218
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Roles of eicosanoids in prostate cancer

&
Pages 453-467 | Published online: 18 Jan 2017

Bibliography

  • Leitzmann MF, Stampfer MJ, Michaud DS et al.: Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer. Am. J. Clin. Nutr. 80, 204–216 (2004)
  • Ritch CR, Wan RL, Stephens LB et al.: Dietary fatty acids correlate with prostate cancer biopsy grade and volume in Jamaican men. J. Urol. 177, 97–101 (2007)
  • Hughes-Fulford M, Chen Y, Tjandrawinata RR: Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells. Carcinogenesis 22, 701–707 (2001)
  • Hughes-Fulford M, Li CF, Boonyaratanakornkit J, Sayyah S: Arachidonic acid activates phosphatidylinositol 3-kinase signaling and induces gene expression in prostate cancer. Cancer Res. 66, 1427–1433 (2006)
  • Chavarro JE, Stampfer MJ, Li H, Campos H, Kurth T, Ma J: A prospective study of polyunsaturated fatty acid levels in blood and prostate cancer risk. Cancer Epidemiol. Biomarkers Prev. 16, 1364–1370 (2007)
  • MacLean CH, Newberry SJ, Mojica WA et al.: Effects of omega-3 fatty acids on cancer risk: a systematic review. JAMA 295, 403–415 (2006)
  • Brouwer IA, Katan MB, Zock PL: Dietary -linolenic acid is associated with reduced risk of fatal coronary heart disease, but increased prostate cancer risk: a metaanalysis. J. Nutr. 134, 919–922 (2004)
  • Aronson WJ, Glaspy JA, Reddy ST, Reese D, Heber D, Bagga D: Modulation of omega-3/omega-6 polyunsaturated ratios with dietary fish oils in men with prostate cancer. Urology 58, 283–288 (2001)
  • Carmody J, Olendzki B, Reed G, Andersen V, Rosenzweig P: A dietary intervention for recurrent prostate cancer after definitive primary treatment: results of a randomized pilot trial. Urology DOI:10.1016/j.urology.2008.01.015 (2008) (Epub ahead of print)
  • Nie D, Che M, Grignon D, Tang K, Honn KV: Role of eicosanoids in prostate cancer progression. Cancer Metastasis Rev. 20, 195–206 (2001)
  • Chandrasekharan NV, Dai H, Roos KL et al.: COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc. Natl Acad. Sci. USA 99, 13926–13931 (2002)
  • Wang MT, Honn KV, Nie D: Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev. 26, 525–534 (2007)
  • Concise review of the COX pathway in progression of various types of cancer, offering a new concept of thromboxane (Tx) A2-TP signaling in tumor progression.
  • Gupta S, Srivastava M, Ahmad N, Bostwick DG, Mukhtar H: Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42, 73–78 (2000)
  • Madaan S, Abel PD, Chaudhary KS et al.: Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int. 86, 736–741 (2000)
  • Yoshimura R, Sano H, Masuda C et al.: Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 89, 589–596 (2000)
  • Kirschenbaum A, Klausner AP, Lee R et al.: Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 56, 671–676 (2000)
  • Kirschenbaum A, Liu X, Yao S, Levine AC: The role of cyclooxygenase-2 in prostate cancer. Urology 58, 127–131 (2001)
  • Uotila P, Valve E, Martikainen P, Nevalainen M, Nurmi M, Harkonen P: Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol. Res. 29, 23–28 (2001)
  • Hussain T, Gupta S, Mukhtar H: Cyclooxygenase-2 and prostate carcinogenesis. Cancer Lett. 191, 125–135 (2003)
  • Edwards J, Mukherjee R, Munro AF, Wells AC, Almushatat A, Bartlett JM: HER2 and COX2 expression in human prostate cancer. Eur. J. Cancer 40, 50–55 (2004)
  • Wang W, Bergh A, Damber JE: Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res. 11, 3250–3256 (2005)
  • Correlation of COX-2 expression with Gleason score and inflammation in human prostate cancer tissues.
  • Lee LM, Pan CC, Cheng CJ, Chi CW, Liu TY: Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Res. 21, 1291–1294 (2001)
  • Fujita H, Koshida K, Keller ET et al.: Cyclooxygenase-2 promotes prostate cancer progression. Prostate 53, 232–240 (2002)
  • Shappell SB, Manning S, Boeglin WE et al.: Alterations in lipoxygenase and cyclooxygenase-2 catalytic activity and mRNA expression in prostate carcinoma. Neoplasia 3, 287–303 (2001)
  • Zha S, Gage WR, Sauvageot J et al.: Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res. 61, 8617–8623 (2001)
  • Wagner M, Loos J, Weksler N et al.: Resistance of prostate cancer cell lines to COX-2 inhibitor treatment. Biochem. Biophys. Res. Commun. 332, 800–807 (2005)
  • Lim JT, Piazza GA, Han EK et al.: Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines. Biochem. Pharmacol. 58, 1097–1107 (1999)
  • Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS: The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J. Biol. Chem. 275, 11397–11403 (2000)
  • Subbarayan V, Sabichi AL, Llansa N, Lippman SM, Menter DG: Differential expression of cyclooxygenase-2 and its regulation by tumor necrosis factor- in normal and malignant prostate cells. Cancer Res. 61, 2720–2726 (2001)
  • Patel MI, Subbaramaiah K, Du B et al.: Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism. Clin. Cancer Res. 11, 1999–2007 (2005)
  • Kakizoe T: Chemoprevention of cancer – focusing on clinical trials. Jpn J. Clin. Oncol. 33, 421–442 (2003)
  • Wen B, Deutsch E, Eschwege P et al.: Cyclooxygenase-2 inhibitor NS398 enhances antitumor effect of irradiation on hormone refractory human prostate carcinoma cells. J. Urol. 170, 2036–2039 (2003)
  • Sabichi AL, Lippman SM: COX-2 inhibitors and other NSAIDs in bladder and prostate cancer. Prog. Exp. Tumor Res. 37, 163–178 (2003)
  • Andrews J, Djakiew D, Krygier S, Andrews P: Superior effectiveness of ibuprofen compared with other NSAIDs for reducing the survival of human prostate cancer cells. Cancer Chemother. Pharmacol. 50, 277–284 (2002)
  • Kamijo T, Sato T, Nagatomi Y, Kitamura T: Induction of apoptosis by cyclooxygenase-2 inhibitors in prostate cancer cell lines. Int. J. Urol. 8, S35–S39 (2001)
  • Liu XH, Kirschenbaum A, Yao S, Lee R, Holland JF, Levine AC: Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J. Urol. 164, 820–825 (2000)
  • Liu XH, Yao S, Kirschenbaum A, Levine AC: NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Res. 58, 4245–4249 (1998)
  • Norrish AE, Jackson RT, McRae CU: Non-steroidal anti-inflammatory drugs and prostate cancer progression. Int. J. Cancer 77, 511–515 (1998)
  • Langman MJ, Cheng KK, Gilman EA, Lancashire RJ: Effect of anti-inflammatory drugs on overall risk of common cancer: case–control study in general practice research database. BMJ 320, 1642–1646 (2000)
  • Fosslien E: Review: molecular pathology of cyclooxygenase-2 in cancer-induced angiogenesis. Ann. Clin. Lab. Sci. 31, 325–348 (2001)
  • Fosslien E: Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit. Rev. Clin. Lab. Sci. 37, 431–502 (2000)
  • Jain S, Chakraborty G, Kundu GC: The crucial role of cyclooxygenase-2 in osteopontin-induced protein kinase C/c-Src/I B kinase /-dependent prostate tumor progression and angiogenesis. Cancer Res. 66, 6638–6648 (2006)
  • Aparicio Gallego G, Diaz Prado S, Jimenez Fonseca P, Garcia Campelo R, Cassinello Espinosa J, Anton Aparicio LM: Cyclooxygenase-2 (COX-2): a molecular target in prostate cancer. Clin. Transl. Oncol. 9, 694–702 (2007)
  • Adachi M, Sakamoto H, Kawamura R, Wang W, Imai K, Shinomura Y: Nonsteroidal anti-inflammatory drugs and oxidative stress in cancer cells. Histol. Histopathol. 22, 437–442 (2007)
  • Cai Y, Lee YF, Li G et al.: A new prostate cancer therapeutic approach: combination of androgen ablation with COX-2 inhibitor. Int. J. Cancer 123(1), 195–201 (2008)
  • Mehar A, Macanas-Pirard P, Mizokami A, Takahashi Y, Kass GE, Coley HM: The effects of cyclooxygenase-2 expression in prostate cancer cells: modulation of response to cytotoxic agents. J. Pharmacol. Exp. Ther. 324, 1181–1187 (2008)
  • Smith WL, Garavito RM, DeWitt DL: Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol. Chem. 271, 33157–33160 (1996)
  • Khan O, Hensby CN, Williams G: Prostacyclin in prostatic cancer: a better marker than bone scan or serum acid phosphatase? Br. J. Urol. 54, 26–31 (1982)
  • Drago JR, Al-Mondhiry HA: The effect of prostaglandin modulators on prostate tumor growth and metastasis. Anticancer Res. 4, 391–394 (1984)
  • Schneider MR, Schillinger E, Schirner M, Skuballa W, Sturzebecher S, Witt W: Effects of prostacyclin analogues in in vivo tumor models. Adv. Prostaglandin Thromboxane Leukot. Res. 21B, 901–908 (1991)
  • Schirner M, Schneider MR: The prostacyclin analogue cicaprost inhibits metastasis of tumours of R 3327 MAT Lu prostate carcinoma and SMT 2A mammary carcinoma. J. Cancer Res. Clin. Oncol. 118, 497–501 (1992)
  • Ablin RJ: Prostaglandin E2 affects the tumor immune response in prostatic carcinoma. J. Urol. 127, 997–998 (1982)
  • Chaudry AA, Wahle KW, McClinton S, Moffat LE: Arachidonic acid metabolism in benign and malignant prostatic tissue in vitro: effects of fatty acids and cyclooxygenase inhibitors. Int. J. Cancer 57, 176–180 (1994)
  • Tjandrawinata RR, Hughes-Fulford M: Up-regulation of cyclooxygenase-2 by product-prostaglandin E2. Adv. Exp. Med. Biol. 407, 163–170 (1997)
  • Tjandrawinata RR, Dahiya R, Hughes-Fulford M: Induction of cyclooxygenase- 2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br. J. Cancer 75, 1111–1118 (1997)
  • Liu XH, Kirschenbaum A, Lu M et al.: Prostaglandin E2 induces hypoxia-inducible factor-1 stabilization and nuclear localization in a human prostate cancer cell line. J. Biol. Chem. 277, 50081–50086 (2002)
  • Chen Y, Hughes-Fulford M: Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells. Br. J. Cancer 82, 2000–2006 (2000)
  • Wang X, Klein RD: Prostaglandin E2 induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathway. Mol. Carcinog. 46, 912–923 (2007)
  • Liu XH, Kirschenbaum A, Lu M et al.: Prostaglandin E2 stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/GP130/STAT-3 signaling pathway. Biochem. Biophys. Res. Commun. 290, 249–255 (2002)
  • Attiga FA, Fernandez PM, Weeraratna AT, Manyak MJ, Patierno SR: Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res. 60, 4629–4637 (2000)
  • Nithipatikom K, Isbell MA, Lindholm PF, Kajdacsy-Balla A, Kaul S, Campell WB: Requirement of cyclooxygenase-2 expression and prostaglandins for human prostate cancer cell invasion. Clin. Exp. Metastasis 19, 593–601 (2002)
  • Kim J, Yang P, Suraokar M et al.: Suppression of prostate tumor cell growth by stromal cell prostaglandin D synthasederived products. Cancer Res. 65, 6189–6198 (2005)
  • Nakata S, Yoshida T, Shiraishi T et al.: 15-deoxy- 12,14-prostaglandin J2 induces death receptor 5 expression through mRNA stabilization independently of PPAR and potentiates TRAIL-induced apoptosis. Mol. Cancer Ther. 5, 1827–1835 (2006)
  • Chaffer CL, Thomas DM, Thompson EW, Williams ED: PPAR -independent induction of growth arrest and apoptosis in prostate and bladder carcinoma. BMC Cancer 6, 53 (2006)
  • Nunez NP, Liu H, Meadows GG: PPAR- ligands and amino acid deprivation promote apoptosis of melanoma, prostate, and breast cancer cells. Cancer Lett. 236, 133–141 (2006)
  • Subbarayan V, Sabichi AL, Kim J et al.: Differential peroxisome proliferatoractivated receptor- isoform expression and agonist effects in normal and malignant prostate cells. Cancer Epidemiol. Biomarkers Prev. 13, 1710–1716 (2004)
  • Sabichi AL, Subbarayan V, Llansa N, Lippman SM, Menter DG: Peroxisome proliferator-activated receptor- suppresses cyclooxygenase-2 expression in human prostate cells. Cancer Epidemiol. Biomarkers Prev. 13, 1704–1709 (2004)
  • Butler R, Mitchell SH, Tindall DJ, Young CY: Nonapoptotic cell death associated with S-phase arrest of prostate cancer cells via the peroxisome proliferatoractivated receptor ligand, 15-deoxy- 12,14- prostaglandin J2. Cell Growth Differ 11, 49–61 (2000)
  • Haslmayer P, Thalhammer T, Jager W et al.: The peroxisome proliferator-activated receptor ligand 15-deoxy- 12,14- prostaglandin J2 induces vascular endothelial growth factor in the hormone-independent prostate cancer cell line PC 3 and the urinary bladder carcinoma cell line 5637. Int. J. Oncol. 21, 915–920 (2002)
  • Henriksson P, Stege R, Green K: Profound decrease of in vivo formation of thromboxane during oestrogen therapy. Eur. J. Clin. Invest. 26, 1186–1188 (1996)
  • Nie D, Che M, Zacharek A et al.: Differential expression of thromboxane synthase in prostate carcinoma: role in tumor cell motility. Am. J. Pathol. 164, 429–439 (2004)
  • Dassesse T, de Leval X, de Leval L, Pirotte B, Castronovo V, Waltregny D: Activation of the thromboxane A2 pathway in human prostate cancer correlates with tumor Gleason score and pathologic stage. Eur. Urol. 50, 1021–31; discussion 1031 (2006)
  • Implication of TxA2 in prostate cancer progression.
  • Li X, Wei J, Tai HH: Activation of extracellular signal-regulated kinase by 12-hydroxyheptadecatrienoic acid in prostate cancer PC3 cells. Arch. Biochem. Biophys. 467, 20–30 (2007)
  • Fujino H, Regan JW: Prostanoid receptors and phosphatidylinositol 3-kinase: a pathway to cancer? Trends Pharmacol. Sci. 24, 335–340 (2003)
  • Miyata Y, Kanda S, Maruta S et al.: Relationship between prostaglandin E2 receptors and clinicopathologic features in human prostate cancer tissue. Urology 68, 1360–1365 (2006)
  • Moreno J, Krishnan AV, Peehl DM, Feldman D: Mechanisms of vitamin Dmediated growth inhibition in prostate cancer cells: inhibition of the prostaglandin pathway. Anticancer Res. 26, 2525–2530 (2006)
  • Moreno J, Krishnan AV, Swami S, Nonn L, Peehl DM, Feldman D: Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells. Cancer Res. 65, 7917–7925 (2005)
  • Moreno J, Krishnan AV, Feldman D: Molecular mechanisms mediating the antiproliferative effects of vitamin D in prostate cancer. J. Steroid Biochem. Mol. Biol. 97, 31–36 (2005)
  • Swami S, Krishnan AV, Moreno J, Bhattacharyya RB, Peehl DM, Feldman D: Calcitriol and genistein actions to inhibit the prostaglandin pathway: potential combination therapy to treat prostate cancer. J. Nutr. 137, 205S–210S (2007)
  • Krishnan AV, Moreno J, Nonn L et al.: Novel pathways that contribute to the anti-proliferative and chemopreventive activities of calcitriol in prostate cancer. J. Steroid Biochem. Mol. Biol. 103, 694–702 (2007)
  • Feldman D, Krishnan A, Moreno J, Swami S, Peehl DM, Srinivas S: Vitamin D inhibition of the prostaglandin pathway as therapy for prostate cancer. Nutr. Rev. 65, S113–S115 (2007)
  • Potential role of vitamin D as a therapeutic drug for prostate cancer, and a discussion concerning the current controversial effects of this agent in prostate cancer treatment.
  • Krishnan AV, Moreno J, Nonn L, Swami S, Peehl DM, Feldman D: Calcitriol as a chemopreventive and therapeutic agent in prostate cancer: role of anti-inflammatory activity. J. Bone Miner. Res. 22(Suppl. 2), V74–V80 (2007)
  • Kelly P, Stemmle LN, Madden JF, Fields TA, Daaka Y, Casey PJ: A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. J. Biol. Chem. 281, 26483–26490 (2006)
  • Nie D, Guo Y, Yang D et al.: Thromboxane A2 receptors in prostate carcinoma: expression and its role in regulating cell motility via small GTPase Rho. Cancer Res. 68, 115–121 (2008). o Activation of TP receptors to activate small GTPase RhoA to enhance prostate carcinoma cell motility.
  • Pidgeon GP, Lysaght J, Krishnamoorthy S et al.: Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev. 26, 503–524 (2007). o Detailed review of roles of lipoxygenase (LOX) in tumor progression, suggesting the possible roles of 12-LOX in tumor angiogenesis and 15-LOX-1 and -2 in tumorigenesis.
  • Flamand N, Mancuso P, Serezani CH, Brock TG: Leukotrienes: mediators that have been typecast as villains. Cell Mol. Life Sci. 64, 2657–2670 (2007)
  • Matsuyama M, Yoshimura R, Mitsuhashi M et al.: Expression of lipoxygenase in human prostate cancer and growth reduction by its inhibitors. Int. J. Oncol. 24, 821–827 (2004)
  • Myers CE, Ghosh J: Lipoxygenase inhibition in prostate cancer. Eur. Urol. 35, 395–398 (1999)
  • Hong SH, Avis I, Vos MD, Martinez A, Treston AM, Mulshine JL: Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res. 59, 2223–2228 (1999)
  • Matsuyama M, Yoshimura R, Tsuchida K et al.: Lipoxygenase inhibitors prevent urological cancer cell growth. Int. J. Mol. Med. 13, 665–668 (2004)
  • Ghosh J, Myers CE: Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem. Biophys. Res. Commun. 235, 418–423 (1997)
  • Ghosh J, Myers CE: Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc. Natl Acad. Sci. USA 95, 13182–13187 (1998)
  • O’Flaherty JT, Rogers LC, Chadwell BA et al.: 5(S)-hydroxy-6,8,11,14-E,Z,Z,Zeicosatetraenoate stimulates PC3 cell signaling and growth by a receptordependent mechanism. Cancer Res. 62, 6817–6819 (2002)
  • Ghosh J: Rapid induction of apoptosis in prostate cancer cells by selenium: reversal by metabolites of arachidonate 5-lipoxygenase. Biochem. Biophys. Res. Commun. 315, 624–635 (2004)
  • Hosoi T, Koguchi Y, Sugikawa E et al.: Identification of a novel human eicosanoid receptor coupled to Gi/o. J. Biol. Chem. 277, 31459–31465 (2002)
  • Hosoi T, Sugikawa E, Chikada A, Koguchi Y, Ohnuki T: TG1019/OXE, a G i/o-protein-coupled receptor, mediates 5-oxo-eicosatetraenoic acid-induced chemotaxis. Biochem. Biophys. Res. Commun. 334, 987–995 (2005)
  • Jones CE, Holden S, Tenaillon L et al.: Expression and characterization of a 5-oxo-6E,8Z,11Z,14Zeicosatetraenoic acid receptor highly expressed on human eosinophils and neutrophils. Mol. Pharmacol. 63, 471–477 (2003)
  • Sundaram S, Ghosh J: Expression of 5-oxoETE receptor in prostate cancer cells: critical role in survival. Biochem. Biophys. Res. Commun. 339, 93–98 (2006)
  • Rovati GE, Capra V: Cysteinylleukotriene receptors and cellular signals. Scientific World Journal 7, 1375–1392 (2007)
  • Matsuyama M, Hayama T, Funao K et al.: Overexpression of cysteinyl LT1 receptor in prostate cancer and CysLT1R antagonist inhibits prostate cancer cell growth through apoptosis. Oncol. Rep. 18, 99–104 (2007)
  • Funk CD, Furci L, FitzGerald GA: Molecular cloning, primary structure, and expression of the human platelet/erythroleukemia cell 12-lipoxygenase. Proc. Natl Acad. Sci. USA 87, 5638–5642 (1990)
  • Yoshimoto T, Suzuki H, Yamamoto S, Takai T, Yokoyama C, Tanabe T: Cloning and sequence analysis of the cDNA for arachidonate 12-lipoxygenase of porcine leukocytes. Proc. Natl Acad. Sci. USA 87, 2142–2146 (1990)
  • Boeglin WE, Kim RB, Brash AR: A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression. Proc. Natl Acad. Sci. USA 95, 6744–6749 (1998)
  • Gao X, Grignon DJ, Chbihi T et al.: Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology 46, 227–237 (1995)
  • Gao X, Porter AT, Honn KV: Involvement of the multiple tumor suppressor genes and 12-lipoxygenase in human prostate cancer. Therapeutic implications. Adv. Exp. Med. Biol. 407, 41–53 (1997)
  • Nie D, Hillman GG, Geddes T et al.: Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates angiogenesis and tumor growth. Cancer Res. 58, 4047–4051 (1998)
  • Nie D, Hillman GG, Geddes T et al.: Platelet-type 12-lipoxygenase regulates angiogenesis in human prostate carcinoma. Adv. Exp. Med. Biol. 469, 623–630 (1999)
  • Pidgeon GP, Kandouz M, Meram A, Honn KV: Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res. 62, 2721–2727 (2002)
  • Kandouz M, Nie D, Pidgeon GP, Krishnamoorthy S, Maddipati KR, Honn KV: Platelet-type 12-lipoxygenase activates NF- B in prostate cancer cells. Prostaglandins Other Lipid Mediat. 71, 189–204 (2003)
  • Pidgeon GP, Tang K, Cai YL, Piasentin E, Honn KV: Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing v 3 and v 5 integrin expression. Cancer Res. 63, 4258–4267 (2003)
  • Gu JL, Natarajan R, Ben-Ezra J et al.: Evidence that a leukocyte type of 12-lipoxygenase is expressed and regulated by angiotensin II in human adrenal glomerulosa cells. Endocrinology 134, 70–77 (1994)
  • Nie D, Krishnamoorthy S, Jin R et al.: Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. J. Biol. Chem. 281, 18601–18609 (2006). o Study of 12-LOX signaling in the regulation of prostate tumor angiogenesis.
  • Jankun J, Aleem AM, Malgorzewicz S et al.: Synthetic curcuminoids modulate the arachidonic acid metabolism of human platelet 12-lipoxygenase and reduce sprout formation of human endothelial cells. Mol. Cancer Ther. 5, 1371–1382 (2006)
  • Timar J, Raso E, Dome B et al.: Expression, subcellular localization and putative function of platelet-type 12-lipoxygenase in human prostate cancer cell lines of different metastatic potential. Int. J. Cancer 87, 37–43 (2000)
  • Nie D, Nemeth J, Qiao Y et al.: Increased metastatic potential in human prostate carcinoma cells by overexpression of arachidonate 12-lipoxygenase. Clin. Exp. Metastasis 20, 657–663 (2003)
  • Natarajan R, Esworthy R, Bai W, Gu JL, Wilczynski S, Nadler J: Increased 12-lipoxygenase expression in breast cancer tissues and cells. Regulation by epidermal growth factor. J. Clin. Endocrinol. Metab. 82, 1790–1798 (1997)
  • Endsley MP, Aggarwal N, Isbell MA et al.: Diverse roles of 2-arachidonoylglycerol in invasion of prostate carcinoma cells: location, hydrolysis and 12-lipoxygenase metabolism. Int. J. Cancer 121, 984–991 (2007)
  • Nithipatikom K, Isbell MA, See WA, Campbell WB: Elevated 12- and 20-hydroxyeicosatetraenoic acid in urine of patients with prostatic diseases. Cancer Lett. 233, 219–225 (2006)
  • Hsi LC, Wilson LC, Eling TE: Opposing effects of 15-lipoxygenase-1 and -2 metabolites on MAPK signaling in prostate. Alteration in peroxisome proliferatoractivated receptor . J. Biol. Chem. 277, 40549–40556 (2002)
  • Kelavkar U, Lin Y, Landsittel D, Chandran U, Dhir R: The yin and yang of 15-lipoxygenase-1 and delta-desaturases: dietary omega-6 linoleic acid metabolic pathway in prostate. J. Carcinog. 5, 9 (2006)
  • Kelavkar UP, Cohen C, Kamitani H, Eling TE, Badr KF: Concordant induction of 15-lipoxygenase-1 and mutant p53 expression in human prostate adenocarcinoma: correlation with Gleason staging. Carcinogenesis 21, 1777–1787 (2000)
  • Kelavkar UP, Nixon JB, Cohen C, Dillehay D, Eling TE, Badr KF: Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis. Carcinogenesis 22, 1765–1773 (2001)
  • Kelavkar UP, Cohen C: 15-lipoxygenase-1 expression upregulates and activates insulinlike growth factor-1 receptor in prostate cancer cells. Neoplasia 6, 41–52 (2004)
  • Kelavkar UP, Harya NS, Hutzley J et al.: DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins Other Lipid Mediat. 82, 185–197 (2007)
  • Shappell SB, Boeglin WE, Olson SJ, Kasper S, Brash AR: 15-lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. Am. J. Pathol. 155, 235–245 (1999)
  • Jack GS, Brash AR, Olson SJ et al.: Reduced 15-lipoxygenase-2 immunostaining in prostate adenocarcinoma: correlation with grade and expression in high-grade prostatic intraepithelial neoplasia. Hum. Pathol. 31, 1146–1154 (2000)
  • Tang DG, Bhatia B, Tang S, Schneider-Broussard R: 15-lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins Other Lipid Mediat. 82, 135–146 (2007)
  • Shappell SB, Gupta RA, Manning S et al.: 15S-hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor and inhibits proliferation in PC3 prostate carcinoma cells. Cancer Res. 61, 497–503 (2001)
  • Subbarayan V, Krieg P, Hsi LC et al.: 15-lipoxygenase-2 gene regulation by its product 15-(S)-hydroxyeicosatetraenoic acid through a negative feedback mechanism that involves peroxisome proliferator-activated receptor . Oncogene 25, 6015–6025 (2006)
  • Subbarayan V, Xu XC, Kim J et al.: Inverse relationship between 15-lipoxygenase-2 and PPAR- gene expression in normal epithelia compared with tumor epithelia. Neoplasia 7, 280–293 (2005)
  • Shappell SB, Olson SJ, Hannah SE et al.: Elevated expression of 12/15-lipoxygenase and cyclooxygenase-2 in a transgenic mouse model of prostate carcinoma. Cancer Res. 63, 2256–2267 (2003)
  • Kelavkar UP, Glasgow W, Olson SJ, Foster BA, Shappell SB: Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Neoplasia 6, 821–830 (2004)
  • Kelavkar UP, Parwani AV, Shappell SB, Martin WD: Conditional expression of human 15-lipoxygenase-1 in mouse prostate induces prostatic intraepithelial neoplasia: the FLiMP mouse model. Neoplasia 8, 510–522 (2006)
  • Sen M, McHugh K, Hutzley J et al.: Orthotopic expression of human 15-lipoxygenase (LO)-1 in the dorsolateral prostate of normal wild-type C57BL/6 mouse causes PIN-like lesions. Prostaglandins Other Lipid Mediat. 81, 1–13 (2006)
  • Spindler SA, Sarkar FH, Sakr WA et al.: Production of 13-hydroxyoctadecadienoic acid (13-HODE) by prostate tumors and cell lines. Biochem. Biophys. Res. Commun. 239, 775–781 (1997)
  • Wu S, Chen W, Murphy E et al.: Molecular cloning, expression, and functional significance of a cytochrome P450 highly expressed in rat heart myocytes. J. Biol. Chem. 272, 12551–12559 (1997)
  • Wang MH, Brand-Schieber E, Zand BA et al.: Cytochrome P450-derived arachidonic acid metabolism in the rat kidney: characterization of selective inhibitors. J. Pharmacol. Exp. Ther. 284, 966–973 (1998)
  • Powell PK, Wolf I, Jin R, Lasker JM: Metabolism of arachidonic acid to 20-hydroxy-5,8,11, 14-eicosatetraenoic acid by P450 enzymes in human liver: involvement of CYP4F2 and CYP4A11. J. Pharmacol. Exp. Ther. 285, 1327–1336 (1998)
  • Zeldin DC: Epoxygenase pathways of arachidonic acid metabolism. J. Biol. Chem. 276, 36059–36062 (2001)
  • Falck JR, Schueler VJ, Jacobson HR, Siddhanta AK, Pramanik B, Capdevila J: Arachidonate epoxygenase: identification of epoxyeicosatrienoic acids in rabbit kidney. J. Lipid Res. 28, 840–846 (1987)
  • Michaelis UR, Fleming I: From endotheliumderived hyperpolarizing factor (EDHF) to angiogenesis: epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacol. Ther. 111, 584–595 (2006)
  • Rifkind AB, Lee C, Chang TK, Waxman DJ: Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Arch. Biochem. Biophys. 320, 380–389 (1995)
  • Guengerich F: Human cytochrome P450 enzymes. In: Cytochrome P450: Structure, Mechanism, and Biochemistry. Ortiz de Montellano PR (Ed.). Plenum, NY, USA 473–535 (1995)
  • Yokose T, Doy M, Taniguchi T et al.: Immunohistochemical study of cytochrome P450 2C and 3A in human non-neoplastic and neoplastic tissues. Virchows Arch. 434, 401–411 (1999)
  • Chan AT, Tranah GJ, Giovannucci EL, Hunter DJ, Fuchs CS: A prospective study of genetic polymorphisms in the cytochrome P-450 2C9 enzyme and the risk for distal colorectal adenoma. Clin. Gastroenterol. Hepatol. 2, 704–712 (2004)
  • London SJ, Daly AK, Leathart JB, Navidi WC, Idle JR: Lung cancer risk in relation to the CYP2C9*1/CYP2C9*2 genetic polymorphism among African–Americans and Caucasians in Los Angeles County, California. Pharmacogenetics 6, 527–533 (1996)
  • London SJ, Sullivan-Klose T, Daly AK, Idle JR: Lung cancer risk in relation to the CYP2C9 genetic polymorphism among Caucasians in Los Angeles County. Pharmacogenetics 7, 401–404 (1997)
  • Jiang JG, Chen CL, Card JW et al.: Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 65, 4707–4715 (2005). o Potential role of cytochrome P450 epoxygenases in various types of cancer.
  • Jiang JG, Ning YG, Chen C et al.: Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 67, 6665–6674 (2007)
  • Enayetallah AE, French RA, Grant DF: Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. J. Mol. Histol. 37, 133–141 (2006)
  • Murray GI, Taylor VE, McKay JA et al.: The immunohistochemical localization of drug-metabolizing enzymes in prostate cancer. J. Pathol. 177, 147–152 (1995)
  • Murata M, Watanabe M, Yamanaka M et al.: Genetic polymorphisms in cytochrome P450 (CYP) 1A1, CYP1A2, CYP2E1, glutathione S-transferase (GST) M1 and GSTT1 and susceptibility to prostate cancer in the Japanese population. Cancer Lett. 165, 171–177 (2001)
  • Sterling KM Jr, Cutroneo KR: Constitutive and inducible expression of cytochromes P4501A (CYP1A1 and CYP1A2) in normal prostate and prostate cancer cells. J. Cell Biochem. 91, 423–429 (2004)
  • Devane WA, Hanus L, Breuer A et al.: Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992)
  • Mechoulam R, Ben-Shabat S, Hanus L et al.: Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995)
  • Sugiura T, Kondo S, Sukagawa A et al.: 2-arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995)
  • Laine K, Jarvinen K, Mechoulam R, Breuer A, Jarvinen T: Comparison of the enzymatic stability and intraocular pressure effects of 2-arachidonylglycerol and noladin ether, a novel putative endocannabinoid. Invest. Ophthalmol. Vis. Sci. 43, 3216–3222 (2002)
  • Suhara Y, Takayama H, Nakane S, Miyashita T, Waku K, Sugiura T: Synthesis and biological activities of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, and its metabolically stable ether-linked analogues. Chem. Pharm. Bull (Tokyo) 48, 903–907 (2000)
  • Steffens M, Zentner J, Honegger J, Feuerstein TJ: Binding affinity and agonist activity of putative endogenous cannabinoids at the human neocortical CB1 receptor. Biochem. Pharmacol. 69, 169–178 (2005)
  • Hanus L, Abu-Lafi S, Fride E et al.: 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc. Natl Acad. Sci. USA 98, 3662–3665 (2001)
  • Fezza F, Bisogno T, Minassi A, Appendino G, Mechoulam R, Di Marzo V: Noladin ether, a putative novel endocannabinoid: inactivation mechanisms and a sensitive method for its quantification in rat tissues. FEBS Lett. 513, 294–298 (2002)
  • Oka S, Tsuchie A, Tokumura A et al.: Ether-linked analogue of 2- arachidonoylglycerol (noladin ether) was not detected in the brains of various mammalian species. J. Neurochem. 85, 1374–1381 (2003)
  • Richardson D, Ortori CA, Chapman V, Kendall DA, Barrett DA: Quantitative profiling of endocannabinoids and related compounds in rat brain using liquid chromatography-tandem electrospray ionization mass spectrometry. Anal. Biochem. 360, 216–226 (2007)
  • Di Marzo V, Breivogel CS, Tao Q et al.: Levels, metabolism, and pharmacological activity of anandamide in CB1 cannabinoid receptor knockout mice: evidence for non- CB1, non-CB2 receptor-mediated actions of anandamide in mouse brain. J. Neurochem. 75, 2434–2444 (2000)
  • Maccarrone M, Lorenzon T, Bari M, Melino G, Finazzi-Agro A: Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J. Biol. Chem. 275, 31938–31945 (2000)
  • Ueda N, Puffenbarger RA, Yamamoto S, Deutsch DG: The fatty acid amide hydrolase (FAAH). Chem. Phys. Lipids 108, 107–121 (2000)
  • Di Marzo V, Bisogno T, De Petrocellis L et al.: Biosynthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in circulating and tumoral macrophages. Eur. J. Biochem. 264, 258–267 (1999)
  • Bari M, Battista N, Fezza F, Gasperi V, Maccarrone M: New insights into endocannabinoid degradation and its therapeutic potential. Mini Rev. Med. Chem. 6, 257–268 (2006)
  • Dinh TP, Carpenter D, Leslie FM et al.: Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl Acad. Sci. USA 99, 10819–10824 (2002)
  • Dinh TP, Freund TF, Piomelli D: A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem. Phys. Lipids 121, 149–158 (2002)
  • Dinh TP, Kathuria S, Piomelli D: RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol. Mol. Pharmacol. 66, 1260–1264 (2004)
  • Bifulco M, Laezza C, Valenti M, Ligresti A, Portella G, Di Marzo V: A new strategy to block tumor growth by inhibiting endocannabinoid inactivation. FASEB J. 18, 1606–1608 (2004). o Study of the effects of enzymes metabolizing endocannabinoids in the increase of ligand concentrations to regulate cancer growth.
  • Pacher P, Batkai S, Kunos G: The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58, 389–462 (2006)
  • Di Marzo V, Bisogno T, De Petrocellis L: Endocannabinoids: new targets for drug development. Curr. Pharm. Des. 6, 1361–1380 (2000)
  • Ligresti A, Bisogno T, Matias I et al.: Possible endocannabinoid control of colorectal cancer growth. Gastroenterology 125, 677–687 (2003)
  • De Petrocellis L, Melck D, Bisogno T, Di Marzo V: Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders. Chem. Phys. Lipids 108, 191–209 (2000)
  • Parolaro D, Massi P, Rubino T, Monti E: Endocannabinoids in the immune system and cancer. Prostaglandins Leukot. Essent. Fatty Acids 66, 319–332 (2002)
  • Bifulco M, Di Marzo V: Targeting the endocannabinoid system in cancer therapy: a call for further research. Nat. Med. 8, 547–550 (2002)
  • Portella G, Laezza C, Laccetti P, De Petrocellis L, Di Marzo V, Bifulco M: Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J. 17, 1771–1773 (2003)
  • Jones S, Howl J: Cannabinoid receptor systems: therapeutic targets for tumour intervention. Expert Opin. Ther. Targets 7, 749–758 (2003)
  • Grimaldi C, Pisanti S, Laezza C et al.: Anandamide inhibits adhesion and migration of breast cancer cells. Exp. Cell Res. 312, 363–373 (2006)
  • Bifulco M, Laezza C, Pisanti S, Gazzerro P: Cannabinoids and cancer: pros and cons of an antitumour strategy. Br. J. Pharmacol. 148, 123–135 (2006)
  • Bifulco M, Laezza C, Gazzerro P, Pentimalli F: Endocannabinoids as emerging suppressors of angiogenesis and tumor invasion (review). Oncol. Rep. 17, 813–816 (2007). o Dicusses the therapeutic potential of endocannabinoids as endogenous antiangiogenic and anti-invasive factors on cancer.
  • Flygare J, Sander B: The endocannabinoid system in cancer-potential therapeutic target? Semin. Cancer Biol. 18, 176–189 (2008)
  • Izzo AA, Aviello G, Petrosino S et al.: Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. J. Mol. Med. 86, 89–98 (2008)
  • Mimeault M, Pommery N, Wattez N, Bailly C, Henichart JP: Antiproliferative and apoptotic effects of anandamide in human prostatic cancer cell lines: implication of epidermal growth factor receptor down-regulation and ceramide production. Prostate 56, 1–12 (2003)
  • Endsley MP, Thill R, Choudhry I et al.: Expression and function of fatty acid amide hydrolase in prostate cancer. Int. J. Cancer DOI: 10.1002/ijc.23674 (2008) (Epub ahead of print)
  • Melck D, De Petrocellis L, Orlando P et al.: Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology 141, 118–126 (2000)
  • Sanchez MG, Sanchez AM, Ruiz-Llorente L, Diaz-Laviada I: Enhancement of androgen receptor expression induced by (R)-methanandamide in prostate LNCaP cells. FEBS Lett. 555, 561–566 (2003)
  • Nithipatikom K, Endsley MP, Isbell MA et al.: 2-arachidonoylglycerol: a novel inhibitor of androgen-independent prostate cancer cell invasion. Cancer Res. 64, 8826–8830 (2004)
  • Nithipatikom K, Endsley MP, Isbell MA, Wheelock CE, Hammock BD, Campbell WB: A new class of inhibitors of 2-arachidonoylglycerol hydrolysis and invasion of prostate cancer cells. Biochem. Biophys. Res. Commun. 332, 1028–1033 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.