.1183/13993003.00742-2019
  • Gilpin SE, Charest JM, Ren X, et al. Regenerative potential of human airway stem cells in lung epithelial engineering. Biomaterials. 2016;108:111–119. doi:10.1016/j.biomaterials.2016.08.055
  • Sieber P, Schäfer A, Lieberherr R, et al. NF-κB drives epithelial-mesenchymal mechanisms of lung fibrosis in a translational lung cell model. JCI Insight. 2023;8(3). doi:10.1172/jci.insight.154719
  • Perona R, Montaner S, Saniger L, Sánchez-Pérez I, Bravo R, Lacal JC. Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev. 1997;11(4):463–475. doi:10.1101/gad.11.4.463
  • Sehgal P, Kong X, Wu J, Sunyer R, Trepat X, Leckband D. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions. J Cell Sci. 2018;131(6):jcs206656. doi:10.1242/jcs.206656
  • Zepp JA, Zacharias WJ, Frank DB, et al. Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell. 2017;170(6):1134–1148.e10. doi:10.1016/j.cell.2017.07.034