710
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Macronutrients and obesity: views, news and reviews

, &
Pages 43-74 | Published online: 18 Jan 2017

Bibliography

  • Prentice AM: Fires of life: the struggles of anancient metabolism in a modern world.Nutrition Bulletin 26(1), 13–27 (2001)
  • Neel J: Diabetes mellitus: a ‘thrifty’ genotyperendered detrimental by ‘progress’.Am. J. Hum. Genet. 14, 353–362 (1962)
  • Paradies YC, Montoya MJ, Fullerton SM:Racialized genetics and the study of complexdiseases: the thrifty genotype revisited.Perspect. Biol. Med. 50(2), 203–227 (2007)
  • Speakman JR: A nonadaptive scenarioexplaining the genetic predisposition toobesity: the “predation release” hypothesis.Cell Metab. 6(1), 5–12 (2007)
  • Watve M, Yajnik C: Evolutionary origins ofinsulin resistance: a behavioral switchhypothesis. BMC Evol. Biol. 7(1), 61(2007)
  • Cordain L, Eaton SB, Sebastian A et al.:Origins and evolution of the Westerndiet: health implications for the 21stCentury. Am. J. Clin. Nutr. 81(2),341–354 (2005)
  • Eaton S, Eaton SB, Konner MJ et al.:An evolutionary perspective enhancesunderstanding of human nutritionalrequirements. J. Nutr. 126(6), 1732–1740(1996)
  • Cordain L, Miller JB, Eaton SB et al.:Plant–animal subsistence ratios andmacronutrient energy estimations inworldwide hunter–gatherer diets. Am.J. Clin. Nutr. 71(3), 682–692 (2000)
  • Eaton SB: The ancestral human diet: whatwas it and should it be a paradigm forcontemporary nutrition? Proc. Nutr. Soc.65(1), 1–6 (2006)
  • Gaulin S, Konner M: On the natural diet ofprimates, including humans. In: Nutritionand the Brain (Vol. 1). Wurtman RJ,Wurtman JJ (Eds). New York Raven Press,NY, USA 1–86 (1977)
  • Brand-Miller JC, Holt SH: Australianaboriginal plant foods: a consideration oftheir nutritional composition and healthimplications. Nutr. Res. Rev. 11, 5–23(1998)
  • Cordain L, Eaton SB, Miller JB et al.:The paradoxical nature of hunter–gathererdiets: meat-based, yet non-atherogenic.Eur. J. Clin. Nutr. 56(S1), S42–S52(2002)
  • Connor WE, Connor SL, Katan MB et al.:Should a low-fat, high-carbohydrate diet berecommended for everyone? N. Engl.J. Med. 337(8), 562–567 (1997)
  • Hill JO, Wyatt HR, Reed GW et al.:Obesity and the environment: where do wego from here? Science 299(5608), 853–855(2003)
  • Weinberg SL: The diet–heart hypothesis:a critique. J. Am. Coll. Cardiol. 43(5),731–733 (2004)
  • Eaton SB, Eaton SB 3rd: Paleolithic vs.modern diets – selected pathophysiologicalimplications. Eur. J. Nutr. 39(2), 67–70(2000)
  • Crawford M: Fatty acids in free-living anddomestic animals. Lancet 291(7556),1329–1333 (1968)
  • Ailhaud G, Massiera F, Weill P et al.:Temporal changes in dietary fats: role of n-6polyunsaturated fatty acids in excessiveadipose tissue development and relationshipto obesity. Prog. Lipid Res. 45(3), 203–236(2006)
  • Cleary M, Phillips F, Morton R: Genotypeand diet effects in lean and obese Zucker ratsfed either safflower or coconut oil diets.Proc. Soc. Exp. Biol. Med. 220(3), 153–161(1999)
  • Massiera F, Saint-Marc P, Seydoux J et al.:Arachidonic acid and prostacyclin signalingpromote adipose tissue development: ahuman health concern? J. Lipid Res. 44(2),271–279 (2003)
  • Prentice AM: Overeating: the health risks.Obes. Res. 9(90004), 234S–238S (2001)
  • Matsuo T, Takeuchi H, Suzuki H et al.:Body fat accumulation is greater in rats fed abeef tallow diet than in rats fed a saffloweror soybean oil diet. Asia Pac. J. Clin. Nutr.11(4), 302–308 (2002)
  • Okuno M, Kajiwara K, Imai S et al.: Perillaoil prevents the excessive growth of visceraladipose tissue in rats by down-regulatingadipocyte differentiation. J. Nutr. 127(9),1752–1757 (1997)
  • Belzung F, Raclot T, Groscolas R: Fish oil n-3fatty acids selectively limit the hypertrophy ofabdominal fat depots in growing rats fedhigh-fat diets. Am. J. Physiol. 246(6 Pt 2),R1111–R1118 (1993)
  • Hill JO, Peters JC, Lin D et al.: Lipidaccumulation and body fat distribution isinfluenced by type of dietary fat fed to rats.Int. J. Obes. Relat. Metab. Disord. 17(4),223–236 (1993)
  • Parrish CC, Pathy DA, Angel A: Dietary fishoils limit adipose tissue hypertrophy in rats.Metabolism 39(3), 217–219 (1990)
  • Raclot T, Groscolas R, Langin D et al.: Sitespecificregulation of gene expression by n-3polyunsaturated fatty acids in rat whiteadipose tissues. J. Lipid Res. 38(10),1963–1972 (1997)
  • Rustan AC, Hustvedt BE, Drevon CA:Dietary supplementation of very long-chainn-3 fatty acids decreases whole body lipidutilization in the rat. J. Lipid Res. 34(8),1299–1309 (1993)
  • Ukropec J, Reseland JE, Gasperikova Det al.: The hypotriglyceridemic effect ofdietary n-3 FA is associated with increased -oxidation and reduced leptin expression.Lipids 38(10), 1023–1029 (2003)
  • van de Vijver LP, Kardinaal AF, Couet Cet al.: Association between trans fatty acidintake and cardiovascular risk factors inEurope: the TRANSFAIR study. Eur.J. Clin. Nutr. 54(2), 126–135 (2000)
  • Stender S, Dyerberg J, Bysted A et al.:A trans world journey. Atheroscler. Suppl.7(2), 47–52 (2006)
  • Stender S, Dyerberg J, Astrup A: High levelsof industrially produced trans fat in popularfast foods. N. Engl. J. Med. 354(15),1650–1652 (2006)
  • Enig MG, Atal S, Keeney M et al.: Isomerictrans fatty acids in the U.S. diet. J. Am. Coll.Nutr. 9(5), 471–486 (1990)
  • Sun Q, Ma J, Campos H et al.:A prospective study of trans fatty acids inerythrocytes and risk of coronary heartdisease. Circulation 115(14), 1858–1865(2007)
  • Kavanagh K, Jones KL, Sawyer J et al.: Transfat diet induces abdominal obesity andchanges in insulin sensitivity in monkeys.Obesity Res. 15(7), 1675–1684 (2007)
  • Borlotto J, Reis C, Ferreira A et al.: Highercontent of trans fatty acids in abdominalvisceral fat of morbidly obese individualsundergoing bariatric surgery compared tonon-obese subjects. Obes. Surg. 15(9),1265–1270 (2005)
  • Park Y, Storkson JM, Albright KJ et al.:Evidence that the trans-10,cis-12 isomer ofconjugated linoleic acid induces bodycomposition changes in mice. Lipids 34,235–241 (1999)
  • Ryder JW, Portocarrero CP, Song XM et al.:Isomer-specific antidiabetic properties ofconjugated linoleic acid: improved glucosetolerance, skeletal muscle insulin action, andUCP-2 gene expression. Diabetes 50(5),1149–1157 (2001)
  • Sisk MB, Hausman DB, Martin RJ et al.:Dietary conjugated linoleic acid reducesadiposity in lean but not obese Zucker rats.J. Nutr. 131(6), 1668–1674 (2001)
  • Terpstra AHM, Beynen AC, Everts H et al.:The decrease in body fat in mice fedconjugated linoleic acid is due to increases inenergy expenditure and energy loss in theexcreta. J. Nutr. 132(5), 940–945 (2002)
  • West DB, Delany JP, Camet PM et al.:Effects of conjugated linoleic acid on bodyfat and energy metabolism in the mouse.Am. J. Physiol. 275, R667–R672 (1998)
  • Whigham LD, Watras AC, Schoeller DA:Efficacy of conjugated linoleic acid forreducing fat mass: a meta-analysis in humans.Am. J. Clin. Nutr. 85(5), 1203–1211 (2007)
  • Riserus U: Trans fatty acids and insulinresistance. Atheroscler. Suppl. 7(2), 37–39(2006)
  • Gaesser GA: Carbohydrate quantity andquality in relation to body mass index.J. Am. Diet Assoc. 107(10), 1768–1780(2007)
  • Englyst KN, Englyst HN: Carbohydratebioavailability. Br. J. Nutr. 94(1), 1–11(2005)
  • Eaton SB: Fibre intake in prehistoric times.In: Dietary Fibre Perspectives (Vol. 2). Libby J2nd (Ed.). Reviews and Bibliography,London, UK 27–40 (1990)
  • Ylonen K, Saloranta C, Kronberg-Kippila Cet al.: Associations of dietary fiber withglucose metabolism in nondiabetic relativesof subjects with Type 2 diabetes: the Botniadietary study. Diabetes Care 26(7),1979–1985 (2003)
  • McIntosh M, Miller C: A diet containingfood rich in soluble and insoluble fiberimproves glycemic control and reduceshyperlipidemia among patients with Type 2diabetes mellitus. Nutr. Rev. 59(2), 52–55(2001)
  • Liese AD, Schulz M, Fang F et al.:Dietary glycemic index and glycemic load,carbohydrate and fiber intake, and measures ofinsulin sensitivity, secretion, and adiposity inthe Insulin Resistance Atherosclerosis Study.Diabetes Care 28(12), 2832–2838 (2005)
  • Brand JC, Nicholson PL, Thorburn AW et al.:Food processing and the glycemic index.Am. J. Clin. Nutr. 42(6), 1192–1196 (1985)
  • Hawkins A, Johnson SK: In vitrocarbohydrate digestibility of whole-chickpeaand chickpea bread products. Int. J. FoodSci. Nutr. 56(3), 147–155 (2005)
  • Ross SW, Brand JC, Thorburn AW et al.:Glycemic index of processed wheatproducts. Am. J. Clin. Nutr. 46(4),631–635 (1987)
  • Brand JC, Snow BJ, Nabhan GP et al.:Plasma glucose and insulin responses totraditional Pima Indian meals. Am. J. Clin.Nutr. 51(3), 416–420 (1990)
  • Thorburn AW, Brand JC, Truswell AS:Slowly digested and absorbed carbohydratein traditional bushfoods: a protective factoragainst diabetes? Am. J. Clin. Nutr. 45(1),98–106 (1987)
  • Pawlak DB, Kushner JA, Ludwig DS:Effects of dietary glycaemic index onadiposity, glucose homoeostasis, and plasmalipids in animals. Lancet 364(9436),778–785 (2004)
  • Jeon BS, Park JW, Kim BK et al.: Fermentedmushroom milk-supplemented dietary fibreprevents the onset of obesity andhypertriglyceridaemia in Otsuka Long-Evans Tokushima fatty rats. Diabetes Obes.Metab. 7(6), 709&715 (2005)
  • Cleave TL. In: The Saccharine Disease.John Wright – Sons Ltd, Bristol, UK 6–27(1974)
  • Parks EJ, Parks EJ: Changes in fat synthesisinfluenced by dietary macronutrientcontent. Proc. Nutr. Soc. 61(2), 281–286(2002)
  • Sugden MC: In appreciation of Sir PhilipRandle: the glucose-fatty acid cycle. Br. J.Nutr. 97(5), 809–813 (2007)
  • Morral N, Edenberg HJ, Witting SR et al.:Effects of glucose metabolism on theregulation of genes of fatty acid synthesisand triglyceride secretion in the liver.J. Lipid Res. 48(7), 1499–1510 (2007)
  • Chong MF, Fielding BA, Frayn KN:Metabolic interaction of dietary sugars andplasma lipids with a focus on mechanismsand de novo lipogenesis. Proc. Nutr. Soc. 66(1), 52–59 (2007)
  • Hudgins LC, Baday A, Hellerstein MKet al.: The effect of dietary carbohydrate ongenes for fatty acid synthase andinflammatory cytokines in adipose tissuesfrom lean and obese subjects. J. Nutr.Biochem. (2007) (Epub ahead of print)
  • Hudgins LC, Hellerstein MK, Seidman CEet al.: Relationship between carbohydrateinducedhypertriglyceridemia and fatty acidsynthesis in lean and obese subjects. J. LipidRes. 41(4), 595–604 (2000)
  • Forshee RA, Storey ML, Allison DB et al.:A critical examination of the evidencerelating high fructose corn syrup and weightgain. Crit. Rev. Food Sci. Nutr. 47(6),561–582 (2007)
  • Curry DL: Effects of mannose and fructoseon the synthesis and secretion of insulin.Pancreas 4(1), 2–9 (1989)
  • Teff KL, Elliott SS, Tschop M et al.: Dietaryfructose reduces circulating insulin andleptin, attenuates postprandial suppressionof ghrelin, and increases triglycerides inwomen. J. Clin. Endocrinol. Metab. 89(6),2963–2972 (2004)
  • Jurgens H, Haass W, Castaneda TR et al.:Consuming fructose-sweetened beveragesincreases body adiposity in mice. Obesity Res.13(7), 1146–1156 (2005)
  • Kasim-Karakas SE, Vriend H, Almario Ret al.: Effects of dietary carbohydrates onglucose and lipid metabolism in goldenSyrian hamsters. J. Lab. Clin. Med. 128(2),208–213 (1996)
  • Bell RC, Ryan EA, Finegood DT:Consequences of high dietary fructose in theislet-transplanted rat with suboptimal -cellmass. Am. J. Physiol. Endocrinol. Metab.270(2), E292–E298 (1996)
  • Luo Y, Tall AR: Sterol upregulation ofhuman CETP expression in vitro and intransgenic mice by an LXR element. J. Clin.Investig. 105, 513–520 (2000)
  • Thorburn AW, Storlien LH, Jenkins ABet al.: Fructose-induced in vivo insulinresistance and elevated plasma triglyceridelevels in rats. Am. J. Clin. Nutr. 49(6),1155–1163 (1989)
  • Zavaroni I, Sander S, Scott S et al.: Effect offructose feeding on insulin secretion andinsulin action in the rat. Metabolism 29(10),970–973 (1980)
  • Martinez FJ, Rizza RA, Romero JC:High-fructose feeding elicits insulinresistance, hyperinsulinism, andhypertension in normal mongrel dogs.Hypertension 23(4), 456–463 (1994)
  • Faeh D, Minehira K, Schwarz JMet al.: Effect of fructose overfeeding andfish oil administration on hepatic de novolipogenesis and insulin sensitivity inhealthy men. Diabetes 54(7), 1907–1913(2005)
  • Le KA, Faeh D, Stettler R et al.:A 4-wk high-fructose diet alters lipidmetabolism without affecting insulinsensitivity or ectopic lipids in healthyhumans. Am. J. Clin. Nutr. 84(6),1374–1379 (2006)
  • Rayssiguier Y, Gueux E, Nowacki Wet al.: High fructose consumptioncombined with low dietary magnesiumintake may increase the incidence of themetabolic syndrome by inducinginflammation. Magnes. Res. 19(4), 237–243(2006)
  • Rutledge AC, Adeli K: Fructose and the metabolic syndrome: pathophysiology andmolecular mechanisms. Nutr. Rev.65(6 Pt 2), S13–S23 (2007)
  • Garlick PJ: The role of leucine in theregulation of protein metabolism. J. Nutr.135(6), 1553S–1556S (2005)
  • Fernstrom MH, Fernstrom JD: Braintryptophan concentrations and serotoninsynthesis remain responsive to foodconsumption after the ingestion ofsequential meals. Am. J. Clin. Nutr. 61(2),312–319 (1995)
  • Institute of Medicine (IOM) of the NationalAcademies. Dietary Reference Intakes forEnergy, Carbohydrate, Fibre, Fat, Fatty Acids,Cholesterol, Protein and Amino Acids. TheNational Academies Press, Washington DC,USA (2002)
  • Nordic Council of Ministers. NordicNutrition Recommendations 2004:Integrating Nutrition and PhysicalActivity. Scanprint, Copenhagen, Denmark(2004)
  • Bernstein AM, Treyzon L, Li Z: Are highprotein,vegetable-based diets safe for kidneyfunction? A review of the literature. J. Am.Diet Assoc. 107(4), 644–650 (2007)
  • Murtaugh MA, Herrick JS, Sweeney Cet al.: Diet composition and risk ofoverweight and obesity in womenliving in the southwestern United States.J. Am. Diet Assoc. 107(8), 1311–1321(2007)
  • Farnsworth E, Luscombe ND, Noakes Met al.: Effect of a high-protein, energyrestricteddiet on body composition,glycemic control, and lipid concentrationsin overweight and obese hyperinsulinemicmen and women. Am. J. Clin. Nutr. 78(1),31–39 (2003)
  • Leidy HJ, Mattes RD, Campbell WW:Effects of acute and chronic protein intakeon metabolism, appetite, and ghrelin duringweight loss. Obesity Res. 15(5), 1215–1225(2007)
  • Lowell BB, Spiegelman BM: Towards amolecular understanding of adaptivethermogenesis. Nature 404(6778), 652–660(2000)
  • Sims EA, Danforth EJ: Expenditure andstorage of energy in man. J. Clin. Invest.79(4), 1019–1025 (1987)
  • Shibata H, Bukowiecki LJ: Regulatoryalterations of daily energy expenditureinduced by fasting or overfeeding inunrestrained rats. J. Appl. Physiol. 63(2),465–470 (1987)
  • Fine EJ, Feinman RD: Thermodynamics ofweight loss diets. Nutr. Metab. 1(1), 15–23(2004)
  • Johnston CS, Day CS, Swan PD:Postprandial thermogenesis is increased100% on a high-protein, low-fat diet versusa high-carbohydrate, low-fat diet in healthy,young women. J. Am. Coll. Nutr. 21(1),55–61 (2002)
  • Mikkelsen PB, Toubro S, Astrup A: Effect offat-reduced diets on 24-h energyexpenditure: comparisons between animalprotein, vegetable protein, andcarbohydrate. Am. J. Clin. Nutr. 72(5),1135–1141 (2000)
  • Robinson SM, Jaccard C, Persaud C et al.:Protein turnover and thermogenesis inresponse to high-protein and highcarbohydratefeeding in men. Am. J. Clin.Nutr. 52(1), 72–80 (1990).
  • Foster GD, Wyatt HR, Hill JO et al.:A randomized trial of a low-carbohydratediet for obesity. N. Engl. J. Med. 348(21),2082–2090 (2003)
  • Layman DK, Baum JI: Dietary proteinimpact on glycemic control during weightloss. J. Nutr. 134(4), 968S–973S (2004)
  • Layman DK, Shiue H, Sather C et al.:Increased dietary protein modifies glucoseand insulin homeostasis in adult womenduring weight loss. J. Nutr. 133(2),405–410 (2003)
  • Layman DK, Evans E, Baum JI et al.:Dietary protein and exercise have additiveeffects on body composition during weightloss in adult women. J. Nutr. 135(8),1903–1910 (2005)
  • Parker B, Noakes M, Luscombe N et al.:Effect of a high-protein, highmonounsaturatedfat weight loss diet onglycemic control and lipid levels in Type 2diabetes. Diabetes Care 25(3), 425–430(2002)
  • Piatti PM, Monti F, Fermo I et al.:Hypocaloric high-protein diet improvesglucose oxidation and spares lean body mass:comparison to hypocaloric highcarbohydratediet. Metabolism 43(12),1481–1487 (1994)
  • Skov A, Toubro S, Ronn B et al.:Randomized trial on protein vscarbohydrate in ad libitum fat reduced dietfor the treatment of obesity. Int. J. Obes. 23,528–536 (1999)
  • Klaus S: Increasing the protein:carbohydrate ratio in a high-fat diet delaysthe development of adiposity and improvesglucose homeostasis in mice. J. Nutr.135(8), 1854–1858 (2005)
  • Lacroix M, Gaudichon C, Martin A et al.:A long-term high-protein diet markedlyreduces adipose tissue without major sideeffects in Wistar male rats. Am. J. Physiol.Regul. Integr. Comp. Physiol. 287(4),R934–R942 (2004)
  • Stock MJ: Gluttony and thermogenesisrevisited. Int. J. Obes. Relat. Metab. Disord.23(11), 1105–1117 (1999)
  • Levine JA, Eberhardt NL, Jensen MD: Roleof nonexercise activity thermogenesis inresistance to fat gain in humans. Science283(5399), 212–214 (1999)
  • Hamilton TS: The heat increments of dietsbalanced and unbalanced with respect toprotein. J. Nutr. 17(6), 583–599 (1939)
  • Rothwell NJ, Stock MJ: Influence ofcarbohydrate and fat intake on diet-inducedthermogenesis and brown fat activity in ratsfed low protein diets. J. Nutr. 117(10),1721–1726 (1987)
  • Kevonian AV, Vander Tuig JG, Romsos DR:Consumption of a low protein diet increasesnorepinephrine turnover in brown adiposetissue of adult rats. J. Nutr. 114(3), 543–549(1984)
  • Miller DS, Mumford P: Gluttony
  • Anexperimental study of overeating low- orhigh-protein diets. Am. J. Clin. Nutr.20(11), 1212–1222 (1967)
  • Young B, Saville E, Rothwell NJ et al.: Effectof diet and cold exposure on norepinephrineturnover in brown adipose tissue of the rat.J. Clin. Invest. 69(5), 1061–1071 (1982)
  • Tome D: Protein, amino acids and thecontrol of food intake. Br. J. Nutr.92(Suppl. 1), S27–S30 (2004)
  • Blouet C, Mariotti F, Zout-Marniche Det al.: The reduced energy intake of rats fed ahigh-protein low-carbohydrate diet explainsthe lower fat deposition, but macronutrientsubstitution accounts for the improvedglycemic control. J. Nutr. 136(7),1849–1854 (2006)
  • Pichon L, Huneau JF, Fromentin G et al.:A high-protein, high-fat, carbohydrate-freediet reduces energy intake, hepaticlipogenesis, and adiposity in rats. J. Nutr.136(5), 1256–1260 (2006)
  • Johnston CS, Tjonn SL, Swan PD: Highprotein,low-fat diets are effective for weightloss and favorably alter biomarkers inhealthy adults. J. Nutr. 134(3), 586–591(2004)
  • Krieger JW, Sitren HS, Daniels MJ et al.:Effects of variation in protein andcarbohydrate intake on body mass andcomposition during energy restriction:a meta-regression 1. Am. J. Clin. Nutr.83(2), 260–274 (2007)
  • Due A, Toubro S, Skov AR et al.: Effect ofnormal-fat diets, either medium or high inprotein, on body weight in overweightsubjects: a randomised 1-year trial. Int.J. Obes. Relat. Metab. Disord. 28(10),1283–1290 (2004)
  • Verhoef P, van Vliet T, Olthof MR et al.:A high-protein diet increases postprandialbut not fasting plasma total homocysteineconcentrations: a dietary controlled,crossover trial in healthy volunteers. Am.J. Clin. Nutr. 82(3), 553–558 (2005)
  • Halton TL, Willett WC, Liu S et al.:Low-carbohydrate-diet score and the risk ofcoronary heart disease in women. N. Engl.J. Med. 355(19), 1991–2002 (2006)
  • Tang QQ, Otto TC, Lane MD:CCAAT/enhancer-binding protein isrequired for mitotic clonal expansion duringadipogenesis. J. Steroid Biochem. Mol. Biol.100(3), 850–855 (2003)
  • Farmer SR: Transcriptional control ofadipocyte formation. Cell Metab. 4(4),263–273 (2006)
  • Hansen JB, Kristiansen K: Regulatory circuitswhite versus brown adipocyte differentiation.Biochem. J. 398(2), 153–168 (2006)
  • Rosen ED, MacDougald OA: Adipocytedifferentiation from the inside out. Nat. Rev.Mol. Cell Biol. 7(12), 885–896 (2006)
  • Forman BM, Chen J, Evans RM:Hypolipidemic drugs, polyunsaturated fattyacids, and eicosanoids are ligands forperoxisome proliferator-activated receptors and . J. Steroid Biochem. Mol. Biol. 94(9),4312–4317 (1997)
  • Johnson TE, Holloway MK, Vogel R et al.:Structural requirements and cell-typespecificity for ligand activation ofperoxisome proliferator-activated receptors.J. Steroid Biochem. Mol. Biol. 63(1–3), 1–18(1997)
  • Kliewer SA, Sundseth SS, Jones SA et al.:Fatty acids and eicosanoids regulate geneexpression through direct interactions withperoxisome proliferator-activated receptors and . J. Steroid Biochem. Mol. Biol. 94(9),4318–4323 (1997)
  • Yu K, Bayona W, Kallen CB et al.:Differential activation of peroxisomeproliferator-activated receptors byeicosanoids. J. Biol. Chem. 270(41),23975–23983 (1995)
  • Barak Y, Nelson MC, Ong ES et al.: PPAR is required for placental, cardiac, andadipose tissue development. Mol. Cell 4(4),585–595 (1999)
  • Koutnikova H, Cock TA, Watanabe M et al.:Compensation by the muscle limits themetabolic consequences of lipodystrophy inPPAR hypomorphic mice. J. Steroid Biochem.Mol. Biol. 100(24), 14457–14462 (2003)
  • Kubota N, Terauchi Y, Miki H et al.:PPAR mediates high-fat diet-inducedadipocyte hypertrophy and insulin resistance.Mol. Cell 4(4), 597–609 (1999)
  • Rosen ED, Sarraf P, Troy AE et al.: PPAR isrequired for the differentiation of adiposetissue in vivo and in vitro. Mol. Cell 4(4),611–617 (1999)
  • Keller H, Dreyer C, Medin J et al.: Fattyacids and retinoids control lipid metabolismthrough activation of peroxisomeproliferator-activated receptor-retinoid Xreceptor heterodimers. J. Steroid Biochem.Mol. Biol. 90(6), 2160–2164 (1993)
  • Gottlicher M, Demoz A, Svensson D et al.:Structural and metabolic requirements foractivators of the peroxisome proliferatoractivatedreceptor. Biochem. Pharmacol.46(12), 2177–2184 (1993)
  • De Vos P, Lefebvre AM, Miller SG et al.:Thiazolidinediones repress ob geneexpression in rodents via activation ofperoxisome proliferator-activatedreceptor . J. Clin. Invest. 98(4), 1004–1009(1996)
  • Hallakou K, Doare L, Foufelle F et al.:Pioglitazone induces in vivo adipocytedifferentiation in the obese Zucker fa/fa rat.Diabetes 46(9), 1393–1399 (1997)
  • Chaput E, Saladin R, Silvestre M et al.:Fenofibrate and rosiglitazone lower serumtriglycerides with opposing effects on bodyweight. Biochem. Biophys. Res. Commun.271(2), 445–450 (2000)
  • de Souza CJ, Eckhardt M, Gagen K et al.:Effects of pioglitazone on adipose tissueremodeling within the setting of obesity andinsulin resistance. Diabetes 50(8),1863–1871 (2001)
  • Okuno A, Tamemoto H, Tobe K et al.:Troglitazone increases the number ofsmall adipocytes without the change ofwhite adipose tissue mass in obese Zuckerrats. J. Clin. Invest. 101(6), 1354–1361(1998)
  • Lopez IP, Marti A, Milagro FI et al.: DNAmicroarray analysis of genes differentiallyexpressed in diet-induced (cafeteria)obese rats. Obes. Res. 11(2), 188–194(2003)
  • Nakatani T, Kim HJ, Kaburagi Y et al.:A low fish oil inhibits SREBP-1 proteolyticcascade, while a high-fish-oil feedingdecreases SREBP-1 mRNA in mice liver:relationship to anti-obesity. J. Lipid Res.44(2), 369–379 (2003)
  • Huang JT, Welch JS, Ricote M et al.:Interleukin-4-dependent production ofPPAR ligands in macrophages by12/15-lipoxygenase. Nature 400(6742),378–382 (1999)
  • Kozak KR, Gupta RA, Moody JS et al.:15-lipoxygenase metabolism of2-arachidonylglycerol. Generation of aperoxisome proliferators-activatedreceptor . J. Biol. Chem. 277(26),23278–23286 (2002)
  • Krey G, Braissant O, L舗Horset F et al.:Fatty acids, eicosanoids, and hypolipidemicagents identified as ligands of peroxisomeproliferator-activated receptors bycoactivator-dependent receptor ligandassay. Mol. Endocrinol. 11(6), 779–791(1997)
  • Nixon JB, Kamitani H, Baek SJ et al.:Evaluation of eicosanoids and NSAIDs asPPAR ligands in colorectal carcinoma cells.Prostaglandins Leukot. Essent. Fatty Acids68(5), 323–330 (2003)
  • Shappell SB, Gupta RA, Manning S et al.:15S-hydroxyeicosatetraenoic acid activatesperoxisome proliferator-activated receptor and inhibits proliferation in PC3 prostatecarcinoma cells. Cancer Res. 61(2), 497–503(2001)
  • Forman BM, Tontonoz P, Chen J et al.:15-deoxy- 12, 14-prostaglandin J2 is aligand for the adipocyte determinationfactor PPAR . Cell 83(5), 803–812(1995)
  • Kliewer SA, Lenhard JM, Willson TM et al.:A prostaglandin J2 metabolite bindsperoxisome proliferator-activated receptor and promotes adipocyte differentiation. Cell83(5), 813–819 (1995)
  • Bell-Parikh LC, Ide T, Lawson JA et al.:Biosynthesis of 15-deoxy- 12, 14-PGJ2 andthe ligation of PPAR . J. Clin. Invest.112(6), 945–955 (2003)
  • Madsen L, Petersen RK, Sørensen MB et al.:Adipocyte differentiation of 3T3-L1preadipocytes is dependent on lipoxygenaseactivity during the initial stages of thedifferentiation process. Biochem. J. 375,539–549 (2003)
  • Amri EZ, Bonino F, Ailhaud G et al.:Cloning of a protein that mediatestranscriptional effects of fatty acids inpreadipocytes. J. Biol. Chem. 270(5),2367–2371 (1995)
  • Barak Y, Liao D, He W et al.: Effects ofperoxisome proliferator-activated receptor on placentation, adiposity, and colorectalcancer. J. Steroid Biochem. Mol. Biol. 99(1),303–308 (2002)
  • Peters JM, Lee SST, Li W et al.: Growth,adipose, brain, and skin alterations resultingfrom targeted disruption of the mouseperoxisome proliferator-activatedreceptor ( ). Mol. Cell Biol. 20(14),5119–5128 (2000)
  • Hansen JB, Zhang H, Rasmussen THet al.: Peroxisome proliferator-activatedreceptor (PPAR )-mediated regulationof preadipocyte proliferation and geneexpression is dependent on cAMP signaling.J. Biol. Chem. 276(5), 3175–3182 (2001)
  • Wang YX, Lee CH, Tiep S et al.:Peroxisome-proliferator-activated receptor activates fat metabolism to prevent obesity.Cell 113(2), 159–170 (2003)
  • Westergaard M, Henningsen J,Svendsen ML et al.: Modulation ofkeratinocyte gene expression anddifferentiation by PPAR-selective ligandsand tetradecylthioacetic acid. J. Invest.Dermatol. 116(5), 702–712 (2001)
  • Madsen L, Guerre-Millo M, Flindt ENet al.: Tetradecylthioacetic acid preventshigh fat diet induced adiposity and insulinresistance. J. Lipid Res. 43(5), 742–750(2002)
  • Holst D, Luquet S, Nogueira V et al.:Nutritional regulation and role of peroxisomeproliferator-activated receptor in fatty acidcatabolism in skeletal muscle. Biochim.Biophys. Acta 1633(1), 43–50 (2003)
  • Costet P, Legendre C, More J et al.:Peroxisome proliferator-activated receptor -isoform deficiency leads to progressivedyslipidemia with sexually dimorphicobesity and steatosis. J. Biol. Chem. 273(45),29577–29585 (1998)
  • Poynter ME, Daynes RA: Peroxisomeproliferator-activated receptor activationmodulates cellular redox status, repressesnuclear factor- B signaling, and reducesinflammatory cytokine production in aging.J. Biol. Chem. 273(49), 32833–32841(1998)
  • WHO: Diet, Nutrition and the Preventionof Chronic Diseases. WHO TechnicalReport Series 916, Geneva, Switzerland(2003)
  • Luquet S, Lopez-Soriano J, Holst D et al.:Roles of peroxisome proliferator-activatedreceptor (PPAR ) in the control of fattyacid catabolism. A new target for thetreatment of metabolic syndrome. Biochimie86(11), 833–837 (2004)
  • Patsouris D, Reddy JK, Muller M et al.:Peroxisome proliferator-activated receptor mediates the effects of high-fat diet onhepatic gene expression. Endocrinology147(3), 1508–1516 (2006)
  • Brun RP, Tontonoz P, Forman BM et al.:Differential activation of adipogenesis bymultiple PPAR isoforms. Genes Dev. 10(8),974–984 (1996)
  • Guerre-Millo M, Gervois P, Raspe Eet al.: Peroxisome proliferator-activatedreceptor activators improveinsulin sensitivity and reduce adiposity.J. Biol. Chem. 275(22), 16638–16642(2000)
  • Mancini FP, Lanni A, Sabatino L et al.:Fenofibrate prevents and reducesbody weight gain and adiposity indiet-induced obese rats. FEBS Lett. 491(1–2),154–158 (2001)
  • Xu HE, Lambert MH, Montana VG et al.:Molecular recognition of fatty acids byperoxisome proliferator-activated receptors.Mol. Cell 3(3), 397–403 (1999)
  • Lin Q, Ruuska SE, Shaw NS et al.: Ligandselectivity of the peroxisome proliferatoractivatedreceptor . Biochemistry 38(1),185–190 (1999)
  • Ren B, Thelen AP, Peters JM et al.:Polyunsaturated fatty acid suppression ofhepatic fatty acid synthase and S14 geneexpression does not require peroxisomeproliferator-activated receptor . J. Biol.Chem. 272(43), 26827–26832 (1997)
  • Wong SH, NesPhone PJ, Trimble RP et al.:The adaptive effects of dietary fish andsafflower oil on lipid and lipoproteinmetabolism in perfused rat liver. Biochim.Biophys. Acta 792(2), 103–109 (1984)
  • Takeuchi H, Nakamoto T, Mori Y et al.:Comparative effects of dietary fat types onhepatic enzyme activities related to thesynthesis and oxidation of fatty acid and tolipogenesis in rats. Biosci. Biotechnol. Biochem.65(8), 1748–1754 (2001)
  • Rustan AC, Christiansen EN, Drevon CA:Serum lipids, hepatic glycerolipid metabolismand peroxisomal fatty acid oxidation in ratsfed omega-3 and omega-6 fatty acids.Biochem. J. 283(Pt2), 333–339 (1992)
  • Berthou L, Saladin R, Yaqoob P et al.:Regulation of rat liver apolipoprotein A-I,apolipoprotein A-II and acyl-coenzyme Aoxidase gene expression by fibrates anddietary fatty acids. Eur. J.Biochem. 232(1),179–187 (1995)
  • Dallongeville J, Bauge E, Tailleux A et al.:Peroxisome proliferator-activated receptor is not rate-limiting for the lipoproteinloweringaction of fish oil. J. Biol. Chem.276(7), 4634–4639 (2001)
  • Hua X, Wu J, Goldstein JL et al.: Structure ofthe human gene encoding sterol regulatoryelement binding protein-1 (SREBF1) andlocalization of SREBF1 and SREBF2 tochromosomes 17p11.2 and 22q13. Genomics25(3), 667–673 (1995)
  • Shimomura I, Shimano H, Horton JD et al.:Differential expression of exons 1a and 1c inmRNAs for sterol regulatory element bindingprotein-1 in human and mouse organs andcultured cells. J. Clin. Invest. 99(5), 838–845(1997)
  • Yokoyama C, Wang X, Briggs MR et al.:SREBP-1, a basic-helix-loop-helix-leucinezipper protein that controls transcription ofthe low density lipoprotein receptor gene.Cell 75(1), 187–197 (1993)
  • Shimomura I, Hammer RE, Richardson JAet al.: Insulin resistance and diabetesmellitus in transgenic mice expressingnuclear SREBP-1c in adipose tissue: modelfor congenital generalized lipodystrophy.Genes Dev. 12(20), 3182–3194 (1998)
  • Horton JD, Shimomura I, Ikemoto Set al.: Overexpression of sterol regulatoryelement-binding protein-1a in mouseadipose tissue produces adipocytehypertrophy, increased fatty acid secretion,and fatty liver. J. Biol. Chem. 278(38),36652–36660 (2003)
  • Liang G, Yang J, Horton JD et al.:Diminished hepatic response tofasting/refeeding and liver X receptoragonists in mice with selectivedeficiency of sterol regulatory elementbindingprotein-1c. J. Biol. Chem.277(11), 9520–9528 (2002)
  • Shimano H, Horton JD, Shimomura Iet al.: Isoform 1c of sterol regulatoryelement binding protein is less activethan isoform 1a in livers of transgenicmice and in cultured cells. J. Clin.Invest. 99(5), 846–854 (1997)
  • Shimano H, Shimomura I, Hammer REet al.: Elevated levels of SREBP-2 andcholesterol synthesis in livers of micehomozygous for a targeted disruptionof the SREBP-1 gene. J. Clin. Invest.100(8), 2115–2124 (1997)
  • Shillabeer G, Hornford J, Forden JM et al.:Hepatic and adipose tissue lipogenic enzymemRNA levels are suppressed by high fatdiets in the rat. J. Lipid Res. 31(4), 623–631(1990)
  • Madsen L, Petersen RK, Kristiansen K:Regulation of adipocyte differentiation andfunction by polyunsaturated fatty acids.Biochim. Biophys. Acta 1740(2), 266–286(2005)
  • Petersen RK, Jorgensen C, Rustan AC et al.:Arachidonic acid-dependent inhibition ofadipocyte differentiation requires PKAactivity and is associated with sustainedexpression of cyclooxygenases. J. Lipid Res.44(12), 2320–2330 (2003)
  • Ou J, Tu H, Shan B et al.: Unsaturated fattyacids inhibit transcription of the sterolregulatory element-binding protein-1c(SREBP-1c) gene by antagonizing liganddependentactivation of the LXR. J. SteroidBiochem. Mol. Biol. 98(11), 6027–6032(2001)
  • Yoshikawa T, Shimano H, Yahagi N et al.:Polyunsaturated fatty acids suppress sterolregulatory element-binding protein 1cpromoter activity by inhibition of liver Xreceptor (LXR) binding to LXR responseelements. J. Biol. Chem. 277(3), 1705–1711(2002)
  • Kuhajda FP, Landree LE, Ronnett GV:The connections between C75 and obesitydrug-target pathways. Trends Pharmacol. Sci.26(11), 541–544 (2005)
  • Hu Z, Dai Y, Prentki M et al.: A role forhypothalamic malonyl-CoA in the controlof food intake. J. Biol. Chem. 280(48),39681–39683 (2005)
  • Thupari JN, Landree LE, Ronnett GVet al.: C75 increases peripheral energyutilization and fatty acid oxidation indiet-induced obesity. J. Steroid Biochem.Mol. Biol. 99(14), 9498–9502 (2002)
  • Schmid B, Rippmann JF, Tadayyon M et al.:Inhibition of fatty acid synthase preventspreadipocyte differentiation. Biochem. Biophys.Res. Commun. 328(4), 1073–1082 (2005)
  • Diraison F, Yankah V, Letexier D et al.:Differences in the regulation of adipose tissueand liver lipogenesis by carbohydrates inhumans. J. Lipid Res. 44(4), 846–853 (2003)
  • Horton JD, Bashmakov Y, Shimomura Iet al.: Regulation of sterol regulatoryelement binding proteins in livers of fastedand refed mice. J. Steroid Biochem. Mol. Biol.95(11), 5987–5992 (1998)
  • Kim JB, Sarraf P, Wright M et al.:Nutritional and insulin regulation of fattyacid synthetase and leptin gene expressionthrough ADD1/SREBP1. J. Clin. Invest.101(1), 1–9 (1998)
  • Shimomura I, Bashmakov Y, Horton JD:Increased levels of nuclear SREBP-1cassociated with fatty livers in two mousemodels of diabetes mellitus. J. Biol. Chem.274(42), 30028–30032 (1999)
  • Peet DJ, Turley SD, Ma W et al.:Cholesterol and bile acid metabolismare impared in mice lacking the nuclearreceptor LXR . Cell 93, 693–704 (1998)
  • Stulnig TM, Steffensen KR, Gao H et al.:Novel roles of liver X receptors exposed bygene expression profiling in liver andadipose tissue. Mol. Pharmacol. 62,1299–1305 (2002)
  • Tobin KAR, Ulven SM, Schuster GU et al.:Liver X receptors as insulin-mediatingfactors in fatty acid and cholesterolbiosynthesis. J. Biol. Chem. 277(12),10691–10697 (2002)
  • Dalen KT, Ulven SM, Bamberg Ket al.: Expression of the insulin-responsiveglucose transporter GLUT4 in adipocytes isdependent on liver X receptor . J. Biol.Chem. 278(48), 48283–48291 (2003)
  • Mitro N, Mak PA, Vargas L et al.:The nuclear receptor LXR is a glucosesensor. Nature 445(7124), 219–223 (2007)
  • He Z, Jiang T, Wang Z et al.: Modulation ofcarbohydrate response element-bindingprotein gene expression in 3T3-L1adipocytes and rat adipose tissue. Am. J.Physiol. Endocrinol. Metab. 287(3),E424–E430 (2004)
  • Iizuka K, Bruick RK, Liang G et al.: Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc.Natl Acad. Sci. USA 101(19), 7281–7286 (2004)
  • Iizuka K, Miller B, Uyeda K: Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice. Am. J. Physiol. Endocrinol. Metab. 291(2), E358–E364 (2006)
  • Tsukiyama-Kohara K, Poulin F, Kohara M et al.: Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat. Med. 7(10), 1128–1132 (2001)
  • Fox HL, Kimball SR, Jefferson LS et al.: Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters. Am. J. Physiol. Cell Physiol. 274(1), C206–C213 (1998)
  • Roh C, Han J, Tzatsos A et al.: Nutrient-sensing mTOR-mediated pathway regulates leptin production in isolated rat adipocytes. Am. J. Physiol. Endocrinol. Metab. 284(2), E322–E330 (2003)
  • Lynch CJ, Hutson SM, Patson BJ et al.: Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am. J. Physiol. Endocrinol. Metab. 283(4), E824–E835 (2002)
  • Lynch CJ, Patson BJ, Anthony J et al.: Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 283(3), E503–E513 (2002)
  • Fox HL, Pham PT, Kimball SR et al.: Amino acid effects on translational repressor 4E-BP1 are mediated primarily by L-leucine in isolated adipocytes. Am. J. Physiol. Cell Physiol. 275(5), C1232–C1238 (1998)
  • Yeh W, Bierer BE, McKnight SL: Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 Cells. J. Steroid Biochem. Mol. Biol. 92(24), 11086–11090 (1995)
  • Calkhoven CF, Muller C, Leutz A: Translational control of C/EBP and C/EBP isoform expression. Genes Dev. 14(15), 1920–1932 (2000)
  • Lin TA, Kong X, Saltiel AR et al.: Control of PHAS-I by insulin in 3T3-L1 adipocytes. J. Biol. Chem. 270(31), 18531–18538 (1995)
  • Le Bacquer O, Petroulakis E, Paglialunga S et al.: Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J. Clin. Invest. 117(2), 387–396 (2007)
  • Batterham RL, Heffron H, Kapoor S et al.: Critical role for peptide YY in proteinmediated satiation and body-weight regulation. Cell Metab. 4(3), 223–233 (2006)
  • Chakravarty K, Hanson R: Insulin regulation of phosphoenolpyruvate carboxykinase-c gene transcription: the role of sterol regulatory element-binding protein 1c. Nutr. Rev. 65(6 Pt 2), S47–S56 (2007)
  • Cherrington AD: The role of hepatic insulin receptors in the regulation of glucose production. J. Clin. Invest. 115(5), 1136–1139 (2005)
  • Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition 18(9), 761–766 (2002)
  • Czech MP, Corvera S: Signaling mechanisms that regulate glucose transport. J. Biol. Chem. 274(4), 1865–1868 (1999)
  • Zierler K: Whole body glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 276(3), E409–E426 (1999)
  • Woerle HJ, Meyer C, Dostou JM et al.: Pathways for glucose disposal after meal ingestion in humans. Am. J. Physiol. Endocrinol. Metab. 284(4), E716–E725 (2003)
  • White MF, Kahn CR: The insulin signaling system. J. Biol. Chem. 269(1), 1–4 (1994)
  • Adams CM: Role of the transcription factor ATF4 in the anabolic actions of insulin and the anti-anabolic action of glucocorticoids. J. Biol. Chem. 282, 16744–16753 (2007)
  • Um S, D’Alessio D, Thomas G: Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 3(6), 393–402 (2006)
  • Moore MC, Cherrington AD, Wasserman DH: Regulation of hepatic and peripheral glucose disposal. Best Pract. Res. Clin. Endocrinol. Metab. 17(3), 343–364 (2003)
  • Nevado C, Valverde AM, Benito M: Role of insulin receptor in the regulation of glucose uptake in neonatal hepatocytes. Endocrinology 147(8), 3709–3718 (2006)
  • Im SS, Kwon SK, Kang SY et al.: Regulation of GLUT4 gene expression by SREBP-1c in adipocytes. Biochem. J. 399(1), 131–139 (2006)
  • Foufelle F, Ferr P: New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem. J. 366(2), 377–391 (2002)
  • Horton JD, Goldstein JL, Brown MS: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109(9), 1125–1131 (2002)
  • Chen G, Liang G, Ou J et al.: Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of atty acid synthesis in liver. J. Steroid Biochem. Mol. Biol. 101(31), 11245–11250 (2004)
  • Lazar MA, Willson TM: Sweet dreams for LXR. Cell Metab. 5(3), 159–161 (2007)
  • Yamashita H, Takenoshita M, Sakurai M et al.: A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. J. Steroid Biochem. Mol. Biol. 98(16), 9116–9121 (2001)
  • Onuma H, Makino H, Osawa H et al.: Mitogen-activated protein kinase and p70 ribosomal protein S6 kinase are not involved in the insulin-dependent stimulation of cAMP phosphodiesterase kinase in rat adipocytes. Biochim. Biophys. Acta 1402(2), 197–208 (1998)
  • Smith CJ, Vasta V, Degerman E et al.: Hormone-sensitive cyclic GMP-inhibited cyclic AMP phosphodiesterase in rat adipocytes. Regulation of insulin- and cAMP-dependent activation by phosphorylation. J. Biol. Chem. 266(20), 13385–13390 (1991)
  • Kono T, Barham FW: Effects of insulin on the levels of adenosine 3´:5´-monophosphate and lipolysis in isolated rat epididymal fat cells. J. Biol. Chem. 248(21), 7417–7426 (1973)
  • Makino H, Suzuki T, Kajinuma H et al.: The role of insulin-sensitive phosphodiesterase in insulin action. Adv. Second Messenger Phosphoprotein Res. 25, 185–199 (1992)
  • Manganiello V, Vaughan M: An effect of insulin on cyclic adenosine 3´:5´-monophosphate phosphodiesterase activity in fat cells. J. Biol. Chem. 248(20), 7164–7170 (1973)
  • Beebe SJ, Redmon JB, Blackmore PF et al.: Discriminative insulin antagonism of stimulatory effects of various cAMP analogs on adipocyte lipolysis and hepatocyte glycogenolysis. J. Biol. Chem. 260(29), 15781–15788 (1985)
  • Witters LA, Moriarity D, Martin DB: Regulation of hepatic acetyl coenzyme A carboxylase by insulin and glucagon. J. Biol. Chem. 254(14), 6644–6649 (1979).
  • McGarry JD, Mannaerts GP, Foster DW:A possible role for malonyl-CoA in theregulation of hepatic fatty acid oxidationand ketogenesis. J. Clin. Invest. 60(1),265–270 (1977)
  • Fanelli CG, Porcellati F, Rossetti P et al.:Glucagon: the effects of its excess anddeficiency on insulin action. Nutr. Metab.Cardiovasc. Dis. 16(Suppl. 1), S28–S34(2006)
  • Estall JL, Drucker DJ: Glucagon andglucagon-like peptide receptors as drug targets.Curr. Pharm. Des. 12(14), 1731–1750 (2006)
  • Puigserver P, Rhee J, Donovan J et al.:Insulin-regulated hepatic gluconeogenesisthrough FOXO1–PGC-1 interaction.Nature 423(6939), 550–555 (2003)
  • Postic C, Dentin R, Girard J: Role of theliver in the control of carbohydrate and lipidhomeostasis. Diabetes Metab. 30(5),398–408 (2004)
  • Kaloyianni M, Freedland RA: Contributionof several amino acids and lactate togluconeogenesis in hepatocytes isolatedfrom rats fed various diets. J. Nutr. 120(1),116–122 (1990)
  • Gustavson SM, Chu CA, Nishizawa M et al.:Interaction of glucagon and epinephrine in thecontrol of hepatic glucose production in theconscious dog. Am. J. Physiol. Endocrinol.Metab. 284(4), E695–E707 (2003)
  • Gustavson SM, Chu CA, Nishizawa Met al.: Glucagon舗s actions are modified by thecombination of epinephrine andgluconeogenic precursor infusion. Am. J.Physiol. Endocrinol. Metab. 285(3),E534–E544 (2003)
  • Felig P, Pozefsky T, Marliss E et al.: Alanine:key role in gluconeogenesis. Science167(920), 1003–1004 (1970)
  • Porcellati F, Pampanelli S, Rossetti P et al.:Effect of the amino acid alanine on glucagonsecretion in non-diabetic and Type 1diabetic subjects during hyperinsulinaemiceuglycaemia, hypoglycaemia and posthypoglycaemichyperglycaemia. Diabetologia50(2), 422–430 (2007)
  • Wiethop BV, Cryer PE: Glycemic actions ofalanine and terbutaline in IDDM. DiabetesCare 16(8), 1124–1130 (1993)
  • Jarrousse C, Lardeux B, Bourdel G et al.:Portal insulin and glucagon in rats fedproteins as a meal: immediate variations andcircadian modulations. J. Nutr. 110(9),1764–1773 (1980)
  • Fafournoux P, Ré;mésy C, Demign– C:Stimulation of amino acid transportinto liver cells from rats adapted to ahigh-protein diet. Biochem. J. 206(1),13–18 (1982)
  • Azzout B, Chanez M, Bois-Joyeux B et al.:Gluconeogenesis from dihydroxyacetone inrat hepatocytes during the shift from a lowprotein, high carbohydrate to a highprotein, carbohydrate-free diet. J. Nutr.114(11), 2167–2178 (1984)
  • Boisjoyeux B, Chanez M, Azzout B et al.:Comparison between starvation andconsumption of a high protein diet: plasmainsulin and glucagon and hepatic activitiesof gluconeogenic enzymes during the first24 hours. Diabete Metab. 12(1), 21–27(1986)
  • Linn T, Santosa B, GrɆnemeyer D et al.:Effect of long-term dietary protein intake onglucose metabolism in humans. Diabetologia43(10), 1257–1265 (2000)
  • Handlogten ME, Kilberg MS: Inductionand decay of amino acid transport in theliver. Turnover of transport activity inisolated hepatocytes after stimulation bydiabetes or glucagon. J. Biol. Chem. 259(6),3519–3525 (1984)
  • Mallette LE, Exton JH, Park CR:Effects of glucagon on amino acid transportand utilization in the perfused rat liver.J. Biol. Chem. 244(20), 5724–5728(1969)
  • Snodgrass PJ, Lin RC, Muller WA et al.:Induction of urea cycle enzymes of rat liverby glucagon. J. Biol. Chem. 253(8),2748–2753 (1978)
  • Lacey JH, Bradford NM, Joseph SK et al.:Increased activity of phosphate-dependentglutaminase in liver mitochondria as a resultof glucagon treatment of rats. Biochem. J.194(1), 29–33 (1981)
  • Azzout-Marniche D, Gaudichon C,Blouet C et al.: Liver glyconeogenesis:a pathway to cope with postprandial aminoacid excess in high-protein fed rats? Am.J. Physiol. Regul. Integr. Comp. Physiol.292(4), R1400–R1407 (2007)
  • Remesy C, Demigne C: Impairedlactate utilization in livers of rats fedhigh protein diets. J. Nutr. 112(1), 60–69(1982)
  • Bertin E, Arner P, Bolinder J et al.: Action ofglucagon and glucagon-like peptide-1-(7–36) amide on lipolysis in humansubcutaneous adipose tissue and skeletalmuscle in vivo. J. Clin. Endocrinol. Metab.86(3), 1229–1234 (2001)
  • Langin D: Control of fatty acid and glycerolrelease in adipose tissue lipolysis. CR Biol.329(8), 598–607 (2006)
  • Jensen MD, Heiling VJ, Miles JM: Effectsof glucagon on free fatty acid metabolism inhumans. J. Clin. Endocrinol. Metab. 72(2),308–315 (1991)
  • Wu MS, Jeng CY, Hollenbeck CB et al.:Does glucagon increase plasma free fattyacid concentration in humans with normalglucose tolerance? J. Clin. Endocrinol.Metab. 70(2), 410–416 (1990)
  • Carmen GY, Víctor SM: Signallingmechanisms regulating lipolysis. Cell Signal.18(4), 401–408 (2006)
  • Holm C: Molecular mechanisms regulatinghormone-sensitive lipase and lipolysis.Biochem. Soc. Trans. 31(Pt 6), 1120–1124(2003)
  • Nelson DL, Gehlert DR: Central nervoussystem biogenic amine targets for control ofappetite and energy expenditure. Endocrine29(1), 49–60 (2006)
  • Palmiter RD: Is dopamine aphysiologically relevant mediator of feedingbehavior? Trends Neurosci. 30(8), 375–381(2007)
  • Wellman PJ: Norepinephrine and thecontrol of food intake. Nutrition 16(10),837–842 (2000)
  • Cannon B, Nedergaard J: Brown adiposetissue: function and physiologicalsignificance. Physiol. Rev. 84(1), 277–359(2004)
  • Collins S, Cao W, Robidoux J:Learning new tricks from old dogs: -adrenergic receptors teach new lessonson firing up adipose tissue metabolism.Mol. Endocrinol. 18(9), 2123–2131(2004)
  • Langin D: Adipose tissue lipolysis as ametabolic pathway to definepharmacological strategies against obesityand the metabolic syndrome. Pharmacol.Res. 53(6), 482–491 (2006)
  • Lovenberg W, Kuhn DM: Role ofhydroxylase cofactor in serotoninbiosynthesis. Psychopharmacol. Bull. 14(4),44–46 (1978)
  • Boado RJ, Li JY, Nagaya M et al.: Selectiveexpression of the large neutral amino acidtransporter at the blood–brain barrier.J. Steroid Biochem. Mol. Biol. 96(21),12079–12084 (1999)
  • Hawkins RA, Oé;Kane RL, Simpson IAet al.: Structure of the blood–brainbarrier and its role in the transport ofamino acids. J. Nutr. 136(1), 218S–226S(2006)
  • Fernstrom JD, Wurtman RJ: Brainserotonin content: physiological regulationby plasma neutral amino acids. Science178(59), 414–416 (1972)
  • Oldendorf WH: Brain uptake ofradiolabeled amino acids, amines, andhexoses after arterial injection. Am. J.Physiol. 221(6), 1629–1639 (1971)
  • Fernstrom JD, Faller DV: Neutral aminoacids in the brain: changes in response tofood ingestion. J. Neurochem. 30(6),1531–1538 (1978)
  • Le Masurier M, Oldenzeil W, Lehman Cet al.: Effect of acute tyrosine depletion inusing a branched chain amino-acid mixtureon dopamine neurotransmission in the ratbrain. Neuropsychopharmacology 31(2),310–317 (2005)
  • Biggio G, Porceddu ML, Gessa GL:Decrease of homovanillic,dihydroxyphenylacetic acid andcyclic-adenosine-3´,5´-monophosphatecontent in the rat caudate nucleusinduced by the acute administration of anaminoacid mixture lacking tyrosine andphenylalanine. J. Neurochem. 26(6),1253–1255 (1976)
  • Fernstrom MHFJD: Acute tyrosinedepletion reduces tyrosine hydroxylationrate in rat central nervous system. Life Sci.57(9), PL97–PL102 (1995)
  • McTavish SFB, Cowen PJ, Sharp T: Effectof a tyrosine-free amino acid mixture onregional brain catecholamine synthesis andrelease. Psychopharmacology 141(2),182–188 (1999)
  • Palmour RM, Ervin FR, Baker GB et al.:An amino acid mixture deficient inphenylalanine and tyrosine reducescerebrospinal fluid catecholaminemetabolites and alcohol consumption invervet monkeys. Psychopharmacology 136(1),1–7 (1998)
  • Leyton M, Dagher A, Boileau I et al.:Decreasing amphetamine-induceddopamine release by acutephenylalanine/tyrosine depletion: a PET/[11C]raclopride study in healthy men.Neuropsychopharmacology 29(2), 427–432(2004)
  • Leyton M, Pun VK, Benkelfat C et al.:A new method for rapidly and simultaneouslydecreasing serotonin and catecholaminesynthesis in humans. J. Psychiatry Neurosci.28(6), 464–467 (2003)
  • Agharanya JC, Alonso R, Wurtman RJ:Changes in catecholamine excretion aftershort-term tyrosine ingestion in normallyfed human subjects. Am. J. Clin. Nutr.34(1), 82–87 (1981)
  • Alonso R, Agharanya JC, Wurtman RJ:Tyrosine loading enhances catecholamineexcretion by rats. J. Neural. Transm.49(1–2), 31–43 (1980)
  • Morton GJ, Cummings DE, Baskin DGet al.: Central nervous system control offood intake and body weight. Nature443(7109), 289–295 (2006)
  • Jackson HC, Bearham MC, Hutchins LJet al.: Investigation of the mechanismsunderlying the hypophagic effects of the5-HT and noradrenaline reuptake inhibitor,sibutramine, in the rat. Br. J. Pharmacol.121(8), 1613–1618 (1997)
  • Bartness TJ, Kay Song C, Shi H et al.:Brain–adipose tissue cross talk. Proc. Nutr.Soc. 64(1), 53–64 (2005)
  • Fekete C, Marks DL, Sarkar S et al.: Effectof agouti-related protein in regulation of thehypothalamic–pituitary–thyroid axis in themelanocortin 4 receptor knockout mouse.Endocrinology 145(11), 4816–4821 (2004)
  • Joseph-Bravo P: Hypophysiotropicthyrotropin-releasing hormone neuronsas transducers of energy homeostasis.Endocrinology 145(11), 4813–4815(2004)
  • Lechan RM, Fekete C: The TRHneuron: a hypothalamic integrator of energymetabolism. In: Hypothalamic Integration ofEnergy Metabolism, Proceedings of the 24thInternational Summer School of BrainResearch, Held at the Royal NetherlandsAcademy of Arts and Sciences. Elsevier,Amsterdam, The Netherlands 209–235(2006)
  • Branco M, Ribeiro M, Negrao N et al.:3,5,3ƀ-triiodothyronine actively stimulatesUCP in brown fat under minimalsympathetic activity. Am. J. Physiol.Endocrinol. Metab. 276(1), E179–E187(1999)
  • Guerra C, Roncero C, Porras A et al.:Triiodothyronine induces the transcriptionof the uncoupling protein gene andstabilizes its mRNA in fetal rat brownadipocyte primary cultures. J. Biol. Chem.271(4), 2076–2081 (1996)
  • Rubio A, Raasmaja A, Silva JE:Thyroid hormone and norepinephrinesignaling in brown adipose tissue. II:differential effects of thyroid hormone on 3-adrenergic receptors in brown and whiteadipose tissue. Endocrinology 136(8),3277–3284 (1995)
  • Granneman JG, Burnazi M, Zhu Z et al.:White adipose tissue contributes to UCP1-independent thermogenesis. Am. J. Physiol.Endocrinol. Metab. 285(6), E1230–E1236(2003)
  • Cinti S: The role of brown adipose tissue inhuman obesity. Nutr. Metab. Cardiovasc.Dis. 16(8), 569–574 (2006)
  • Himms-Hagen J: Does brown adiposetissue (BAT) have a role in the physiologyor treatment of human obesity? Rev.Endocr. Metab. Disord. 2(4), 395–401(2001)
  • Oberkofler H, Dallinger G, Liu YMet al.: Uncoupling protein gene:quantification of expression levels inadipose tissues of obese and non-obesehumans. J. Lipid Res. 38(10), 2125–2133(1997)
  • Leppaluoto J, Paakkonen T, Korhonen Iet al.: Pituitary and autonomic responses tocold exposures in man. Acta Physiol. Scand.184(4), 255–264 (2005)
  • Huttunen P, Hirvonen J, Kinnula V:The occurrence of brown adipose tissuein outdoor workers. Eur. J. Appl. Physiol.Occup. Physiol. 46(4), 339–345 (1981)
  • Lean ME, James WP, Jennings G et al.:Brown adipose tissue in patients withphaeochromocytoma. Int. J. Obes. 10(3),219–227 (1986)
  • Ricquier D, Nechad M, Mory G:Ultrastructural and biochemicalcharacterization of human brownadipose tissue in pheochromocytoma. J. Clin.Endocrinol. Metab. 54(4), 803–807 (1982)
  • Evans D, Minouchehr S, Hagemann Get al.: Frequency of and interaction betweenpolymorphisms in the 3-adrenergicreceptor and in uncoupling proteins 1and 2 and obesity in Germans. Int. J. Obes.Relat. Metab. Disord. 24(10), 1239–1245(2000)
  • Park HS, Kim Y, Lee C: Single nucleotidevariants in the 2-adrenergic and 3-adrenergic receptor genes explained18.3% of adolescent obesity variation.J. Hum. Gen. 50(7), 365–369 (2005)
  • Valve R, Heikkinen S, Rissanen A et al.:Synergistic effect of polymorphisms inuncoupling protein 1 and 3-adrenergicreceptor genes on basal metabolic rate inobese Finns. Diabetologia 41(3), 357–361(1998)
  • Simonsen L, Bulow J, Madsen J et al.:Thermogenic response to epinephrine in theforearm and abdominal subcutaneousadipose tissue. Am. J. Physiol. Endocrinol.Metab. 263(5), E850–E855 (1992)
  • Farooqi IS, Oé;Rahilly S: Monogenic humanobesity syndromes. Recent Prog. Horm. Res.59(1), 409–424 (2004)
  • Amigo I, Mendez C: Effects of diets andtheir role in weight control. Psychol. HealthMed. 12(3), 321–327 (2007)
  • Doucet E, Imbeault P, St-Pierre S et al.:Appetite after weight loss by energyrestriction and a low-fat diet-exercise followup.Int. J. Obes. Relat. Metab. Disord. 24(7),906–914 (2000)
  • Cummings DE, Overduin J:Gastrointestinal regulation of food intake.J. Clin. Invest. 117(1), 13–23 (2007)
  • Dham S, Banerji MA: The brain–gut axis inregulation of appetite and obesity. Pediatr.Endocrinol. Rev. 3(Suppl 4), 544–554(2006)
  • Dhillo WS: Appetite regulation: anoverview. Thyroid 17(5), 433–435 (2007)
  • Murphy KG, Bloom SR: Gut hormones andthe regulation of energy homeostasis. Nature444(7121), 854–859 (2006)
  • Moran TH: Gut peptide signaling in thecontrols of food intake. Obesity Res.14(Suppl. 5), 250S–253S (2006)
  • Trigazis L, Orttmann A, Anderson GH: Effectof a cholecystokinin-A receptor blocker onprotein-induced food intake suppression inrats. Am. J. Physiol. Regul. Integr. Comp. Physiol.272(6), R1826–R1833 (1997)
  • Kojima M, Hosoda H, Date Y et al.:Ghrelin is a growth-hormone-releasingacylated peptide from stomach. Nature402(6762), 656–660 (1999)
  • Tschop M, Smiley DL, Heiman ML:Ghrelin induces adiposity inrodents. Nature 407(6806), 908–913(2000)
  • Wortley KE, del Rincon JP, Murray JDet al.: Absence of ghrelin protects againstearly-onset obesity. J. Clin. Invest. 115(12),3573–3578 (2005)
  • Zigman JM, Nakano Y, Coppari R et al.:Mice lacking ghrelin receptors resist thedevelopment of diet-induced obesity.J. Clin. Invest. 115(12), 3564–35672(2005)
  • Gruninger TR, LeBoeuf B, Liu Yet al.: Molecular signaling involved inregulating feeding and other motivatedbehaviors. Mol. Neurobiol. 35(1), 1–20(2007)
  • Pages N, Orosco M, Rouch C et al.:Refeeding after 72 hour fasting altersneuropeptide Y and monoamines in variouscerebral areas in the rat. Comp. Biochem.Physiol. Comp. Physiol. 106(4), 845–849(1993)
  • Pages N, Orosco M, Rouch C et al.: Fastingaffects more markedly neuropeptide Y thanmonoamines in the rat brain. Pharmacol.Biochem. Behav. 44(1), 71–75 (1993)
  • Qian S, Chen H, Weingarth D et al.:Neither agouti-related protein norneuropeptide Y is critically requiredfor the regulation of energy homeostasis inmice. Mol. Cell. Biol. 22(14), 5027–5035(2002)
  • Kushi A, Sasai H, Koizumi H et al.: Obesityand mild hyperinsulinemia found inneuropeptide Y-Y1 receptor-deficient mice.J. Steroid Biochem. Mol. Biol. 95(26),15659–15664 (1998)
  • Segal-Lieberman G, Trombly DJ,Juthani V et al.: NPY ablation inC57BL/6 mice leads to mild obesity andto an impaired refeeding response tofasting. Am. J. Physiol. Endocrinol. Metab.284(6), E1131–E1139 (2003)
  • Date Y, Shimbara T, Koda S et al.:Peripheral ghrelin transmits orexigenicsignals through the noradrenergic pathwayfrom the hindbrain to the hypothalamus.Cell Metab. 4(4), 323–331 (2006)
  • Theander-Carrillo C, Wiedmer P,Cettour-Rose P et al.: Ghrelin action in thebrain controls adipocyte metabolism.J. Clin. Invest. 116(7), 1983–1993 (2006)
  • Kinzig KP, Hargrave SL, Hyun J et al.:Energy balance and hypothalamiceffects of a high-protein/low-carbohydratediet. Physiol. Behav. 92(3), 454–460 (2007)
  • Li G, Mobbs CV, Scarpace PJ: Centralpro-opiomelanocortin gene delivery resultsin hypophagia, reduced visceral adiposity,and improved insulin sensitivity ingenetically obese Zucker rats. Diabetes52(8), 1951–1957 (2003)
  • Muccioli G, Pons N, Ghe C et al.:Ghrelin and des-acyl ghrelin bothinhibit isoproterenol-induced lipolysisin rat adipocytes via a non-type 1agrowth hormone secretagogue receptor.Eur. J. Pharmacol. 498(1–3), 27–35(2004)
  • Gomez G, Englander EW, Greeley GH:Nutrient inhibition of ghrelin secretion inthe fasted rat. Regul. Pept. 117(1), 33–36(2004)
  • Vallejo-Cremades MT, Gomez-Garcia L,Chacatas-Cortesao M et al.: Enrichedprotein diet-modified ghrelin expression andsecretion in rats. Regul. Pept. 121(1–3),113–119 (2004)
  • Sanchez J, Oliver P, Palou A et al.:The inhibition of gastric ghrelin productionby food intake in rats is dependent on thetype of macronutrient. Endocrinology145(11), 5049–5055 (2004)
  • Batterham RL, Cowley MA, Small CJ et al.:Gut hormone PYY3–36 physiologicallyinhibits food intake. Nature 418(6898),650–654 (2002)
  • Lee HM, Wang G, Englander EW et al.:Ghrelin, a new gastrointestinal endocrinepeptide that stimulates insulin secretion:enteric distribution, ontogeny, influenceof endocrine, and dietary manipulations.Endocrinology 143(1), 185–190 (2002)
  • Moesgaard SG, Ahren B, Carr RD et al.:Effects of high-fat feeding and fasting onghrelin expression in the mouse stomach.Regul. Pept. 120(1–3), 261–267 (2004)
  • Asakawa A, Inui A, Kaga T et al.:Antagonism of ghrelin receptor reduces foodintake and body weight gain in mice. Gut52(7), 947–952 (2003)
  • Beck B, Richy S, Stricker-Krongrad A:Feeding response to ghrelin agonist andantagonist in lean and obese Zucker rats.Life Sci. 76(4), 473–478 (2004)
  • Zorrilla EP, Iwasaki S, Moss JAet al.:Vaccination against weight gain. Proc.Natl Acad. Sci. USA 103(35), 13226–13231(2006)
  • Tschop M, Weyer C, Tataranni PA et al.:Circulating ghrelin levels are decreased inhuman obesity. Diabetes 50(4), 707–709(2001)
  • Ariyasu H, Takaya K, Hosoda H et al.:Delayed short-term secretory regulation ofghrelin in obese animals: evidenced by aspecific RIA for the active form of ghrelin.Endocrinology 143(9), 3341–3450 (2002)
  • Lindqvist A, de la Cour CD, Stegmark Aet al.: Overeating of palatable food is associatedwith blunted leptin and ghrelin responses.Regul. Pept. 130(3), 123–132 (2005)
  • West DB, Fey D, Woods SC:Cholecystokinin persistently suppressesmeal size but not food intake in free-feedingrats. Am. J. Physiol. Regul. Integr. Comp.Physiol. 246(5), R776–R787 (1984)
  • Crawley JN, Beinfeld MC: Rapiddevelopment of tolerance to the behaviouralactions of cholecystokinin. Nature 302,703–706 (1983)
  • Asin KE, Gore J, Bednarz L et al.: Effects ofselective CCK receptor agonists on foodintake after central or peripheraladministration in rats. Brain Res. 571(1),169–174 (1992)
  • Corp ES, Curcio M, Gibbs J et al.:The effect of centrally administered CCKreceptorantagonists on food intake in rats.Physiol. Behav. 61(6), 823–827 (1997)
  • Bignon E, Alonso R, Arnone M et al.:SR146131: A new potent, orally active, andselective nonpeptide cholecystokinin subtype 1receptor agonist II: in vivo pharmacologicalcharacterization. J. Pharmacol. Exp. Ther.289(2), 752–761 (1999)
  • Bi S, Ladenheim EE, Schwartz GJ et al.:A role for NPY overexpression in thedorsomedial hypothalamus in hyperphagiaand obesity of OLETF rats. Am. J. Physiol.Regul. Integr. Comp. Physiol. 281(1),R254–R260 (2001)
  • Fan W, Ellacott KLJ, Halatchev IG et al.:Cholecystokinin-mediated suppressionof feeding involves the brainstemmelanocortin system. Nat. Neurosci. 7(4),335–336 (2004)
  • Moran TH, Katz LF, Plata-Salaman CRet al.: Disordered food intake and obesity inrats lacking cholecystokinin A receptors.Am. J. Physiol. Regul. Integr. Comp. Physiol.274(3), R618–R625 (1998)
  • Kopin AS, Mathes WF, McBride EW et al.:The cholecystokinin-A receptor mediatesinhibition of food intake yet is not essentialfor the maintenance of body weight. J. Clin.Invest. 103(3), 383–391 (1999)
  • Bi S, Chen J, Behles RR et al.: Differentialbody weight and feeding responses to highfatdiets in rats and mice lackingcholecystokinin 1 receptors. Am. J. Physiol.Regul. Integr. Comp. Physiol. 293(1),R55–R63 (2007)
  • Baranowska B, Radzikowska M,Wasilewska-Dziubinska E et al.: Disturbedrelease of gastrointestinal peptides inanorexia nervosa and in obesity. DiabetesObes. Metab. 2(2), 99–103 (2000)
  • Bowen J, Noakes M, Clifton PM: Appetiteregulatory hormone responses to variousdietary proteins differ by body mass indexstatus despite similar reductions inad libitum energy intake. J. Clin. Endocrinol.Metab. 91(8), 2913–2919 (2006)
  • French SJ, Murray B, Rumsey RDE et al.: Ischolecystokinin a satiety hormone?Correlations of plasma cholecystokinin withhunger, satiety and gastric emptying innormal volunteers. Appetite 21(2), 95–104(1993)
  • Covasa M, Marcuson JK, Ritter RC:Diminished satiation in rats exposed toelevated levels of endogenous or exogenouscholecystokinin. Am. J. Physiol. Regul.Integr. Comp. Physiol. 280(2), R331–R337(2001)
  • Covasa M, Ritter RC: Adaptation tohigh-fat diet reduces inhibition of gastricemptying by CCK and intestinal oleate.Am. J. Physiol. Regul. Integr. Comp. Physiol.278(1), R166–R170 (2000)
  • Covasa M, Ritter RC: Reduced sensitivity tothe satiation effect of intestinal oleate in ratsadapted to high-fat diet. Am. J. Physiol.Regul. Integr. Comp. Physiol. 277(1),R279–R285 (1999)
  • Liddle RA, Goldfine ID, Rosen MS et al.:Cholecystokinin bioactivity in humanplasma. Molecular forms, responses tofeeding, and relationship to gallbladdercontraction. J. Clin. Invest. 75, 1144–1152(1985)
  • Hopman WP, Jansen JB, Lamers CB:Comparative study of the effects of equalamounts of fat, protein, and starch onplasma cholecystokinin in man. Scand.J. Gastroenterol. 20, 843–847 (1985)
  • Bowen J, Noakes M, Trenerry C et al.:Energy intake, ghrelin, and cholecystokininafter different carbohydrate and proteinpreloads in overweight men. J. Clin.Endocrinol. Metab. 91(4), 1477–1483(2006)
  • Lewis LD, Williams JA: Regulation ofcholecystokinin secretion by food,hormones, and neural pathways in the rat.Am. J. Physiol. Gastrointest. Liver Physiol.258(4), G512–G518 (1990)
  • Liddle RA, Green GM, Conrad CK et al.:Proteins but not amino acids, carbohydrates,or fats stimulate cholecystokinin secretion inthe rat. Am. J. Physiol. Gastrointest. LiverPhysiol. 251(2), G243–G248 (1986)
  • Sharara AI, Bouras EP, Misukonis MA et al.:Evidence for indirect dietary regulation ofcholecystokinin release in rats. Am.J. Physiol. Gastrointest. Liver Physiol. 265(1),G107–G112 (1993)
  • Green GM, Taguchi S, Friestman J et al.:Plasma secretin, CCK, and pancreaticsecretion in response to dietary fatin the rat. Am. J. Physiol. Gastrointest.Liver Physiol. 256(6), G1016–G1021(1989)
  • Douglas BR, Woutersen RA, Jansen JBet al.: The influence of different nutrients onplasma cholecystokinin levels in the rat.Experientia 44, 21–23 (1988)
  • Trigazis L, Vaccarino FJ, Greenwood CEet al.: CCK-A receptor antagonists haveselective effects on nutrient-induced foodintake suppression in rats. Am. J. Physiol.Regul. Integr. Comp. Physiol. 276(2),R323–R330 (1999)
  • Bellissimo N, Anderson GH:Cholecystokinin-A receptors are involved infood intake suppression in rats after intakeof all fats and carbohydrates tested. J. Nutr.133(7), 2319–2325 (2003)
  • Schwartz GJ, Whitney A, Skoglund C et al.:Decreased responsiveness to dietary fat inOtsuka long-evans Tokushima fatty ratslacking CCK-A receptors. Am. J. Physiol.Regul. Integr. Comp. Physiol. 277(4),R1144–R1151 (1999)
  • Pupovac J, Anderson GH: Dietary peptidesinduce satiety via cholecystokinin-A andperipheral opioid receptors in rats. J. Nutr.132(9), 2775–2780 (2002)
  • Chelikani PK, Haver AC, Reidelberger RD:Intravenous infusion of peptide YY(3–36)potently inhibits food intake in rats.Endocrinology 146(2), 879–888 (2005)
  • Boey D, Lin S, Karl T et al.: Peptide YYablation in mice leads to the development ofhyperinsulinaemia and obesity. Diabetologia49(6), 1360–1370 (2006)
  • Schonhoff S, Baggio L, Ratineau Cet al.: Energy homeostasis andgastrointestinal endocrine differentiation donot require the anorectic hormonepeptide YY. Mol. Cell Biol. 25(10),4189–4199 (2005)
  • Challis BG, Pinnock SB, Coll AP et al.:Acute effects of PYY3–36 on food intakeand hypothalamic neuropeptide expressionin the mouse. Biochem. Biophys. Res.Commun. 311, 915–919 (2003)
  • Challis BG, Coll AP, Yeo GSH et al.:Mice lacking pro-opiomelanocortin aresensitive to high-fat feeding butrespond normally to the acute anorecticeffects of peptide-YY3–36. J. SteroidBiochem. Mol. Biol. 101(13), 4695–4700(2004)
  • Halatchev IG, Ellacott KLJ, Fan W et al.:Peptide YY3–36 inhibits food intake in micethrough a melanocortin-4 receptorindependentmechanism. Endocrinology145(6), 2585–2590 (2004)
  • Pittner RA, Moore CX, Bhavsar SPet al.: Effects of PYY[3-36] in rodentmodels of diabetes and obesity. Int. J.Obes. Relat. Metab. Disord. 28, 963–971(2004)
  • Alvarez Bartolomȳ M, Borque M,Martinez-Sarmiento J et al.: Peptide YYsecretion in morbidly obese patients beforeand after vertical banded gastroplasty. Obes.Surg. 12, 324–327 (2002)
  • Batterham RL, Cohen MA, Ellis SMet al.: Inhibition of food intake in obesesubjects by peptide YY3–36. N. Engl.J. Med. 349(10), 941–948 (2003)
  • Fu-Cheng X, Anini Y, Chariot J et al.:Peptide YY release after intraduodenal,intraileal, and intracolonic administration ofnutrients in rats. Pflugers Arch. 431, 66–75(1995)
  • Dumoulin V, Moro F, Barcelo A et al.:Peptide YY, glucagon-like peptide-1,and neurotensin responses to luminalfactors in the isolated vascularly perfusedrat ileum. Endocrinology 139(9),3780–3786 (1998)
  • Navarro M, de Fonseca FR, Alvarez E et al.:Colocalization of glucagon-like peptide-1(GLP-1) receptors, glucose transporterGLUT-2, and glucokinase mRNAs in rathypothalamic cells: evidence for a role ofGLP-1 receptor agonists as an inhibitorysignal for food and water intake.J. Neurochem. 67(5), 1982–1991 (1996)
  • Turton MD, O舗Shea D, Gunn I et al.: A rolefor glucagon-like peptide-1 in the centralregulation of feeding. Nature 379(6560),69–72 (1996)
  • Donahey JCK, van Dijk G, Woods SCet al.: Intraventricular GLP-1 reducesshort- but not long-term food intake orbody weight in lean and obese rats. BrainRes. 779(1–2), 75–83 (1998)
  • Rodriquez de Fonseca F, Navarro M,Alvarez E et al.: Peripheral versus centraleffects of glucagon-like peptide-1 receptoragonists on satiety and body weight loss inZucker obese rats. Metabolism 49(6),709–717 (2000)
  • Scrocchi LA, Brown TJ, MaClusky N et al.:Glucose intolerance but normal satiety inmice with a null mutation in theglucagon-like peptide 1 receptor gene. Nat.Med. 2, 1254–1258 (1996)
  • Knauf C, Cani PD, Perrin C et al.:Brain glucagon-like peptide-1 increasesinsulin secretion and muscle insulinresistance to favor hepatic glycogenstorage. J. Clin. Invest. 115(12), 3554–3563(2005)
  • Flint A, Raben A, Ersboll AK et al.:The effect of physiological levels ofglucagon-like peptide-1 on appetite, gastricemptying, energy and substrate metabolismin obesity. Int. J. Obes. Relat. Metab. Disord.25(6), 781–792 (2001)
  • Verdich C, Flint A, Gutzwiller JP et al.:A meta-analysis of the effect of glucagon-likepeptide-1 (7–36) amide on ad libitum energyintake in humans. J. Clin. Endocrinol. Metab.86(9), 4382–4389 (2001)
  • Druckner J: Biological actions andtherapeutic potential of the glucagon-likepeptides. Gastroenteroloy 122, 531–544(2002)
  • Aziz A, Anderson GH: Exendin-4, a GLP-1receptor agonist, modulates the effect ofmacronutrients on food intake by rats.J. Nutr. 132(5), 990–995 (2002)
  • Herrmann C, Göke R, Richter G et al.:Glucagon-like peptide-1 and glucosedependentinsulin-releasing polypeptideplasma levels in response to nutrients.Digestion 56, 117–126 (1995)
  • Ritzel U, Fromme A, Ottleben M et al.:Release of glucagon-like peptide-1 (GLP-1)by carbohydrates in the perfused rat ileum.Acta Diabetol. 34, 18–21 (1997)
  • Sugiyama K, Manaka H, Kato T et al.:Stimulation of truncated glucagon-likepeptide-1 release from the isolated perfusedcanine ileum by glucose absorption.Digestion 55, 24–28 (1994)
  • Peters CT, Choi YH, Brubaker PL et al.:A glucagon-like peptide-1 receptor agonistand an antagonist modify macronutrientselection by rats. J. Nutr. 131(8),2164–2170 (2001)
  • Cordier-Bussat M, Bernard C, Levenez Fet al.: Peptones stimulate both the secretionof the incretin hormone glucagon-likepeptide 1 and the transcription of theproglucagon gene. Diabetes 47(7),1038–1045 (1998)
  • Iritani N, Sugimoto T, Fukuda H et al.: Oraltriacylglycerols regulate plasma glucagon-likepeptide-1(7–36) and insulin levels in normaland especially in obese rats. J. Nutr. 129(1),46–50 (1999)
  • Guthrie JF, Morton JF: Food sourcesof added sweeteners in the diets ofAmericans. J. Am. Diet Assoc. 100(1),43–51 (2000)
  • Cavadini C, Siega-Riz AM, Popkin BM:US adolescent food intake trends from 1965to 1996. Arch. Dis. Child. 83(1), 18–24(2000)
  • Malik VS, Schulze MB, Hu FB: Intake ofsugar-sweetened beverages and weight gain:a systematic review. Am. J. Clin. Nutr. 84(2),274–288 (2006)
  • Berger JJ, Barnard RJ: Effect of diet on fat cellsize and hormone-sensitive lipase activity.J. Appl. Physiol. 87(1), 227–232 (1999)
  • Ellis RJ, McDonald RB, Stern JS: A diet highin fat stimulates adipocyte proliferation inolder (22 month) rats. Exp. Gerontol. 25(2),141–148 (1990)
  • Klyde BJ, Hirsch J: Increased cellularproliferation in adipose tissue of adult ratsfed a high-fat diet. J. Lipid Res. 20(6),705–715 (1979)
  • Miller WH Jr, Faust IM, Hirsch J:Demonstration of de novo production ofadipocytes in adult rats by biochemical andradioautographic techniques. J. Lipid Res.25(4), 336–347 (1984)
  • Roberts CK, Barnard RJ, Liang KHet al.: Effect of diet on adipose tissue andskeletal muscle VLDL receptor and LPL:implications for obesity andhyperlipidemia. Atherosclerosiss 161(1),133–141 (2002)
  • Shillabeer G, Lau DC: Regulation ofnew fat cell formation in rats: the role ofdietary fats. J. Lipid Res. 35(4), 592–600(1994)
  • Goldbeter A: A model for the dynamics ofhuman weight cycling. J. Biosci. 31(1),129–136 (2006)
  • Brownell KD, Greenwood MR, Stellar Eet al.: The effects of repeated cycles ofweight loss and regain in rats. Physiol. Behav.38(4), 459–464 (1986)
  • Steen SN, Oppliger RA, Brownell KD:Metabolic effects of repeated weight loss andregain in adolescent wrestlers. JAMA 260(1),47–50 (1988)
  • Hahn P, Skala JP, Hassanali S: The responseof cyclic nucleotide content in liver andbrown fat of rats weaned to different diets.J. Nutr. 110(2), 330–334 (1980)
  • Illiano G, Cuatrecasas P: Modulation ofadenylate cyclase activity in liver and fat cellmembranes by insulin. Science 175(24),906–908 (1972)
  • Ip MM, Ip C, Tepperman HM et al.: Effectof adaptation to meal-feeding on insulin,glucagon and the cyclic nucleotide-proteinkinase system in rats. J. Nutr. 107(5),746–757 (1977)
  • Manganiello VC, Murad F, Vaughan M:Effects of lipolytic and antilipolytic agentson cyclic 3´,5´-adenosine monophosphatein fat cells. J. Biol. Chem. 246(7),2195–2202 (1971)
  • Henderson L: The national diet andnutrition survey: adult aged 19–64 year.HMSO Edt (2003)
  • Frayling TM, Timpson NJ, Weedon MNet al.: A common variant in the FTO gene isassociated with body mass index andpredisposes to childhood and adult obesity.Science 316(5826), 889–894 (2007)
  • Rankinen T, Zuberi A, Chagnon YCet al.: The human obesity gene map:the 2005 update. Obesity Res. 14(4),529–644 (2006)
  • Rankinen T, Bouchard C: Genetics of foodintake and eating behavior phenotypes inhumans. Annu. Rev. Nutr. 26(1), 413–434(2006)
  • Tiffin N, Adie E, Turner F et al.:Computational disease geneidentification: a concert of methodsprioritizes Type 2 diabetes andobesity candidate genes. Nucleic AcidsRes. 34(10), 3067–3081 (2006)
  • Walley AJ, Blakemore AIF, Froguel P:Genetics of obesity and the prediction ofrisk for health. Hum. Mol. Genet.15(Suppl. 2), R124–R130 (2006)
  • Pagliassotti MJ, Prach PA,Koppenhafer TA et al.: Changes ininsulin action, triglycerides, and lipidcomposition during sucrose feeding inrats. Am. J. Physiol. Regul. Integr. Comp.Physiol. 271(5), R1319–R1326 (1996)
  • Storlien LH, Kraegen EW, Jenkins AB et al.:Effects of sucrose vs starch diets on in vivoinsulin action, thermogenesis, and obesity inrats. Am. J. Clin. Nutr. 47(3), 420–427(1988)
  • Shimomura Y, Tamura Y, Suzuki M:Less body fat accumulation in rats fed asafflower oil diet than in rats fed a beeftallow diet. J. Nutr. 120(11), 1291–1296(1990)
  • Wang H, Storlien LH, Huang XF: Effectsof dietary fat types on body fatness, leptin,and ARC leptin receptor, NPY, andAgRP mRNA expression. Am. J. Physiol.Endocrinol. Metab. 282(6), E1352–E1359(2002)
  • Minami A, Ishimura N, Sakamoto Set al.: Effect of eicosapentaenoic acidethyl ester v. oleic acid-rich safflower oil oninsulin resistance in Type 2 diabetic modelrats with hypertriacylglycerolaemia. Br. J.Nutr. 87(2), 157–162 (2002)
  • Cha SH, Fukushima A, Sakuma K et al.:Chronic docosahexaenoic acid intakeenhances expression of the gene foruncoupling protein 3 and affects pleiotropicmRNA levels in skeletal muscle of agedC57BL/6NJcl mice. J. Nutr. 131(10),2636–2642 (2001)
  • Takahashi Y, Ide T: Dietary n-3 fattyacids affect mRNA level of brown adiposetissue uncoupling protein 1, and whiteadipose tissue leptin and glucosetransporter 4 in the rat. Br. J. Nutr.84(2), 175–184 (2000)
  • Jang IS, Hwang DY, Chae KR et al.: Role ofdietary fat type in the development ofadiposity from dietary obesity-susceptibleSprague-Dawley rats. Br. J. Nutr. 89(3),429–438 (2003)
  • Pellizzon M, Buison A, Ordiz F Jr et al.:Effects of dietary fatty acids and exercise onbody-weight regulation and metabolism inrats. Obes. Res. 10(9), 947–955 (2002)
  • Mater MK, Thelen AP, Pan DA et al.: Sterolresponse element-binding protein 1c(SREBP1c) is involved in thepolyunsaturated fatty acid suppression ofhepatic S14 gene transcription. J. Biol.Chem. 274(46), 32725–32732 (1999)
  • Xu J, Nakamura MT, Cho HP et al.: Sterolregulatory element binding protein-1expression is suppressed by dietarypolyunsaturated fatty acids. A mechanismfor the coordinate suppression of lipogenicgenes by polyunsaturated fats. J. Biol. Chem.274(33), 23577–23583 (1999)
  • Kim HJ, Takahashi M, Ezaki O: Fish oilfeeding decreases mature sterol regulatoryelement-binding protein 1 (SREBP-1) bydown-regulation of SREBP-1c mRNA inmouse liver. A possible mechanism fordown-regulation of lipogenic enzymemRNAs. J. Biol. Chem. 274(36),25892–25898 (1999)
  • Brown JM, Boysen MS, Jensen SS et al.:Isomer-specific regulation of metabolismand PPAR signaling by CLA in humanpreadipocytes. J. Lipid Res. 44(7),1287–1300 (2003)
  • Granlund L, Pedersen JI, Nebb HI:Impaired lipid accumulation by trans10,cis12 CLA during adipocyte differentiationis dependent on timing and length oftreatment. Biochim. Biophys. Acta1687(1–3), 11–22 (2005)
  • Moya-Camarena SY, Heuvel JPV,Blanchard SG et al.: Conjugated linoleicacid is a potent naturally occurring ligandand activator of PPAR . J. Lipid Res. 40(8),1426–1433 (1999)
  • LaRosa PC, Miner J, Xia Y et al.: Trans-10,cis-12 conjugated linoleic acid causesinflammation and delipidation of whiteadipose tissue in mice: a microarray andhistological analysis. Physiol. Genomics27(3), 282–294 (2006)
  • Kang K, Liu W, Albright KJ et al.:Trans-10,cis-12 CLA inhibits differentiationof 3T3-L1 adipocytes and decreases PPAR expression. Biochem. Biophys. Res. Commun.303(3), 795–799 (2003)
  • Roche HM, Noone E, Sewter Cet al.: Isomer-dependent metaboliceffects of conjugated linoleic acid:insights from molecular markers sterolregulatory element-binding protein-1cand LXR . Diabetes 51(7), 2037–2044(2002)
  • Adams SH, Lei C, Jodka CM et al.:PYY (3-36) administration decreases therespiratory quotient and reduces adiposity indiet-induced obese mice. J. Nutr. 136(1),195–201 (2006).Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.